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Abstract: In this third part of our work, we go back to the study of the ν
(k)
G functions (intro-

duced in the first one), which count the minimal cardinality of a sumset containing an element
with a single representation. An upper bound for these functions is obtained in the case k = 2
using what we call the generalized increasingly small sumsets property, which is proved to hold
for all Abelian groups. Moreover, we show that our bound cannot be improved in general.
Keywords: additive number theory, small sumsets, supersmall sumsets, Abelian groups, initial
segment.

1. Introduction

This is the third part of a work started in [12, 13] on small sumsets in groups,
a subject taking place in the context of additive number theory (see [9] and [10]
for two classical introductions). In what follows, we start with a short summary
of what we did in our previous papers. Concerning precise motivations and for a
more complete history and references on the subject, we refer to the first two parts
[12, 13].

In the first part [12], the author introduced the generalized supersmall sum-
sets property: a group G (written additively) was said to have this property if for
any positive integer k , any 1 6 r1, . . . , rk 6 |G| (where |G| denotes the cardina-
lity of the group G if it is finite or +∞ if G is infinite, in which case, a constraint
like r1 6 |G| is trivially empty), there exist subsets A1, . . . ,Ak ⊂ G , containing
0, with |A1| = r1, . . . , |Ak| = rk , and

(i) either |A1 + · · ·+ Ak| 6 r1 + · · ·+ rk − k ,
(ii) or |A1 + · · ·+ Ak| = r1 + · · ·+ rk − k+ 1 and the neutral element 0 has the

unique representation 0 + · · ·+ 0 as an element of the sumset A1 + · · ·+Ak .
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We recall that a (Minkowski) sumset is defined as follows

A1 + · · ·+ Ak = {a1 + · · ·+ ak, a1 ∈ A1, . . . , ak ∈ Ak}.

It was proved in [12] that this property holds for all solvable groups. As an applica-
tion of this problematic (and using Kneser’s theorem [6, 7] in the way introduced
for this problem in [11]), we obtained a formula (see (2) below) for the functions

µ
(k)
G (r1, . . . , rk) = min{|A1 + · · ·+ Ak| such that A1, . . . ,Ak ⊂ G (1)

and |A1| = r1, . . . , |Ak| = rk},

defined as the minimal cardinality of a sumset A1 + · · ·+Ak with A1, . . . ,Ak ⊂ G
and |A1| = r1, . . . , |Ak| = rk and, second, bounds for the ν

(k)
G (r1, . . . , rk) func-

tions, which have a slightly more complex definition, namely

ν
(k)
G (r1, . . . , rk) =





min{|A1 + · · ·+ Ak| with A1, . . . ,Ak ⊂ G,
|A1| = r1, . . . , |Ak| = rk and there is an element in

A1 + · · ·+ Ak having a unique representation},
if there are any such sets A1, . . . ,Ak ⊂ G;

∞, otherwise.

Not only the definition of these functions are more complex, but also their beha-
viours. The reader is referred to [12] for the precise bounds that were obtained
there for ν(k)

G (r1, . . . , rk).
In the second part [13], a more sophisticated tool – which builds on the

supersmall sumsets property – called the hypersmall sumsets property was intro-
duced. It was shown that all Abelian groups have this property which was then
applied to the computation of the ξG(r, s) functions defined as the minimal car-
dinality of a restricted sumset A+̂B where |A| = r , |B| = s and A+̂B denotes
{a + b, a ∈ A, b ∈ B, a 6= b} . Using this new tool, we could prove that for any
Abelian group G and for any integers 1 6 r, s 6 |G| , we have

ξG(r, s) 6 min
(
r + s− 2, µG(r, s)

)
;

if r = s , we also proved that, in most cases (that we called regular), we could
improve this upper bound into

ξG(r, r) 6 min
(
2r − 3, µG(r, r)

)
.

Finally, a conjecture was stated on the precise values taken by ξG(r, s), which, in
some cases, was shown to hold, assuming a conjecture by Lev [8] dealing with a
counterpart to Kneser’s theorem [6, 7] in the frame of restricted addition.

In this paper, we keep the notation adopted in the first two parts of this work
[12, 13]: let G be a group, k be a positive integer and r1, . . . , rk be k positive
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integers 6 |G| . All the groups we shall deal with in this article will be written
additively and their neutral element denoted by 0.

While the function µ
(k)
G (r1, . . . , rk) is proved [12] – when G is an arbitrary

Abelian group – to be equal to

µ
(k)
G (r1, . . . , rk) = min

d∈D

(⌈r1

d

⌉
+ · · ·+

⌈rk
d

⌉
− k + 1

)
d, (2)

where D is the set of integers that are the cardinality of a finite subgroup of G , the
function ν

(k)
G (r1, . . . , rk) (see the definition above) has a more erratic behaviour to

which we go back in the present article. In [12], we obtained several results on this
function, notably the following lower bound (which was obtained as a consequence
of the Kemperman-Scherk theorem [4, 5, 15]).

Theorem 1. Let G be an Abelian group. As soon as r1 + · · ·+ rk > |G|+ k , we
have

ν
(k)
G (r1, . . . , rk) =∞.

Moreover, if r1 + · · ·+ rk 6 |G|+ k − 1 , we have

ν
(k)
G (r1, . . . , rk) > r1 + · · ·+ rk − k + 1.

This lower bound cannot in general be improved since we could prove expli-
citly the value of ν(k)

G (r1, . . . , rk) to be equal to this lower bound in some specific
cases. Let us for instance reformulate (in an apparently more general form) a result
we obtained in [12].

Theorem 2. Let G be a group and 1 6 r1, . . . , rk 6 |G| be integers. If G is an
Abelian group containing either a subgroup isomorphic to Z or a cyclic subgroup
H such that r1 + · · ·+ rk 6 |H|+ k − 1 , then

ν
(k)
G (r1, . . . , rk) = r1 + · · ·+ rk − k + 1.

We also gave lots of other situations where the same value r1 +· · ·+rk−k+1
is attained (this was our Theorem 9 in [12]). However, we noticed that, in general,
ν

(k)
G (r1, . . . , rk) is different from r1 + · · · + rk − k + 1 by observing the following

two very simple examples (valid in the case k = 2):
(1) G = (Z/2Z)2 and r1 = r2 = 2 for which ν

(2)
(Z/2Z)2(2, 2) = 4,

(2) G = (Z/3Z)2 , r1 = 2 and r2 = 3 where ν(2)
(Z/3Z)2(2, 3) = 5.

