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Abstract: Let A be a finite subset of an abelian group G . For every element bi of the sum-
set 2A={b0, b1, ..., b|2A|−1} we denote by Di={a − a′ : a, a′∈A; a+a′=bi} and ri=|{(a, a′) :

a+a′=bi; a, a′∈A}| . After an eventual reordering of 2A , we may assume that r0>r1>...>r|2A|−1.

For every 16s6|2A| we define Rs(A) = |D0∪D1∪...∪Ds−1| and Rs(k)= max{Rs(A) : A⊆G,
|A|=k}. Bourgain and Katz and Tao obtained an estimate of Rs(k) assuming s being of or-
der k . In this note we find the exact value of Rs(k) in cases s=1 , s=2 and s=3 . The case s=3
appeared to be not simple. The structure of extremal sets led us to sets isomorphic to planar sets
having a rather unexpected form of a perfect hexagon. The proof suggests the way of dealing
with the general case s>4 .
Keywords: inverse additive number theory; Kakeya problem.

1. Introduction

Let A be a finite subset of an abelian group (G,+). Assume

A = {x0, x1, x2, ..., xk−1}, k = |A|.

For every element bi of the sumset

2A = A+A = {x+ x′ : x ∈ A, x′ ∈ A} = {b0, b1, b2, ..., b|2A|−1}

we denote

ri = ri(A) = |{(a, a′) : a+ a′ = bi, a ∈ A, a′ ∈ A}|, (1)

Di = Di(A) = {a− a′ : a ∈ A, a′ ∈ A, a+ a′ = bi}, (2)

di = di(A) = |Di(A)|. (3)

After an eventual reordering of the set 2A , we may assume that

r0 > r1 > r2 > r3 > ... > r|2A|−1. (4)
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For every 1 6 s 6 |2A| we denote

Rs(A) = |D0 ∪D1 ∪D2 ∪ ... ∪Ds−1|,
Rs(k) = max{Rs(A) : A ⊆ G, |A| = k}.

We shall consider the problem of bounding the quantity Rs(A), for sets A included
in Zn . Without any further assumption on s one can only obtain the trivial bound
Rs(A) 6 |A − A| 6 k2 − k + 1. However, Bourgain [1] proved that under the
additional assumption s 6 k we have

|Rs(A)| 6 k2− 1
13 . (5)

This nontrivial upper bound was improved by Katz and Tao [2] who showed that

|Rs(A)| 6 k2− 1
6 . (6)

These estimates were established with an application in mind: by Bourgain and
Katz-Tao methods estimates (5) and (6) imply lower bounds for Minkowski and
Hausdorff dimension of Kakeya sets.

We would like to find a sharp upper estimate for Rs(k) in terms of k and s
and to determine its maximal value. Moreover, in cases when the maximal value
is obtained, we would like to describe the structure of extremal sets A∗ for which
we have Rs(A∗) = Rs(k).

In this note we study these questions for the values s = 1, s = 2 and s = 3.
The cases s = 1 and s = 2 are straightforward and are proved in Section 2. The
case s = 3 appeared to be not so simple; the structure of extremal sets led us
to sets of lattice points in the plane having a rather unexpected form of a perfect
hexagon. This is shown in Section 3. Moreover, the proof of this result suggests the
way of dealing with the general case. We should mention that the main result we
obtained is natural and may be further developed; in Section 4 we discuss briefly
some final remarks and open questions. Nevertheless, for the moment, the main
result is not connected to the study of dimension of Kakeya sets.

2. The cases s = 1s = 1s = 1 and s = 2s = 2s = 2

Let us begin with some simple remarks, for a finite set A ⊆ Z . We easily see that
di = ri for every 0 6 i 6 |2A| − 1. Indeed, using (2) and (3) we get that for two
pairs (a1, a

′
1) and (a2, a

′
2) of A × A such that a1 + a′1 = a2 + a′2 = bi we have

a1 − a′1 = a2 − a′2 if and only if the equality (a1, a
′
1) = (a2, a

′
2) holds.

