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ON SUM-FREE SUBSETS OF THE TORUS GROUP
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Abstract: Establishing the structure of dense sum-free subsets of the torus group R/Z , we find
an absolute constant α0 < 1/3 such that for any sum-free subset A ⊆ R/Z with the inner
measure µ(A) > α0 there exists an integer q > 1 so that

A ⊆
q−1[

j=0

»
j + µ(A)

q
,

j + 1− µ(A)

q

–
.
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1. Introduction

The subset A of an additively written semigroup is called sum-free if there do not
exist a1, a2, a3 ∈ A with a1 +a2 = a3 ; equivalently, if A is disjoint with its sumset
2A := {a′ + a′′: a′, a′′ ∈ A} . Introduced by Schur in 1916 (“the set of positive
integers cannot be partitioned into finitely many sum-free subsets”), sum-free sets
become now one of the central objects of study in additive combinatorics. We refer
the reader to the papers in the References section and the pending citations for
the history and overview of the subject area.

What is the largest possible size of a sum-free subset of a given finite abelian
group? Having been studied for several decades, this problem was eventually given
a complete solution by Green and Ruzsa in [GR05]. The next natural step is to
describe sum-free subsets of the size, close to the largest possible; the ideology
here is that small sum-free subsets can be sporadic and unstructured, while in
order for a large subset to be sum-free it has to possess a rigid structure. As the
description depends heavily on the algebraic nature of the underlying group, this
problem has been considered for a very limited number of groups only. In this
connection we mention the papers [DT89] (elementary abelian 2-groups), [L05]
(elementary abelian 3-groups), and [DF06, L06, DL] (the group Z/pZ of residues
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modulo a prime p). Particularly important in our present context are the last
three papers, where the following result is established.

Theorem 1.1 [DF06, L06, DL]. There exists an absolute constant α0 < 1/3 with
the following property: if p is a sufficiently large prime and A ⊆ Z/pZ is sum-free
with n := |A| > α0p , then there is d ∈ Z/pZ such that A ⊆ {nd, (n + 1)d, . . . ,
(p− n)d} .

As shown in [L06], Theorem 1.1 is essentially best possible, except for the
value of the constant α0 . The result of [L06] establishes Theorem 1.1 with α0 =
0.33, and this was improved to α0 = 0.324 in [DF06] and further to α0 = 0.318
in [DL].

In this paper we consider sum-free subsets of the torus group R/Z . This
infinite group is endowed with the Haar measure, so that the notion of “large”
makes perfect sense. Let µ denote the inner measure, corresponding to the Haar
measure on R/Z , normalized by the condition µ(R/Z) = 1; thus if A ⊆ R/Z is
open, then µ(A) can be interpreted as the Lebesgue measure of A .

By a result of Raikov [R39], for any A ⊆ R/Z we have µ(2A)> min{2µ(A), 1} .
If A is sum-free, then A is disjoint with 2A , implying µ(A)+µ(2A) 6 1 and con-
sequently µ(A) 6 1/3; this bound is sharp as it follows from the observation that
the canonical image of the interval (1/3, 2/3) in R/Z is sum-free. More generally,
for v, w ∈ R with v < w , denote by (v, w)T the image of the interval (v, w) under
the canonical homomorphism R→ R/Z . (Similar notation will be used for closed
intervals.) For integer q > 1 consider the set

A :=
q−1⋃

j=0

(
j + 1/3

q
,
j + 2/3

q

)

T
.

Then µ(A) = 1/3, and we claim that A is sum-free: for, if a1, a2, a3 ∈ A , then
qai ∈ (1/3, 2/3)T for i ∈ [1, 3], whence qa1+qa2 6= qa3 and therefore a1+a2 6= a3 .

Our goal in this paper is to establish the structure of sum-free subsets A ⊆
R/Z with µ(A) below 1/3 and show that this structure is close to that in the
example just described.

Main Theorem. Suppose that α0 ∈ (2/7, 1/3) has the property, specified in
Theorem 1.1. Then for any sum-free subset A ⊆ R/Z with α := µ(A) > α0 there
exists an integer q > 1 such that

A ⊆
q−1⋃

j=0

[
j + α

q
,
j + 1− α

q

]

T
.

For brevity, we denote the union in the statement of the Main Theorem by
Cq(α); observe, that this union is the complement in R/Z of the Bohr neighborhood⋃q−1
j=0

(
(j − α)/q, (j + α)/q

)
T (corresponding to the character x 7→ exp(2πiqx)).