In the present work, we restart from this point. Our aim is to investigate
upper bounds for the ν(k)

G (r1, . . . , rk) functions in the case where G is an Abelian
group.

2. New results

To start with and for the sake of completeness, we first state the following proposi-
tion which presents a new (but commonplace) situation in which the lower bound
of Theorem 1 is attained.
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Theorem 3. Let G be an Abelian group. If

µ
(k)
G (r1, . . . , rk) = r1 + · · ·+ rk − k + 1

then

ν
(k)
G (r1, . . . , rk) = r1 + · · ·+ rk − k + 1.

Indeed, since G has the generalized supersmall sumsets property (in view of
Theorem 2 of [12] and because G is Abelian) we must be either in case (i) or in
case (ii) of the definition of this property (see the introduction). But in view of
the value of µG(r1, . . . , rk) we cannot be in case (i). This implies that we are in
case (ii) and the result follows.

Then, we study upper bounds on ν
(k)
G (r1, . . . , rk). It turns out that what is

needed in such a study is a property of increasingness of the generalized super-
small sumsets property. Having this remark in mind, the introduction of a rather
technical refinement of this property becomes quite natural: we say that a group G
has the generalized increasingly small sumsets property if for any positive integer
k , any 1 6 r1, . . . , rk 6 |G| , any 1 6 r′1, . . . , r

′
k 6 |G| such that ri 6 r′i (for all

1 6 i 6 k ), there exist subsets A1, . . . ,Ak,A
′
1, . . . ,A

′
k ⊂ G , containing 0, such

that |A1| = r1, . . . , |Ak| = rk, |A′1| = r′1, . . . , |A′k| = r′k , satisfying Ai ⊂ A′i for all
1 6 i 6 k and such that

(i) either |A1 + · · ·+ Ak| 6 r1 + · · ·+ rk − k ,
(ii) or |A1 + · · · + Ak| = r1 + · · · + rk − k + 1 and there is an element α in

A1 + · · · + Ak which has a unique representation α = α1 + · · · + αk (with
α1 ∈ A1, . . . , αk ∈ Ak ) as an element of the sumset A1 + · · ·+ Ak ,

and
(i’) either |A′1 + · · ·+ A′k| 6 r′1 + · · ·+ r′k − k ,

(ii’) or |A′1 + · · · + A′k| = r′1 + · · · + r′k − k + 1 and there is an element α′ in
A′1 + · · · + A′k which has a unique representation α′ = α′1 + · · · + α′k (with
α′1 ∈ A′1, . . . , α

′
k ∈ A′k ) as an element of the sumset A′1 + · · ·+ A′k .

For the sake of completeness, we recall the following definition: we say that
an element x ∈ A1 + · · ·+ Ak has r representations (as an element of the sumset
A1 + · · ·+ Ak ) if

|{(a1, . . . , ak) ∈ A1 × · · · ×Ak, x = a1 + · · ·+ ak}| = r.

We notice that, by definition, a group which has the generalized increasin-
gly small sumsets property has also the generalized supersmall sumsets property
(simply take r′i = ri for all index i). In fact, the generalized supersmall sumsets
property appears like a “diagonal” case compared to the generalized increasingly
small sumsets property which can be seen as a “polar” version of it.

We already knew that every solvable group has the generalized supersmall
sumsets property (Theorem 2 in [12]). Here, we first obtain the following result.
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Theorem 4. Every Abelian group has the generalized increasingly small sumsets
property.

The proof of Theorem 4 will be given in Section 3.
In view of what we just mentioned, this result implies in particular the

special case of Abelian groups in Theorem 2 of [12]. In fact, the method for proving
Theorem 4 (a rather “direct” method in the spirit of that one used in [3]) will be
different from the method used in [12] (a mainly “inductive” method). It follows
that Theorem 4 gives a second proof that every Abelian group has the generalized
supersmall sumsets property.

To go further and discuss the application of Theorem 4 to ν
(k)
G , let us now

introduce another definition. For G a group, k a positive integer and r1, . . . , rk ∈
N satisfying r1, . . . , rk 6 |G| , we write D for the set of integers that are the
cardinality of a finite subgroup of G . We shall denote by δ

(k)
G (r1, . . . , rk) the

(well-defined) quantity

max
{
d ∈ D such that

(⌈r1

d

⌉
+ · · ·+

⌈rk
d

⌉
− k + 1

)
d = µ

(k)
G (r1, . . . , rk)

}
.

Notice that δ(k)
G (r1, . . . , rk) 6 µ

(k)
G (r1, . . . , rk).

Having this notation at our disposal, we are ready to apply the increasingly
small sumsets property to obtain an upper bound on ν

(k)
G in the case of two

arguments (k = 2).

Theorem 5. Let G be an arbitrary Abelian group and D stands for the set of
integers that are the cardinality of a finite subgroup of G . For any 1 6 r, s 6 |G| ,
we have

ν
(2)
G (r, s) 6 µ

(2)
G (r, s) + δ

(2)
G (r, s).

We notice that in particular, this implies

µ
(2)
G (r, s) 6 ν

(2)
G (r, s) 6 2µ(2)

G (r, s).

The proof of Theorem 5 will be presented in Section 4.
One of the interests of this result follows from the fact that it is in general

best possible. Indeed, our next result shows a family of situations where it is an
equality.

Theorem 6. Let p be an arbitrary prime. We have

ν
(2)
(Z/pZ)2(p, p) = 2p, µ

(2)
(Z/pZ)2(p, p) = p and δ

(2)
(Z/pZ)2(p, p) = p.

We shall give two proofs of this result in Section 5. First, a long but down-to-
-earth proof will be explained: it uses only simple but specific to Z/pZ tools and
leaves open possibilities to further developments (in particular, other values of
ν

(2)
(Z/pZ)2 can be obtained by a similar method). Second, a more sophisticated proof

based on Kemperman’s theorem, which is much shorter (in fact, its length and
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complexity are hidden by the use of Kemperman’s theorem). The author thanks
an anonymous referee for suggesting such another proof.

Developping Theorem 5 into several directions, including for instance the
case k > 2, should be a good subject to which we plan to come back in a near
future. Other applications of Theorem 4 should also be of interest.