Using definition (3), we see that di is equal to the number of pairs (a, a′) such
that a, a′ ∈ A, and a and a′ are symmetric with respect to ci = bi

2 . Moreover, we
note that if a 6= a′ then the pairs (a, a′) and (a′, a) give two distinct differences

a− a′ = a− (bi − a) = 2a− bi and a′ − a = −(2a− bi) (7)

and if a = a′ we have one pair (a, a) and one difference d = a− a = 0.
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2.1. Let us look at the case s = 1. In this situation we have representations

b0 = a+ a′, such that a ∈ A and a′ ∈ A

and we count the number d0 = |D0(A)| of all distinct differences a−a′ . Using the
above remark, we see that d0 cannot exceed the number of elements of A , that is
d0 6 k = |A| and we have equality d0 = k if and only if A is a union of pair of
points a, a′ symmetric with respect to c0 = b0

2 . We proved the following

Proposition 1. (a) For every set A ⊆ Z , |A| = k we have

R1(A) = |D0(A)| 6 k.

(b) A set of integers A ⊆ Z satisfies R1(A) = k if and only if A is symmetric
with respect to the point c0 = b0

2 = 1
2 (minA+ maxA).

2.2. The case s = 2. We prove the following statement:

Proposition 2. (a) For every set A ⊆ Z, |A| = k we have

R2(A) = |D0(A) ∪D1(A)| 6 2k − 1.

(b) A set of integers A ⊆ Z satisfies R2(A) = 2k − 1 if and only if A is an
arithmetic progression.

Proof. (a) Denote 2A = {b0, b1, ..., b|2A|−1} and assume that r0 > r1 > ..... >
r|2A|−1. In view of r1 6 r0 6 k we should examine only two cases.

(i) If r0 6 k − 1, then r0 + r1 6 2r0 6 2k − 2 and from d0 = r0, d1 = r1 we
will get

R2(A) = |D0(A) ∪D1(A)| 6 d0 + d1 = r0 + r1 6 2k − 2.

(ii) If r0 = k , then A is symmetric with respect to the point c0 = b0
2 =

1
2 (minA+ maxA). But A is a finite set and so c1 = b1

2 cannot be another center
of symmetry. This is equivalent to r1 6 k − 1. Consequently if r0 = k , then
r1 6 k − 1 and (a) follows:

R2(A) = |D0(A) ∪D1(A)| 6 d0 + d1 = r0 + r1 6 k + (k − 1) = 2k − 1.

(b) In order to prove the second assertion of Proposition 2, we first show
that for an arithmetic progression A∗ = {1, 2, 3, ..., k} we have

r0 = k, r1 = k − 1,

D0(A∗) ∩D1(A∗) = ∅, R2(A∗) = |D0(A∗) ∪D1(A∗)| = 2k − 1.
(8)

It is obvious that b0 = k+ 1, r0 = k and b1 = k, r1 = k− 1. The sets D0(A∗) and
D1(A∗) are disjoint. Indeed, (7) implies that every difference d0 ∈ D0(A∗) is of
the form d0 = 2a−b0 = 2a−k−1, a ∈ A∗ , every difference d1 ∈ D1(A∗) is of the
form d1 = 2a∗ − b1 = 2a∗ − k , a∗ ∈ A∗ and it follows that 2a− k − 1 6≡ 2a∗ − k
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(mod 2), that is D0(A∗)∩D1(A∗) = ∅. We get that R2(A∗) = |D0(A∗)∪D1(A∗)| =
d0 + d1 = r0 + r1 = 2k − 1 and (8) follows.