As it follows from the discussion above, the assertion of the Main Theorem
holds true with α0 = 0.318, and it is worth pointing out that it becomes wrong for
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α0 < 0.2. To see this, fix α > 0 and consider the set A = (α/2, α)T∪(2α, (5/2)α)T .
Since 2A = (α, 2α)T∪((5/2)α, (7/2)α)T∪(4α, 5α)T , if α 6 2/9 (which is equivalent
to 5α 6 1 +α/2), then A is sum-free. If, moreover, 2/11 < α < 1/5, then there is
no integer q > 1 such that A ⊆ Cq(α); for, assuming the opposite, we would have
(1−2α)/q > α/2, implying q 6 2/α−4 < 7, and the remaining cases q = 1, . . . , 6
are not difficult to check “manually”. (We notice that if 1/5 6 α 6 2/9, then A
is contained in C3(α).)

We also mention, without going into detailed explanations, that the union
in the statement of the Main Theorem is best possible of this sort. This follows,
for instance, by considering the set

⋃q−1
j=0

(
(j +α)/q, (j + 2α)/q

)
T : if q/(3q+ 1) <

α < 1/3, then this set is sum-free and not contained in any of the sets Cs(α + ε)
with s > 1 and ε > 0.

2. Proof of the Main Theorem

Given two subsets B and C of an additively written group, we write B − C :=
{b− c: b ∈ B, c ∈ C} .

We start with a somewhat technical auxiliary lemma.

Lemma 2.1. Let l and q be positive integers, and suppose that to every z ∈ Z/qZ
there corresponds an integer set Az ⊆ [0, l] . Write n := q−1∑

z∈Z/qZ |Az| . If
l < 3

2 n − 1 , then for any g ∈ Z/qZ the union
⋃
z∈Z/qZ(Az+g − Az) contains all

integers from the interval (−n, n) .

Proof. Clearly, it suffices to show that for any integer h ∈ [0, n) there exists
z ∈ Z/qZ such that h ∈ Az+g − Az ; suppose, for the contradiction, that this is
wrong.

For every z ∈ Z/qZ the sets Az+g and Az + h are then disjoint subsets of
the interval [0, l + h] , whence |Az+g|+ |Az| 6 l + h+ 1; averaging over all z , we
obtain

2n 6 l + h+ 1 (1)

showing, in particular, that h > 0.
For integer u set Z(u) := {z ∈ Z/qZ:u ∈ Az} . Since Z(u+h) and Z(u) + g

are disjoint subsets of Z/qZ , we have |Z(u+h)|+ |Z(u)| 6 q , which is equivalent to

∑

z∈Z/qZ
|Az ∩ {u, u+ h}| 6 q. (2)

For each j ∈ [0, h−1] consider the arithmetic progression Ph(j) := {j, j+h, . . . , j+
b(l − j)/hc} , so that

[0, l] =
h−1⋃

j=0

Ph(j). (3)
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By (2), we have

∑

z∈Z/qZ
|Az ∩ Ph(j)| 6

⌊ |Ph(j)|+ 1
2

⌋
q =

(
1 +

⌊
l − j
2h

⌋)
q,

and taking into account (3) we conclude that

n 6 h+
h−1∑

j=0

⌊
l − j
2h

⌋
. (4)

Along with the assumption h < n , the last estimate implies that l > 2h , and we
set j0 := l − 2h . Observe, that by (1) we have

h > 2n− l − 1 >
1
3

(l + 1)

and hence j0 < h − 1 and furthermore, all the summands b(l − j)/2hc in the
right-hand side of (4) equal to either 0, or 1. Moreover, the number of those
summands, equal to 1, is j0 + 1, and using (1) we obtain

n 6 h+ (j0 + 1) = l − h+ 1 6 2l − 2n+ 2.

Therefore 3n 6 2(l + 1), contradicting the assumptions of the lemma.

Corollary 2.2. Let q be a positive integer and let v and w be real numbers
with v < w . Suppose that to every z ∈ Z/qZ there corresponds an open set
Az ⊆ (v, w) of measure αz , and write ν := q−1∑

z∈Z/qZ αz . If w − v < 3
2 ν , then

for any g ∈ Z/qZ we have

(−ν, ν) ⊆
⋃

z∈Z/qZ
(Az+g −Az).

Proof. Normalizing the sets Az , we can assume without loss of generality that
v = 0 and w = 1, whence ν > 2

3 . Let p be a prime. For every z ∈ Z/qZ set

A
(p)
z :=

{
u ∈ [0, p− 1]:

(
u
p ,

u+1
p

)
⊆ Az

}
,

so that |A(p)
z | > αzp(1 + o(1)) and therefore

n(p) := q−1
∑

z∈Z/qZ
|A(p)
z | > νp(1 + o(1))

as p→∞ . From ν > 2
3 it follows now that p < 3

2 n
(p) for all sufficiently large p ,

and applying Lemma 2.1 with l = p− 1 we conclude that every integer from the
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interval (−n(p), n(p)) is contained in
⋃
z∈Z/qZ(A(p)

z+g−A(p)
z ). Since for an integer u

the inclusion u ∈ A(p)
z+g −A(p)

z implies that
(
u−1
p , u+1

p

)
⊆ Az+g −Az , we obtain

⋃

z∈Z/qZ
(Az+g −Az) ⊇

(−n(p)

p
,
n(p)

p

)
⊇ (−ν + o(1), ν + o(1)),

implying the result.