3. Proof of Theorem 4

We start by introducing some terminology in the case where we consider a
finite product of finite cyclic groups,

G = Z/n1Z× · · · × Z/nsZ,

where n1, . . . , ns are given integers such that ni > 2 (1 6 i 6 s). In what follows,
an element of G will be written as an s -tuple (x1, . . . , xs) where each xi is an
integer between 0 and ni − 1, for 1 6 i 6 s .

We may now order the elements of G lexicographically, that is

(y1, . . . , ys) � (x1, . . . , xs)

if and only if there is some integer i (1 6 i 6 s) such that yi > xi and yj = xj
for all 1 6 j < i .

We shall denote by Gi the subgroup of G given by

Gi = {0} × · · · × {0} × Z/niZ× · · · × Z/nsZ

where i is any integer satisfying 1 6 i 6 s .
We notice that every integer m less than n = n1 · · ·ns can be written in a

unique way as a sum

m = α1(m)n2 · · ·ns + α2(m)n3 · · ·ns + · · ·+ αs−1(m)ns + αs(m), (3)

where each αi(m) is an integer (a digit) verifying 0 6 αi(m) 6 ni − 1 (for
1 6 i 6 s). We write m = [α1(m), α2(m), . . . , αs−1(m), αs(m)]n1,...,ns , that is as
a list of digits (in basis (n1, . . . , ns)). When there is no ambiguity, we shall write
αi instead of αi(m).

We can check the following compatibility fact: l < m (that is,

[α1(l), α2(l), . . . , αs−1(l), αs(l)]n1,...,ns < [α1(m), α2(m), . . . , αs−1(m), αs(m)]n1,...,ns)

if and only if

(α1(l), α2(l), . . . , αs−1(l), αs(l)) ≺ (α1(m), α2(m), . . . , αs−1(m), αs(m))

in G .
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For a non-negative integer m 6 |G| , we finally denote by Im the subset of
G composed of its elements which are lexicographically less than (α1(m), α2(m),
. . . , αs−1(m), αs(m)). In other words, we observe the following explicit description
(still using the notation of (3) but forgetting the reference to m in the αi ’s) of Im :

Im =
({(i, 0, . . . , 0) for 0 6 i 6 α1 − 1}+G2

)

∪ ({(α1, i, 0, . . . , 0) for 0 6 i 6 α2 − 1}+G3
)

∪ . . . ∪ ({(α1, α2, . . . , αs−2, i, 0) for 0 6 i 6 αs−1 − 1}+Gs
)

∪ ({(α1, α2, . . . , αs−1, i) for 0 6 i 6 αs − 1}).
We shall write

I(k)
α1,...,αk

= {(α1, α2, . . . , αk−1, i, 0, . . . , 0) for 0 6 i 6 αk − 1}

so that

Im =
(
I(1)
α1

+G2
) ∪ (I(2)

α1,α2
+G3

) ∪ . . . ∪ (I(s−1)
α1,...,αs−1

+Gs
) ∪ I(s)

α1,...,αs−1,αs . (4)

In [3], such sets are called initial segments and we shall keep this terminology in
our present purpose. The element

(α1, α2, . . . , αs−1, αs − 1)

will be called the extremity of the initial segment Im .
Two facts are worth noticing. First, the set Im in the form (4) is a disjo-

int union of
(
I

(1)
α1 +G2

)
,
(
I

(2)
α1,α2 +G3

)
, . . . ,

(
I

(s−1)
α1,...,αs−1 +Gs

)
and I

(s)
α1,...,αs−1,αs .

Second, given an initial segment, the integers α1, . . . , αs−1, αs used in a decompo-
sition of the form (4) are unique. For instance, α1 is the greatest first coordinate
of any element in the set, α2 is the greatest second coordinate of any element in
the set having α1 as its first coordinate, and so on. . .

We also emphasize the following basic fact that the set
(
I(k)
α1,...,αk

+Gk+1
) ∪ . . . ∪ (I(s−1)

α1,...,αs−1
+Gs

) ∪ I(s)
α1,...,αs−1,αs

is composed of elements which are of the form (α1, . . . , αk−1, yk, . . . , ys), where
(yk, . . . , ys) ∈ Z/nkZ× · · · ×Z/nsZ describes an initial segment of Z/nkZ× · · · ×
Z/nsZ . More precisely, we have the following lemma.

Lemma 1. Let G = Z/n1Z × · · · × Z/nsZ and k be an integer, 2 6 k 6 s . For
any subset J of Gk ⊂ G and any α1 ∈ Z/n1Z, . . . , αk−1 ∈ Z/nk−1Z , the following
assertions are equivalent:

(i) J is an initial segment included in Gk ,
(ii) the set

(
I(1)
α1

+G2
)∪(I(2)

α1,α2
+G3

)∪. . .∪(I(k−1)
α1,...,αk−1

+Gk
)∪(α1, . . . , αk−1, 0, . . . , 0)+J

is an initial segment of G .
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Proof. An initial segment J included in Gk is of the form

J =
({(0, . . . , 0, i, 0, . . . , 0) for 0 6 i 6 αk − 1}+Gk+1

)

∪ ({(0, . . . , 0, αk, i, 0, . . . , 0) for 0 6 i 6 αk+1 − 1}+Gk+2
)

∪ . . . ∪ ({(0, . . . , 0, αk, αk+1, . . . , αs−1, i) for 0 6 i 6 αs − 1}),
where the non-zero coordinates start at the k -th place. It follows that

(α1, . . . , αk−1, 0, . . . , 0) + J

=
({(α1, . . . , αk−1, i, 0, . . . , 0) for 0 6 i 6 αk − 1}+Gk+1

)

∪ ({(α1, . . . , αk−1, αk, i, 0, . . . , 0) for 0 6 i 6 αk+1 − 1}+Gk+2
)

∪ . . . ∪ ({(α1, . . . , αk−1, αk, αk+1, . . . , αs−1, i) for 0 6 i 6 αs − 1})

=
(
I(k)
α1,...,αk

+Gk+1
) ∪ (I(k+1)

α1,...,αk+1
+Gk+2

) ∪ . . . ∪ I(s)
α1,...,αs−1,αs ,

which implies that
(
I(1)
α1

+G2
)∪ (I(2)

α1,α2
+G3

)∪ . . .∪ (I(k−1)
α1,...,αk−1

+Gk
)∪ (α1, . . . , αk−1, 0, . . . , 0) + J

is an initial segment of G . So (i) implies (ii).
The proof of the converse statement is of the same kind. Let K ⊂ G be the

following set

K =
(
I(1)
α1

+G2
)∪(I(2)

α1,α2
+G3

)∪. . .∪(I(k−1)
α1,...,αk−1

+Gk
)∪(α1, . . . , αk−1, 0, . . . , 0)+J.