It remains to show that if a set of integers A = {x0 < x1 < ... < xk−1}
verifies

R2(A) = |D0(A) ∪D1(A)| = 2k − 1, (9)

then A is an arithmetic progression of difference d = |b1 − b0|. Assumption (9)
implies that d0 = r0 = k and d1 = r1 = k−1. By Proposition 1, A is a symmetric
set with respect to c0 = 1

2b0 and thus

b0 = x0 + xk−1 = x1 + xk−2 = x2 + xk−3 = ... = xk−1 + x0. (10)

It is sufficient to examine only the case b0 < b1. Remark that all k − 1 solutions
of the equation b1 = a+ a′ , (a, a′) ∈ A×A are exactly the pairs (a, b1 − a) with
a ∈ A \ {x0}. Note that x1 < x2 < ... < xk−1 implies b1 − x1 > b1 − x2 > ... >
b1 − xk−1 and thus

{x1, x2, ..., xk−1} = {b1 − x1, b1 − x2, ..., b1 − xk−1}.

This implies x1 = b1 − xk−1, x2 = b1 − xk−2, ..., xk−2 = b1 − x2, xk−1 = b1 − x1.
Using (10) it follows that x1 = b0 − xk−2, x2 = b0 − xk−3, ..., xk−1 = b0 − x0 and
thus

x1 = b1 − xk−1 = b0 − xk−2,

x2 = b1 − xk−2 = b0 − xk−3, ..., xk−1 = b1 − x1 = b0 − x0,

which is equivalent to d = b1−b0 = x1−x0 = x2−x1 = x3−x2 = ... = xk−1−xk−2.
Proposition 2 is proved.

3. Two-dimensional sets

In this section we shall study the case s = 3, i.e. the maximal value of

R3(A) = |D0(A) ∪D1(A) ∪D2(A)|,

for a finite set A ⊆ Z2 such that b0, b1, b2 are non-collinear points. We shall obtain
a sharp upper estimate for R3(A) depending only on k = |A| ; moreover we shall
describe the structure of planar extremal sets.

In order to formulate our main result we need some definitions. If u =
(u1, u2) ∈ R2, we denote by u1 and u2 its coordinates with respect to the canonical
basis e1 = (1, 0), e2 = (0, 1) and e0 = (0, 0) represents the origin point. Let B
and C be finite subsets of Z2 . We say that B is isomorphic to C if there is an
affine isomorphism L : R2 → R2 such that L(B) = C .
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Let α ∈ N . We denote by H(α) the set of all points P = (x, y) ∈ Z2 such
that:

(a) −2α < x < 2α,
(b) −2α < y < 2α,
(c) −2α < x+ y − 1 < 2α,
(d) x and y are odd integers.

Note that the convex hull of H(α) is a hexagon (see Figure 1) and its points lie
on 2α lines parallel to the line y = 0, on 2α lines parallel to the line x = 0 and
on 2α lines parallel to the line x+ y = −1.

∗

∗ ∗
c0

c2

c1

Figure 1. The set H(α), α = 3; ci = ei, i = 0, 1, 2.

We will prove the following

Theorem 1. Let A be a finite subset of Z2 , |A| = k. Then
(a) R3(A) 6 3k −

√
3k

and
(b) R3(A) = 3k −

√
3k if and only if k = 3α2 and A is isomorphic to H(α) .

We shall prove assertion (a) of Theorem 1 in Sections 3.1-3.3 below, while
the proof of assertion (b) will be postponed to Section 3.4.

3.1. We study first a set S ⊆ Q2 that lies on two parallel lines. Assume that

S = S+ ∪ S−,
S+ = {P1, ..., Ps+}, Pi = (ai, 1), a1 < a2 < ... < as+ ,

S− = {Q1, ..., Qs−}, Qi = (bi,−1), b1 < b2 < ... < bs−

and thus

S+ = S ∩ (y = 1), s+ = |S+|, S− = S ∩ (y = −1), s− = |S−|,
s = |S| = s+ + s−.

Denote by A = {a1 < ... < as+}, B = {b1 < ... < bs−} the sets of abscissae of S+

and S−, respectively. We study the sets of differences

D0(S) = {P − P ′ : P ∈ S, P ′ ∈ S, P + P ′ = e0}, e0 = (0, 0),

D1(S) = {P − P ′ : P ∈ S, P ′ ∈ S, P + P ′ = e1}, e1 = (1, 0).
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If Pi = ei − P is the symmetric of P with respect to 1
2ei , then

Di(S) = {2P − ei : P ∈ S, Pi ∈ S}, i = 0, 1.