Clearly, the assertion of Corollary 2.2 remains valid if in the statement of
the corollary the sets Az are open subsets of the torus group, and the intervals
(v, w) and (−ν, ν) are replaced with (v, w)T and (−ν, ν)T , respectively.

We are eventually ready to prove the Main Theorem. Throughout the proof
we use the following notation. Let m be a positive integer. For u ∈ Z/mZ by u

m
we denote the image of u under the group homomorphism Z/mZ→ R/Z , defined
by 1 7→ 1

m . For v, w ∈ R with v < w by [v, w]m we denote the image of the set
[v, w] ∩ Z under the canonical homomorphism Z → Z/mZ . Finally, for integer
q > 1 and a subset A of an abelian group we write q ∗A := {qa: a ∈ A} .

Proof of the Main Theorem. As a first step, we prove the Main Theorem under
the additional assumption that A is open.

Fix a prime p which will be assumed large enough (the little-o-notation
below corresponds to p→∞) and set

A(p) :=
{
u ∈ Z/pZ: up ∈ A

}
.

Since A ⊆ R/Z is sum-free, so is A(p) ⊆ Z/pZ , and since A is open we have

n(p) := |A(p)| > αp(1 + o(1)). (5)

By Theorem 1.1 there exists an integer q(p) ∈ [1, p/2) with

q(p) ∗A(p) ⊆ [n(p), p− n(p)]p. (6)

Fix v, w ∈ R with v < w so that the interval (v, w)T is entirely contained in
A . Corresponding to this interval is a block I(p) of (w−v+o(1))p consecutive ele-
ments of Z/pZ , contained in A(p) . Now q(p) ∗I(p) ⊆ [n(p), p−n(p)]p ⊆ (p/4, 3p/4)p
implies that q(p) < p/(2(|I(p)|−1)) = Ov,w(1), so that there is an infinite sequence
of primes p , sharing the same common value of q(p) . In what follows we denote
this common value by q and assume that p are so chosen that q(p) = q .

Fix arbitrarily a ∈ A and find u(p) ∈ Z/pZ satisfying

a− u(p)

p
∈
[
− 1

2p
,

1
2p

]

T
. (7)
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If p is large enough, then we have u(p) ∈ A(p) , whence

q
u(p)

p
∈ (α+ o(1), 1− α+ o(1))T

by (6) and (5). Along with (7) this yields qa ∈ (α + o(1), 1 − α + o(1))T , and
consequently qa ∈ [α, 1− α]T .

We have shown that
q ∗A ⊆ [α, 1− α]T,

and this is equivalent to A ⊆ Cq(α), as wanted.
To complete the proof we drop now the assumption that A is open and turn

to the general case. Let I be an arbitrarily fixed open interval, contained in A .
Fix ε > 0 and find an open subset B ⊆ A such that I ⊆ B and β := µ(B) >
max{α0, α− ε} . By the above, there is an integer q > 1 with B ⊆ Cq(β), and we
observe that then µ(I) 6 (1 − 2β)/q , implying that q is bounded by a constant,
depending only on I . Accordingly, there is a sequence of values of ε , converging
to 0, so that the corresponding values of q are all equal to each other, and we
assume below that ε is chosen to be an element of this sequence.

For z ∈ Z/qZ let

Bz :=
(
B − z

q

)
∩
(
β

q
,

1− β
q

)

T
,

so that B =
⋃
z∈Z/qZ

(
z
q +Bz

)
and consequently,

B −B =
⋃

g∈Z/qZ

(
g

q
+

⋃

z∈Z/pZ
(Bz+g −Bz)

)
.

As

q−1
∑

z∈Z/qZ
µ(Bz) =

β

q
>
α− ε
q

>
2
3

1− 2(α− ε)
q

>
2
3

1− 2β
q

for sufficiently small ε (it is here that the assumption α0 > 2/7 is used), we can
apply Corollary 2.2 and obtain that

B −B ⊇
⋃

g∈Z/qZ

(
g

q
+
(
−β
q
,
β

q

)

T

)
. (8)

Since A is sum-free and B ⊆ A , the sets A and B − B are disjoint, and hence
(8) gives

A ⊆
⋃

g∈Z/qZ

(
g

q
+
[
β

q
,

1− β
q

]

T

)
.
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As β > α− ε and ε can be chosen arbitrarily small, this implies that indeed

A ⊆
⋃

g∈Z/qZ

(
g

q
+
[
α

q
,

1− α
q

]

T

)
= Cq(α),

completing the proof.
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