Since J ⊂ Gk , this union is a disjoint union (this can be seen in an analogous
way as what was done for showing that (4) is a disjoint union). If K is an initial
segment, it is also of the form

K =
(
I

(1)
β1

+G2
) ∪ (I(2)

β1,β2
+G3

) ∪ . . . ∪ (I(s−1)
β1,...,βs−1

+Gs
) ∪ I(s)

β1,...,βs−1,βs
,

for some integers β1, . . . , βs . We readily see that these two ways of writing K as
a disjoint union imply that β1 = α1, . . . , βk−1 = αk−1 . This follows from the fact
that α1 and β1 are both the greatest first coordinate of any element in K , α2 and
β2 are both the greatest second coordinate of any element in K having α1 = β1

as its first coordinate, and so on. . .
It follows, after simplification, that

(α1, . . . , αk−1, 0, . . . , 0)+J=
(
I(k)
α1,...,αk

+Gk+1
)∪. . .∪(I(s−1)

α1,...,αs−1
+Gs

)∪I(s)
α1,...,αs−1,αs .

Translating everything by −(α1, . . . , αk−1, 0, . . . , 0) gives

J =
(
I

(k)
0,...,0 +Gk+1

) ∪ . . . ∪ (I(s−1)
0,...,0,αk,...,αs−1

+Gs
) ∪ I(s)

0,...,0,αk,...,αs−1,αs
,

an initial segment contained in Gk .

We now define the function

φG :

{
{0, . . . , n− 1} → P(G)

m → Im,

where P(G) denotes the set of all subsets of G , and prove the following lemma.
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Lemma 2. Let G be a finite product of finite cyclic groups, then φG is an incre-
asing function and |φG(m)| = m .

Proof. Consider l < m , then as noted above

(α1(l), α2(l), . . . , αs−1(l), αs(l)) ≺ (α1(m), α2(m), . . . , αs−1(m), αs(m)).

The increasingness of φG then follows from the very definitions of Il and Im .
Using for instance the description (4) above and keeping our notation, we

immediately notice that

|Im| = α1|G2|+ · · ·+ αs−1|Gs|+ αs = α1n2 · · ·ns + · · ·+ αs−1ns + αs = m.

Here is now our main lemma in the direction of Theorem 4.

Lemma 3. Let G be a finite product of finite cyclic groups. Let u and v be two
positive integers < |G| , then φG(u) + φG(v) is either equal to φG(t) for some
integer t 6 u + v − 2 or equal to φG(u + v − 1) , in which case, the extremity of
φG(u + v − 1) has a unique representation as an element of the sumset φG(u) +
φG(v) , namely as the sum of the extremities of φG(u) and φG(v) , respectively.

Proof. The proof is by induction on the number of factors s appearing in the
decomposition

G = Z/n1Z× · · · × Z/nsZ.
We may still assume that n1, . . . , ns > 2.

If s = 1, then the result is immediate since

φG(u) + φG(v) = {0, . . . , u− 1}+ {0, . . . , v − 1}

=

{ {0, . . . , u+ v − 2} = φG(u+ v − 1) if u+ v 6 n1 + 1,

{0, . . . , n1 − 1} = φG(n1) if u+ v > n1 + 2.

We note that in the first case the extremity of φG(u) + φG(v), namely u+ v − 2,
has the unique representation (u−1)+(v−1), that is, as the sum of the respective
extremities of φG(u) and φG(v).

Assume now the result to be true for some integer s−1 and consider the case
of a group G which is a product of s cyclic groups. We compute φG(u) + φG(v)
using the description (4), the remarks thereafter and Lemma 1 (in the case k = 2).
We therefore write

Iu =
(
I(1)
α1

+G2
) ∪ ((α1, 0, . . . , 0) + I′u

)

and analogously
Iv =

(
I

(1)
β1

+G2
) ∪ ((β1, 0, . . . , 0) + I′v

)
,

where I′u and I′v are initial segments of G included in G2 .
We consider several cases.



386 Alain Plagne

Case 1. If α1 = β1 = 0, then Iu = I′u and Iv = I′v and everything happens
in the subgroup G2 of G , which is a product of s−1 finite cyclic groups. Therefore
the result follows from the induction hypothesis.

Case 2. If α1 6= 0, β1 = 0. We must have I′v 6= ∅ . We compute

Iu + Iv =
((
I(1)
α1

+G2
) ∪ ((α1, 0, . . . , 0) + I′u

))
+ I′v

=
(
I(1)
α1

+G2 + I′v
) ∪ ((α1, 0, . . . , 0) + I′u + I′v

)

=
(
I(1)
α1

+G2
) ∪
(

(α1, 0, . . . , 0) +
(
I′u + I′v

))

since I′v ⊂ G2 implies G2 + I′v = G2 .
By the induction hypothesis, since G2 is isomorphic to a product of s − 1

finite cyclic groups and I′u, I
′
v are initial segments contained in it, the sumset

I′u + I′v is an initial segment in G2 satisfying |I′u + I′v| 6 |I′u|+ |I′v| − 1. Therefore,
by Lemma 1,

Iu + Iv =
(
I(1)
α1

+G2
) ∪
(

(α1, 0, . . . , 0) +
(
I′u + I′v

))

is an initial segment of G .
As regards the cardinality, we have

|Iu + Iv| = α1|G2|+ |I′u + I′v| 6 α1|G2|+ |I′u|+ |I′v| − 1,

by the induction hypothesis. Since α1|G2| + |I′u| = |Iu| and |I′v| = |Iv| , we have
|Iu + Iv| 6 |Iu|+ |Iv| − 1.

If this is an equality, we must have |I′u + I′v| = |I′u| + |I′v| − 1. But then,
the induction hypothesis implies that the extremity of I′u + I′v has a single repre-
sentation (which is the sum of the extremities of I′u and I′v , respectively). It can
then be immediately deduced that the extremity of Iu + Iv , which coincides with
(α1, 0, . . . , 0) plus the extremity of I′u + I′v can be uniquely written as the sum
of the extremity of Iu (which is (α1, 0, . . . , 0) plus the extremity of I′u ) and the
extremity of Iv .