Lemma 1.
(a) |Di(S)| 6 2 min {s+, s−}, for i = 1, 2 .
(b) |D0(S) ∪D1(S)| 6 |D0(S)|+ |D1(S)| 6 2|S| − 2.
(c) If |D0(S) ∪D1(S)| = 2|S| − 2, then the set S consists of two parallel arith-

metic progressions of common difference e1 − e0.

Proof. (a) Let us assume that s+ 6 s−. Each point P ∈ S+ defines no more
than two differences d = P − Pi or −d = Pi − P and so

Di(S) ⊆ {±(P − P ′) : P ∈ S+, P + P ′ = ei}.

This implies that |Di(S)| 6 2s+ . Similarly, if s− 6 s+ , then |Di(S)| 6 2s− .
Therefore, in both cases we obtain |Di(S)| 6 2 min {s+, s−}.

(b) Using inequality

|Di(S)| 6 2 min {s+, s−} = |S| − |s+ − s−| 6 |S|,

we get that if |s+−s−| > 1 then clearly (b) is true. It remains to consider only the
case s+ = s−. Without loss of generality we may assume that |D1(S)| 6 |D0(S)|.
We shall distinguish two cases.

Case (i). If there is a point R in S+ such that R0 = e0−R is not in S− , then
the differences ±d = ±(R−R0) don’t belong to D0(S). Therefore in this case we
get |D1(S)| 6 |D0(S)| 6 2(s+− 1) = |S| − 2 and so |D0(S)|+ |D1(S)| 6 2|S| − 4.

Case (ii). Assume that for every point P ∈ S+ , its symmetric with respect
to 1

2e0 belongs to S− , that is P0 = e0 − P ∈ S− . Using s+ = s− we get that S+

and S− are symmetric with respect to 1
2e0 . In this case we have |D0(S)| = 2s+ =

2s− = |S| and in order to prove (b) it remains to show that |D1(S)| 6 |S|−2. The
set S+ lies in the segment determined by the points P1 and Ps+ . The set S− lies
in the segment determined by the points Q1 = e0 − Ps+ and Qs− = e0 − P1 . In
consequence, e1−P1 , the symmetric of P1 with respect to 1

2e1 does not belong to
S− . Similarly, e1−Q1 , the symmetric of Q1 with respect to 1

2e1 does not belong
to S+ . Therefore, |D1(S)| 6 |S| − 2.

(c) Let i = 0 or i = 1. Note that Di is the disjoint union of Di = D+
i ∪D−i ,

where

D+
i = {P − Pi : P ∈ S+, Pi ∈ S−} = {δ = (δ1, δ2) ∈ Di : δ2 = +2},

D−i = {P − Pi : P ∈ S−, Pi ∈ S+} = {δ = (δ1, δ2) ∈ Di : δ2 = −2},
d+
i = |D+

i | = d−i = |D−i |.

Moreover, each difference belonging to D+
i can be written as

δ+ = P − Pi = (x, 1)− (y,−1) = (x− y, 2), with x ∈ A, y ∈ B, x+ y = i.
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Therefore, x ∈ A ∩ (i−B), d+
i = |A ∩ (i−B)| and

di = |Di| = d+
i + d−i = 2d+

i = 2|A ∩ (i−B)|.

Without loss of generality we may assume that |D1(S)| 6 |D0(S)|. We need
to examine only two cases:

Case (i). Assume that d0 = |D0(S)| = |S| > d1 = |D1(S)| = |S| − 2. If
t = |A ∩ (−B)| then

|A|+ |B| = |S| = d0 = 2d+
0 = 2|A ∩ (−B)| = 2t 6 2 min(|A|, |B|)

and thus |A∩ (−B)| = |A| = |B| = t. We get that B = −A, i.e. S is a symmetric
set with respect to e0

2 . It follows that 2t−2 = |S|−2 = d1 = 2d+
1 = 2|A∩(1−B)| =

2|A∩ (1 +A)|, and so |A∩ (1 +A)| = t−1 = |A|−1. We conclude that S consists
of two arithmetic progressions S+ and S− , with S− = −S+.

Case (ii). Assume that |D0(S)| = |D1(S)| = |S| − 1. It t = |A∩ (−B)| then

|S|−1 = d0 = 2d+
0 = 2|A∩(−B)| = 2t and 2t = |S|−1 = d1 = 2d+

1 = 2|A∩(1−B)|.

We get that |A∩(−B)| = |A∩(1−B)| = t, |A| > t, |B| > t, |S| = |A|+|B| = 2t+1.
If |A| = t , then |B| = t + 1 and A,B are arithmetic progression such that
B \ {bs−} = −A. If |A| = t+ 1, then |B| = t and A,B are arithmetic progression
such that A \ {as+} = −B. Lemma 1 is proved.

3.2. Let A ⊆ Q2 be a finite set, |A| = k. Using an affine isomorphism that maps
the points b0, b1, b2 onto the standard simplex e0 = (0, 0), e1 = (1, 0), e2 = (0, 1),
we may assume, without loss in generality that

A ⊆ Q2, b0 = e0 = (0, 0), b1 = e1 = (1, 0), b2 = e2 = (0, 1).

In this section we shall generalize Lemma 1 for sets lying on a lines parallel to
y = 0 and we will estimate the cardinality of

Diff(A) = D0 ∪D1 ∪D2,

where

Di = Di(A) = {P − P ′ : P ∈ A,P ′ ∈ A,P + P ′ = ei}, i = 0, 1, 2.

Denote by Pi = ei − P the symmetric of P with respect to 1
2ei . It follows that

each set of differences Di satisfies

Di = {P − Pi : P ∈ A,Pi ∈ A} = {2P − ei : P ∈ A,Pi ∈ A}, (11)

di = |Di| = |{P : P ∈ A,Pi ∈ A}|, i = 0, 1, 2. (12)

For every h , we denote by

Ah = A ∩ (y = h)
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the set of points of A that lie on the line y = h . The set Di consists of all
differences d = P − Pi such that both P and Pi belong to the set A . Note that
if P ∈ Ah , then P0 ∈ A−h , P1 ∈ A−h and P2 ∈ A−h+1 . This remark allows us to
split Di into a disjoint union of sets:

Di =
⋃

h
Di(h),

where

D0(h) = D0(A, h) = {2P − e0 : P ∈ Ah, P0 ∈ A−h}, (13)

D1(h) = D1(A, h) = {2P − e1 : P ∈ Ah, P1 ∈ A−h}, (14)

D2(h) = D2(A, h) = {2P − e2 : P ∈ Ah, P2 ∈ A−h+1}. (15)

Let a be the number of lines `′ parallel to the line y = 0 such that A∩ `′ 6= ∅. In
a similar way, let b be the number of lines `′′ parallel to the line x = 0 such that
A ∩ `′′ 6= ∅ and c be the number of lines `∗ parallel to the line x + y = 0 such
that A ∩ `∗ 6= ∅.
Lemma 2. (a) |D0(A) ∪D1(A)| 6 2k − a , |D0(A) ∪D2(A)| 6 2k − b and
|D1(A) ∪D2(A)| 6 2k − c.

(b) |Diff(A)| = |D0(A) ∪D1(A) ∪D2(A)| 6 3k − 1
2 (a+ b+ c).

Proof. (a) Let H be the set of all integers h such that A±h = Ah ∪ A−h 6= ∅.
We have

D0(A) =
⋃

h∈H
D0(h) =

⋃
h∈H, h>0

D0(A±h),

D1(A) =
⋃

h∈H
D1(h) =

⋃
h∈H, h>0

D1(A±h),

D0(A) ∪D1(A) =
⋃

h∈H, h>0

(
D0(A±h) ∪D1(A±h)

)
.