Case 3. The case α1 = 0, β1 6= 0 can be treated symetrically in exactly the
same way.

From now on, we therefore assume that neither α1 nor β1 is equal to zero.

Case 4. If I′u = I′v = ∅ , then we have |Iu| = α1|G2| and |Iv| = β1|G2| (in
this case α1, β1 > 0). We compute

Iu + Iv =
(
I(1)
α1

+G2
)

+
(
I

(1)
β1

+G2
)

=
(
I(1)
α1

+ I
(1)
β1

+G2
)

=





(
I

(1)
α1+β1−1 +G2

)
if α1 + β1 6 n1 + 1,

G otherwise.
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In both cases, Iu + Iv is therefore an initial segment of cardinality

|Iu + Iv| 6 (α1 + β1 − 1)|G2| = |Iu|+ |Iv| − |G2| 6 |Iu|+ |Iv| − 2,

which proves the result in this case.

Case 5. If I′v = ∅ and I′u 6= ∅ , we compute (using I′u ⊂ G2 )

Iu + Iv =
((
I(1)
α1

+G2
) ∪ ((α1, 0, . . . , 0) + I′u

))
+
(
I

(1)
β1

+G2
)

=
(
I(1)
α1

+ I
(1)
β1

+G2
) ∪
(

(α1, 0, . . . , 0) +
(
I

(1)
β1

+G2
))

=





(
I

(1)
α1+β1

+G2
)

if α1 + β1 6 n1,

G otherwise.

In both cases, Iu + Iv is therefore an initial segment of cardinality

|Iu + Iv| 6 (α1 + β1)|G2| = (|Iu| − |I′u|) + |Iv| 6 |Iu|+ |Iv| − 1.

If equality holds here, then we must have both |I′u| = 1 and α1 + β1 6 n1 .
It follows that the extremity of Iu + Iv which coincides exactly with (α1, 0, . . . , 0)
plus the extremity of I′u +

(
I

(1)
β1

+ G2
)

has a single representation (since I′u has
one element). It can be checked easily that this unique representation has the right
form of the sum of the two extremities of Iu and Iv , respectively.

Case 6. The case I′v 6= ∅ and I′u = ∅ is treated in a similar way as Case 5.

Case 7. Assume finally that we are in the generic case, α1, β1 6= 0, I′u, I
′
v 6= ∅ .

In this case

Iu + Iv

=
((
I(1)
α1

+G2
) ∪ ((α1, 0, . . . , 0) + I′u

))
+
((
I

(1)
β1

+G2
) ∪ ((β1, 0, . . . , 0) + I′v

))

=
(
I(1)
α1

+ I
(1)
β1

+G2
) ∪
(
I

(1)
β1

+G2 +
(
(α1, 0, . . . , 0) + I′u

))

∪
(
I(1)
α1

+G2 +
(
(β1, 0, . . . , 0) + I′v

)) ∪ ((α1 + β1, 0, . . . , 0) + I′u + I′v
)

=
(
I(1)
α1

+ I
(1)
β1

+G2
) ∪ (I(1)

β1
+G2 + (α1, 0, . . . , 0)

)

∪ (I(1)
α1

+G2 + (β1, 0, . . . , 0)
) ∪ ((α1 + β1, 0, . . . , 0) + I′u + I′v

)

=
(
I(1)
α1

+ I
(1)
β1

+G2
) ∪ ((α1 + β1 − 1, 0, . . . , 0) +G2

)

∪ ((α1 + β1, 0, . . . , 0) + I′u + I′v
)

=





(
I

(1)
α1+β1

+G2
) ∪ ((α1 + β1, 0, . . . , 0) + I′u + I′v

)
if α1 + β1 6 n1 − 1,

G otherwise.
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So, in both cases, Iu + Iv is always an initial segment.
If α1 + β1 > n1 , we obtain

|Iu + Iv| = |G| 6 (α1 + β1)|G2| = |Iu|+ |Iv| − |I′u| − |I′v| 6 |Iu|+ |Iv| − 2

and the result follows.
If α1 + β1 6 n1 − 1, we obtain

|Iu+ Iv| 6 (α1 +β1)|G2|+ |I′u+ I′v| 6 (α1 +β1)|G2|+ |I′u|+ |I′v|−1 = |Iu|+ |Iv|−1

where we have used the induction hypothesis in order to bound from above the
quantity |I′u+ I′v| . The case of equality follows analogously to what has been done
for Cases 2 or 5, because the extremity of Iu+Iv coincides with (α1 +β1, 0, . . . , 0)
plus the extremity of I′u + I′v which must have a single representation. Again, it
follows that the unique representation of the extremity of Iu + Iv has the right
form of the sum of the two extremities of Iu and Iv , respectively.

We can now pass to an arbitrary number of variables.

Lemma 4. Let G be a finite product of finite cyclic groups. Let k be an integer,
k > 2 , and u1, u2, . . . , uk be k positive integers < |G| , then φG(u1) + φG(u2) +
· · ·+φG(uk) is either equal to φG(t) for some integer t 6 u1 + · · ·+uk−k or equal
to φG(u1 + · · · + uk − k + 1) , in which case, the extremity of this sumset has a
single representation, namely as the sum of the extremities of φG(u1), φG(u2), . . . ,
and φG(uk) , respectively.

Proof. The proof is by induction on k .
If k = 2 then the result follows from the preceding Lemma 3.
Assume the result to be true for some integer k − 1 > 2 and consider k

positive integers u1, u2, . . . , uk < |G| . We study the sumset φG(u1) + φG(u2) +
· · ·+ φG(uk). By the induction hypothesis

φG(u1) + φG(u2) + · · ·+ φG(uk−1) = φG(t′)

for some t′ 6 u1 + · · ·+ uk−1 − (k − 1) + 1 = u1 + · · ·+ uk−1 − k + 2.
Using this and Lemma 3, we conclude that

φG(u1) + φG(u2) + · · ·+ φG(uk) = φG(t′) + φG(uk) = φG(t) (5)

where t 6 t′ + uk − 1. It follows

t 6 t′+uk−1 6 u1 + · · ·+uk−1−k+2+uk−1 = u1 + · · ·+uk−1 +uk−k+1. (6)

It remains to examine the case of equality. It t = u1 + · · ·+uk−1 +uk−k+1,
then we must have equalities everywhere in (6). Each of these equalities implies
unicity of the representation (in the right form) of its extremity in the corre-
sponding sumset. This implies the same result for the sumset φG(u1) + φG(u2) +
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· · · + φG(uk). More precisely, first, the first equality in (6) shows that the extre-
mity of φG(u1 + · · · + uk − k + 1) can be written uniquely as the sum of the
extremity of φG(u1 + · · · + uk−1 − k + 2) and of φG(uk), respectively. Now, in
view of the second equality in (6) and the induction hypothesis, the extremity of
φG(u1 + · · ·+ uk−1− k+ 2) can be uniquely written as the sum of the extremities
of φG(u1), . . . , φG(uk−1). And the conclusion follows.