If h = 0 belongs to H , we have |D0(A0) ∪ D1(A0)| 6 2|A0| − 1, in view of
Proposition 2(a). For 0 < h ∈ H , the set A±h is included on two parallel lines. If
|Ah| > 0 and |A−h| > 0, then by Lemma 1(b), we get |D0(A±h) ∪ D1(A±h)| 6
2|A±h| − 2. If |Ah| = 0 or |A−h| = 0, then A±h lies on a line and obviously
|D0(A±h) ∪D1(A±h)| = 0 6 2|A±h| − 2 < 2|A±h| − 1. We conclude that

|D0(A) ∪D1(A)| =
∑

h∈H, h>0

|D0(A±h) ∪D1(A±h)| 6

6 (2|A0| − 1) +
∑

h∈H, h>0

(2|A±h| − 2) 6

6 2|A| − a = 2k − a.
Note that this inequality was obtained using a partition of A into sets lying

on lines parallel to the segment [e0, e1] . In a similar way, considering lines parallel
to the segments [e0, e2] and [e1, e2] , we obtain respectively that

|D0(A) ∪D2(A)| 6 2k − b and |D1(A) ∪D2(A)| 6 2k − c.
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(b) Denote by

dij = |Di(A) ∩Dj(A)|, d012 = |D0(A) ∩D1(A) ∩D2(A)|.
Then |D0(A) ∪D1(A) ∪D2(A)| = (d0 + d1 + d2) − (d01 + d02 + d12) + d012 and
thus

2|D0(A) ∪D1(A) ∪D2(A)| =
= (d0 + d1 − d01) + (d0 + d2 − d02) + (d1 + d2 − d12)

− d01 − d02 − d12 + 2d012

= |D0(A) ∪D1(A)|+ |D0(A) ∪D2(A)|+ |D1(A) ∪D2(A)|
− d01 − d02 − d12 + 2d012

6 6k − (a+ b+ c)− dij .
We conclude that for every 0 6 i 6= j 6 2

|Diff(A)| = |D0(A) ∪D1(A) ∪D2(A)| 6 3k − a+ b+ c

2
− dij

2

6 3k − a+ b+ c

2
.

(16)

Lemma 2 is proved.

Example 1. Inequality (16) is sharp. The set

A∗ =
1
2
H(α) = {1

2
(x, y) : (x, y) ∈ H(α)}

satisfies a = b = c = 2α, |Di(A∗)| = k − α, for i = 0, 1, 2 and |Diff(A∗)| =
|D0(A∗)|+ |D1(A∗)|+ |D2(A∗)| = 3k− 3α = 3k− a+b+c

2 ; therefore inequality (16)
cannot be sharpened by reducing the upper bound for R3(A∗).

3.3. In this section we obtain the following optimal upper bound

|Diff(A)| = |D0(A) ∪D1(A) ∪D2(A)| 6 3k −
√

3k,

valid for every finite set A ⊆ Q2, |A| = k .
We shall first estimate the cardinality of a finite set K ⊆ Q2 assuming that

K lies on a lines parallel to the line y = 0, on b lines parallel to the line x = 0
and on c lines parallel to the line x+ y = 0.

Lemma 3. Let K be a finite subset of Q2. If max{a, b, c} < a+b+c
2 , then

k = |K| 6 1
3

(a+ b+ c)2

4
+
δ

4
,

where δ = 0 if a+ b+ c is even and δ = 1 , if a+ b+ c is odd.

Proof. We clearly have k 6 abc
max{a,b,c} . Moreover, let us note that if max{a, b, c} >

a+b+c
2 , then k 6 max2{a,b,c}

4 . Indeed, assuming that a = max{a, b, c} we get
a > b+ c and thus

k 6 bc 6 (b+ c)2

4
6 a2

4
=

max2{a, b, c}
4

. (17)
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In order to prove Lemma 3, we shall apply induction on min{a, b, c}.
If min{a, b, c} = a = 1, then K lies on a line, |K| = k, a = 1, b = c = k,

a+ b+ c = 1 + 2k is odd and thus δ = 1. In this case Lemma 3 is true because

1
3

(a+ b+ c)2

4
+
δ

4
=

1
3

(2k + 1)2

4
+

1
4

=
1
3

(k2 + k + 1) =
1
3

(k − 1)2 + k > k.

Let us assume that min{a, b, c} > 2 and the assertion holds for smaller values
of min{a, b, c}. There is no loss in generality if we assume that a > b > c. Note
that max{a, b, c} < a+b+c

2 implies

b+ c > a > b > c. (18)

Let us choose (see Figure 2)

`a : x = u′, `′a : x+ y = w′; `c : y = v′, `′c : x = u; `b : x+ y = w, `′b : y = v

supporting lines of the convex hull of K such that K is included in the half planes

x > u′, x+ y > w′, y > v′, x 6 u, x+ y 6 w, y 6 v.

Denote by

Ka = K \ (`a ∪ `′a),Kb = K \ (`b ∪ `′b),Kc = K \ (`c ∪ `′c)

and
K ′ = K \ (`a ∪ `′a ∪ `b ∪ `′b ∪ `c ∪ `′c).

We have |K| 6 |Ka|+ a, |K| 6 |Kb|+ b, |K| 6 |Kc|+ c and thus

|K| 6 |K ′|+ (a+ b+ c− 3). (19)

Clearly, the set K ′ lies on a′ 6 a − 2 lines parallel to y = 0, on b′ 6 b − 2
lines parallel to x = 0 and on c′ 6 c − 2 lines parallel to x + y = 0. We denote
s′ = a′ + b′ + c′ and s = a+ b+ c. Put δ′ = 0 if a′ + b′ + c′ is even and δ′ = 1, if
a′ + b′ + c′ is odd.

We shall estimate |K| using the induction hypothesis for the set K ′ $ K .
We distinguish several cases.
Case 1. Assume that max{a′, b′, c′} < a′+b′+c′

2 . By the induction hypothesis

we get |K ′| 6 1
3

(a′+b′+c′)2

4 + δ′
4 . Using

s′ 6 s− 6

we get

|K| 6 |K ′|+ (a+ b+ c− 3) 6 1
3
s′2

4
+
δ′

4
+ (s− 3) (20)

6 1
3

(s− 6)2

4
+
δ′

4
+ (s− 3) =

1
3
s2

4
+
δ′

4
. (21)
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Case 1.1. If δ′ = 0, then |K| 6 1
3
s2

4 6 1
3

(a+b+c)2

4 + δ
4 .

Case 1.2. If s′ = s− 6, then δ = δ′ and we get |K| 6 1
3

(a+b+c)2

4 + δ
4 .

Case 1.3. If δ′ = 1 and s′ 6 s− 7 then s > s′ + 7 > 10 and thus

|K| 6 1
3
s′2

4
+
δ′

4
+ (s− 3) 6 1

3
(s− 7)2

4
+

1
4

+ (s− 3) =
1
3
s2

4
− s

6
+

4
3

<
1
3
s2

4
+
δ

4
=

1
3

(a+ b+ c)2

4
+
δ

4
.

Case 2. Assume that max{a′, b′, c′} > a′+b′+c′
2 . Using inequality (17) and

(19) we get |K ′| 6 (max{a′,b′,c′}
2

)2 6
(max{a,b,c}−2

2

)2
= (a−2)2

4 and |K| 6 (a−2)2

4 +

(a+b+c−3). In order to prove inequality |K| 6 1
3

(a+b+c)2

4 + δ
4 it is enough to verify

that under the hypothesis (18) the number ∆ = (a+b+c)2

12 + δ
4−(a+b+c)+3− (a−2)2

4
is nonnegative, i.e.

∆ =
(a+ b+ c− 6)2

12
+
δ

4
− (a− 2)2

4
> 0. (22)

Case 2.1. If a > 6 then using b+ c > a+ 1 we get

∆ > (2a− 5)2

12
+
δ

4
− (a− 2)2

4
> (a− 4)2 − 3

12
> 1

12
> 0.

Case 2.2. If a = 5, then b+ c > a+ 1 = 6. We distinguish two subcases.
If b+ c > 7, then ∆ = (b+c−1)2

12 + δ
4 − 9

4 > 3 + δ
4 − 9

4 > 3
4 > 0.