We can now complete the proof of Theorem 4 in a way reminiscent to [12, 13].

Proof of Theorem 4.

Step 1. The group Z has the generalized increasingly small sumsets property.

Indeed, for any positive integer k , any 1 6 r1, . . . , rk 6 |G| , any 1 6
r′1, . . . , r

′
k 6 |G| such that ri 6 r′i (for all 1 6 i 6 k ), we define Ai = {0, . . . , ri−1}

and A′i = {0, . . . , r′i − 1} (for 1 6 i 6 k ). We have Ai ⊂ A′i for each index i .
We compute that A1 + · · · + Ak = {0, . . . , r1 + · · · + rk − k} has cardinality
r1 + · · · + rk − k + 1 and that A′1 + · · · + A′k = {0, . . . , r′1 + · · · + r′k − k} has
cardinality r′1 + · · · + r′k − k + 1. Moreover, it is immediately seen that the ele-
ment r1 + · · · + rk − k has a unique representation as an element of the sumset
A1+· · ·+Ak (namely (r1−1)+· · ·+(rk−1)), and that the element r1+· · ·+rk−k
has a unique representation as an element of the sumset A′1 + · · ·+ A′k .

Step 2. Every finite Abelian group has the generalized increasingly small
sumsets property.

Let G be a finite Abelian group. The structure of such a group is well known
(see for instance Chapter I.5 of [14]). We may therefore assume that

G = Z/n1Z× · · · × Z/nsZ

for some integers n1, . . . , ns > 2.
Let k be any positive integer and 1 6 r1, . . . , rk 6 |G| , 1 6 r′1, . . . , r

′
k 6 |G|

such that ri 6 r′i (for all 1 6 i 6 k ).
We define Ai = φG(ri),A

′
i = φG(r′i) for all 1 6 i 6 k . By Lemma 2, since φG

is increasing and ri 6 r′i , we have Ai ⊂ A′i . By Lemma 4, A1 + · · ·+ Ak = φG(t)
and A′1+· · ·+A′k = φG(t′) with t 6 r1+· · ·+rk−k+1 and t′ 6 r′1+· · ·+r′k−k+1.

This implies, by Lemma 2 again,

|A1 + · · ·+ Ak| = |φG(t)| = t 6 r1 + · · ·+ rk − k + 1.

If equality holds, this yields t = r1+· · ·+rk−k+1, in which case, Lemma 4 implies
that there is an element (namely the extremity of the sumset) in A1 + · · · + Ak

which has a single representation.
Since an analogous fact can be shown on the sumset A′1 + · · ·+ A′k , we have

proved that G has the generalized increasingly small sumsets property.

Step 3. Any Abelian group has the generalized increasingly small sumsets
property.



390 Alain Plagne

If this group, say G , is finite, the result follows from Step 2. Otherwise, for
any positive integer k and integers r1, . . . , rk, r

′
1, . . . , r

′
k > 1 with r′i > ri for each

index 1 6 i 6 k , we choose max(r′1, . . . , r
′
k) arbitrary elements in G . Let H be the

subgroup of G generated by these elements. The group H is by definition finitely
generated. But, by the general structure theorem on finitely generated Abelian
groups (see for instance Chapter I.5 of [14] again), either H is finite in which case
the result follows by Step 2, or H contains a subgroup isomorphic to Z in which
case the result follows by the result of Step 1 (and the fact that it is enough to
prove the result in an infinite subgroup, see Lemma 1 of [12] for an analogous
remark).

The proof is complete.

4. Proof of Theorem 5

In this proof, we write simply δ = δ
(2)
G (r, s). Recall that

µ
(2)
G (r, s) =

(⌈r
δ

⌉
+
⌈s
δ

⌉
− 1
)
δ.

Let H be a subgroup of cardinality δ . We define, for i = 1, 2,

ρi =
⌈
ri
|H|

⌉
=
⌈ri
δ

⌉
.

The notation π will stand again for the canonical homomorphism G→ G/H .
We apply the increasingly small sumsets property (Theorem 4) in (the Abe-

lian group) G/H with r1 = ρ1, r2 = ρ2 and r′1 = ρ1 + 1, r′2 = ρ2 . This gives us
sets B1,B2,B

′
1,B

′
2 ⊂ G/H of respective cardinalities ρ1, ρ2 and ρ1 + 1, ρ2 such

that B1 ⊂ B′1 , B2 = B′2 satisfying in particular

|B1 + B2| 6 ρ1 + ρ2 − 1

and
|B′1 + B′2| 6 ρ1 + ρ2.

Now, using π−1 in the way introduced in [11], we can obtain sets A1,A2,
A′1,A

′
2 ⊂ G with respective cardinalities r, s, r + δ, s such that

Ai ⊂ π−1(Bi), A′i ⊂ π−1(B′i) (for i = 1, 2)

such that A1 ⊂ A′1 and A2 ⊂ A′2 (so A′2 = A2 ).
It follows that

|A1 + A2| 6 |B1 + B2| × |H| 6 (ρ1 + ρ2 − 1)δ = µ
(2)
G (r, s)
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and
|A′1 + A′2| 6 |B′1 + B′2| × |H| 6 (ρ1 + ρ2)δ.

Since by definition |A1 + A2| > µ
(2)
G (r, s), we deduce from the first inequality that

|A1 + A2| = µ
(2)
G (r, s). (7)

We also have, by the second one,

|A′1 + A′2| 6 (ρ1 + ρ2)δ = µ
(2)
G (r, s) + δ, (8)

while, on the other hand, we notice that

|A′1 + A′2| > µ
(2)
G (r + δ, s). (9)

But since (using for instance (2))

µ
(2)
G (r + δ, s) = min

d∈D

(⌈
r + δ

d

⌉
+
⌈ s
d

⌉
− 1
)
d

we have
µ

(2)
G (r + δ, s) > µ

(2)
G (r, s). (10)

Indeed, if d ∈ D is such that d 6 δ then
(⌈

r + δ

d

⌉
+
⌈ s
d

⌉
− 1
)
d >

(⌈ r
d

⌉
+ 1 +

⌈ s
d

⌉
− 1
)
d

>
(⌈r
δ

⌉
+
⌈s
δ

⌉
− 1
)
δ;

while if it satisfies d > δ then
(⌈

r + δ

d

⌉
+
⌈ s
d

⌉
− 1
)
d >

(⌈ r
d

⌉
+
⌈ s
d

⌉
− 1
)
d

>
(⌈r
δ

⌉
+
⌈s
δ

⌉
− 1
)
δ

in view of the maximality condition in the very definition of δ = δ
(2)
G (r, s).

It follows from (7), (10), (9) and (8) that

|A1 + A2| = µ
(2)
G (r, s) < |A′1 + A′2| 6 µ

(2)
G (r, s) + δ.

Let A′1 \ A1 = {a1, . . . , aδ} . For i = 1, . . . , δ , we define A
(i)
1 = A1 ∪

{a1, . . . , ai} and put A
(0)
1 = A1 . We have |A(0)

1 + A2| = |A1 + A2| , |A(i)
1 + A2| >

|A(i−1)
1 +A2| for all integers 1 6 i 6 δ and |A(δ)

1 +A2| = |A′1 +A2| > |A1 +A2| . In
particular there is a value of i0 (1 6 i0 6 δ ) such that |A(i0)

1 +A2| > |A(i0−1)
1 +A2| .
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This means that there is an element s in A
(i0)
1 + A2 which is not in A

(i0−1)
1 + A2 .

This imposes that the element s is of the form ai0 +b where b ∈ A2 . This relation
shows immediately that s has a unique representation as an element of A

(i0)
1 +A2

since b is then uniquely defined (b = s− ai0 ).
To sum up, we have found a set A

(i0)
1 of cardinality r + i0 , containing A1

such that A
(i0)
1 + A2 possesses an element having a single representation. Select

now a subset A′′1 of A
(i0)
1 , with cardinality r and containing ai0 . The element s

still belongs to A′′1 + A2 and still has a single representation as an element of this
sumset. We then conclude

ν
(2)
G (r, s) = ν

(2)
G (|A′′1 |, |A′2|) 6 |A′′1 + A′2| 6 |A′1 + A′2| 6 µ

(2)
G (r, s) + δ,

as promised by the statement of Theorem 5.

5. Proof of Theorem 6

That δ
(2)
(Z/pZ)2(p, p) = p can be seen immediately while the assertion that

µ
(2)
(Z/pZ)2(p, p) = p follows in a straightforward way from the formula already used

several times (see (2) again for instance).
It remains to prove

ν
(2)
(Z/pZ)2(p, p) = 2p.

If we consider the two subsets of (Z/pZ)2 having each p elements

A = {0} × Z/pZ and B = {0} × (Z/pZ \ {0}) ∪ {(1, 0)},

we check that A + B = {0, 1} × Z/pZ and that for instance the element (1, 0)
has a single representation in A + B (given by (1, 0) = (0, 0) + (1, 0)). It follows
ν

(2)
(Z/pZ)2(p, p) 6 2p .

We now come to prove the lower bound ν
(2)
(Z/pZ)2(p, p) > 2p which is the main

part of the proof of Theorem 6.
We assume that A and B are two subsets of (Z/pZ)2 that have p elements

each and that their sumset possesses an element with a single representation. We
show that |A + B| > 2p .

If A or B , say A (without loss of generality), is a coset modulo a subgroup,
say H , |A+B| = c|H| where c is the number of H -cosets met by B . If c is equal
to 1, then A and B are both a single coset and clearly no element of A + B can
have a single representation. This implies c > 2 and |A + B| > 2|H| = 2p .

From now on, we may assume that neither A nor B is a coset modulo a
subgroup.

Moreover, we proceed by contradiction, assuming that |A+B| 6 2p−1. We
derive two proofs of this contradiction.
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5.1. First proof. We see (Z/pZ)2 as a two-dimensional vector space over the
field Z/pZ . Let us consider any basis (e1, e2) of (Z/pZ)2 and decompose A as a
disjoint union in the following way (with respect to the second coordinate in this
basis):

A =
(
A0 × {0}

) ∪ (A1 × {1}
) ∪ . . . ∪ (Ap−1 × {p− 1})

and B in the same fashion

B =
(
B0 × {0}

) ∪ (B1 × {1}
) ∪ . . . ∪ (Bp−1 × {p− 1})

where all these (possibly empty) sets Ai ’s and Bi ’s are in Z/pZ . In other words,
this means that, for instance, Ai is the set of residues j ∈ Z/pZ such that je1 +
ie2 ∈ A . Since |A| = |B| = p , we have

|A0|+ |A1|+ · · ·+ |Ap−1| = |B0|+ |B1|+ · · ·+ |Bp−1| = p. (11)

By our previous assumption that neither A nor B is a coset, this implies that all
the sets A0,A1, . . . ,Ap−1,B0,B1, . . . ,Bp−1 have a cardinality less than or equal
to p− 1.

We shall soon show that all of the Ai ’s and all of the Bi ’s are non-empty
which, by (11), is equivalent to the fact that all these sets possess exactly one
element.

Assuming this result to hold (the proof will be given in a few lines), we now
prove our result. Indeed one obtains that, in particular, A is of the form

A = {aie1 + ie2, i = 0, 1, . . . , p− 1},
for some elements a0, . . . , ap−1 of Z/pZ . By symmetry of the two coordinates, the
ai ’s must all by distinct. If we summarize: given any basis of (Z/pZ)2 , the elements
of A are (when expressed in this basis) of the form (ai, i) (for i = 0, 1, . . . , p− 1)
where the ai ’s are distinct.

Apply this result in the canonical basis (ε1, ε2): the elements of A are of
the form (ai, i)(ε1,ε2) (for i = 0, 1, . . . , p− 1) where the ai ’s are distinct. Now, for
each fixed j = 0, 1, . . . , p − 1, the pair (ε1, ε2 + jε1) is a basis of (Z/pZ)2 . The
coordinates of the elements of A in the new basis (ε1, ε2 + jε1) are (ai − ji, i). It
follows that when i describes 0, 1, . . . , p− 1, the elements ai − ji are all distinct.
So in particular for all j ∈ Z/pZ one has a1− j 6= a2− 2j . But this is clearly false
for j = a2 − a1 , a contradiction from which the result follows.

It therefore only remains to prove that all of the Ai ’s and all of the Bi ’s are
non-empty or, equivalently, that all of these sets have cardinality 1. Indeed, if we
assume the contrary, we may put

α = max
06i6p−1

{|Ai|, |Bi|} > 2,

say, without loss of generality (by translation), α = |A0| > 2. We denote

a = |{0 6 i 6 p− 1 : Ai 6= ∅}|
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and
b = |{0 6 i 6 p− 1 : Bi 6= ∅}|.

We shall write Bβi ’s (1 6 i 6 b) for the non-empty of the Bi ’s. Since neither A

nor B is a coset, we must have a, b > 2. With |A0| > 2 and (11), this implies in
particular

p > 3.

We also immediately notice that we must have

min(a, b)α > p, (12)

since for instance

aα >
∑

06i6p−1, Ai 6=∅
|Ai| =

∑

06i6p−1

|Ai| = p,

using then (to get the strict inequality) the fact that a > 2, α > 2 and p is a prime
(the proof of the lower bound for bα is similar). Now, by the Cauchy-Davenport
theorem [1, 2], if we define

S = {0 6 i 6 p− 1 : there exist two integers 0 6 k, l 6 p− 1 such that

k + l ≡ i (mod p) and Ak + Bl 6= ∅},

we have
s = |S| > min(p, a+ b− 1). (13)

We notice that, since a, b > 2 and p > 3, we have

s > 3. (14)

With this notation, the sumset A+B must contain the disjoint union (still expres-
sed with respect to the basis (e1, e2)) composed of the following s terms

(
(A0 + Bβ1)× {β1}

) ∪ . . . ∪ ((A0 + Bβb)× {βb}
) ∪ ((Aγ1 + Bδ1)× {η1}

)

∪ . . . ∪ ((Aγs−b + Bδs−b)× {ηs−b}
)

for some 0 6 γi, δi, ηi 6 p− 1 (for 1 6 i 6 s− b) such that, if 1 6 i 6 s− b , one
has γi 6= 0, ηi ≡ γi + δi (mod p) and no βi (for 1 6 i 6 b) is equal to an ηi (for
1 6 i 6 s− b). Using again the Cauchy-Davenport theorem (for each term in this
disjoint union), we obtain

|A + B| > |A0 + Bβ1 |+ · · ·+ |A0 + Bβb |+ |Aγ1 + Bδ1 |+ · · ·+ |Aγs−b + Bδs−b |
> min(p, |A0|+ |Bβ1 | − 1) + · · ·+ min(p, |A0|+ |Bβb | − 1) (15)

+ min(p, |Aγ1 |+ |Bδ1 | − 1) + · · ·+ min(p, |Aγs−b |+ |Bδs−b | − 1).



Small sumsets in groups 395

Assume first that none of the s terms in this sum is equal to p . We obtain

|A + B| > (|A0|+ |Bβ1 | − 1) + · · ·+ (|A0|+ |Bβb | − 1) + (|Aγ1 |+ |Bδ1 | − 1)

+ · · ·+ (|Aγs−b |+ |Bδs−b | − 1)

> b(α− 1) + (|Bβ1 |+ · · ·+ |Bβb |) + (s− b)
= b(α− 2) + p+ s

> p+ s.

From this inequality, we first conclude that s 6 |A + B| − p 6 p− 1 and, by (13),
this implies s > a+ b− 1. Reinjecting, we now obtain

2p− 1 > |A + B| > b(α− 2) + p+ s > b(α− 1) + a+ p− 1.

It follows that
p > b(α− 1) + a > αmin(a, b),

which contradicts (12).
We may thus assume that at least one of the s terms in (15) is equal to p .

In fact since |A + B| is assumed to be at most 2p− 1, there must be exactly one
such term in (15). This term must be one of the b first terms because otherwise
inequality (15) would lead to the following contradiction

2p− 1 > |A + B| > (|A0|+ |Bβ1 | − 1) + · · ·+ (|A0|+ |Bβb | − 1) + p+ (s− b− 1)

= b(α− 1) + (|Bβ1 |+ · · ·+ |Bβb |) + p+ (s− b− 1)

= b(α− 2) + 2p+ s− 1

> 2p+ 2,

by (14).
Consequently, without loss of generality, we may assume that |A0+Bβb | = p .

Inequality (15) then gives

2p− 1 > |A + B| > (|A0|+ |Bβ1 | − 1) + · · ·+ (|A0|+ |Bβb−1 | − 1) + p+ (s− b)
= (b− 1)(α− 1) + (|Bβ1 |+ · · ·+ |Bβb−1 |) + p+ (s− b)
= (b− 1)(α− 1) + (p− |Bβb |) + p+ (s− b)
> 2p+ (b− 1)(α− 1)− α+ (s− b),

in view of |Bβb | 6 α . It follows that

2p− 1 > 2p− 1 + (b− 2)(α− 1) + (s− b),

which implies
(b− 2)(α− 1) + (s− b) 6 0.

Since both terms on the left-hand side of this inequality are non-negative and
α > 1, this yields b = 2, s = b and thus s = 2, a contradiction with (14).
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5.2. Second proof. The inequality ν
(2)
(Z/pZ)2(p, p) > 2p − 1 follows from The-

orem 1. Therefore we assume that |A + B| = 2p− 1.
We notice that A + B cannot be periodic since p does not divide |A + B| .

By Kemperman’s theorem [5], since |A + B| = |A|+ |B| − 1, we infer that A + B

is either an arithmetic progression or a quasi-periodic set. The first possibility is
excluded since an arithmetic progression cannot have more than p elements. It
follows that there is a non-zero subgroup H in (Z/pZ)2 such that A + B is a
union of H -cosets and a subset H0 included in yet another H -coset. We must
have |H| = p . We infer that A + B is included in two H -cosets. We conclude
that either A or B is a coset (otherwise, A and B meet at least two H -coset
which implies by the Cauchy-Davenport theorem that A + B meets at least three
H -cosets). But this is a contradiction.
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Address: Centre de Mathématiques Laurent Schwartz, UMR 7640 du CNRS, École polytech-
nique, 91128 Palaiseau cedex, France

E-mail: plagne@math.polytechnique.fr
Received: 14 November 2006; revised: 30 July 2007