If b+ c = 6, then δ = 1 and thus ∆ = (b+c−1)2

12 + δ
4 − 9

4 = 25
12 + 1

4 − 9
4 = 1

12 > 0.
Case 2.3. If a = 4, then b+ c > a+ 1 = 5. We distinguish two subcases.

If b+ c > 6, then ∆ = (b+c−2)2

12 + δ
4 − 1 > 16

12 − 1 > 0.

If b+ c = 5, then δ = 1 and thus ∆ = (b+c−2)2

12 + δ
4 − 1 = 9

12 + 1
4 − 1 = 0.

Case 2.4. If a = 3, then b+ c > a+ 1 = 4. We distinguish two subcases.
If b+ c > 5, then ∆ = (b+c−3)2

12 + δ
4 − 1

4 > 4
12 − 1

4 > 0.

If b+ c = 4, then δ = 1 and thus ∆ = (b+c−3)2

12 + δ
4 − 1

4 = 1
12 > 0.

Case 2.5. If a = 2, then min{a, b, c} > 2 implies b = c = 2 and thus
∆ = δ

4 = 0.

An easy consequence of Lemma 3 is

Lemma 4. Let K ⊆ Q2 be a finite set such that max{a, b, c} = m . We have:
(a) If m > a+b+c

2 , then |K| 6 m2

4 .

(b) If m < a+b+c
2 , then |K| 6 1

3

(
a+b+c

2

)2
+ δ

4 6 3m2

4 + δ
4 , where δ = 0 if

a+ b+ c is even and δ = 1 , if a+ b+ c is odd.

Proof. (a) Assertion (a) is equivalent to inequality (17).
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(b) Assume that c 6 b 6 a = max{a, b, c} < a+b+c
2 . In view of Lemma 3 we

obtain

k = |K| 6 1
3

(a+ b+ c

2

)2
+
δ

4
6 1

3
(3m)2

4
+
δ

4
=

3m2

4
+
δ

4
. (23)

Lemma 4 is proved.

Example 2. Lemmas 3 and 4 cannot be sharpened by reducing the upper bound
for |K| . Indeed, the set K = H(α) satisfies a = b = c = 2α and

k = |K| = 3α2 =
1
3

(a+ b+ c)2

4
=

3 max2(a, b, c)
4

.

Moreover, we may note at this point that Example 1 implies the following equality

R3(A∗) = |Diff(A∗)| = 3k −
√

3k, (24)

valid for the set A∗ = 1
2H(α).

We shall complete this section by proving inequality (a) of Theorem 1;
Lemma 3 implies the following

Corollary 1. Let A be a finite subset of Q2 , |A| = k. Then

R3(A) = |Diff(A)| = |D0(A) ∪D1(A) ∪D2(A)| 6 3k −
√

3k. (25)

Proof. In order to prove (25) we shall examine two cases separately.

(i) If max{a, b, c} < a+b+c
2 , then Lemma 3 implies k = |A| 6 1

3

(
a+b+c

2

)2
+ δ

4 .

This is equivalent to 1
2 (a+ b+ c) >

√
3k − 3

4δ; using Lemma 2(b) we get

|Diff(A)| = |D0(A) ∪D1(A) ∪D2(A)| 6 3k − a+ b+ c

2
− δ

2
(26)

6 3k −
√

3(k − δ

4
)− δ

2
6 3k −

√
3k. (27)

(ii) Assume max{a, b, c} > a+b+c
2 and, without loss of generality, a =

max{a, b, c} . We get b + c 6 a and thus k = |A| 6 bc = (b+c)2−(b−c)2

4 6
( a+b+c

2 )2−(b−c)2

4 . It follows that

|Diff(A)| 6 3k − a+ b+ c

2
6 3k −

√
4k + (b− c)2 6 3k −

√
4k < 3k −

√
3k. (28)

Corollary 1 is proved.

3.4. In this section we shall prove assertion (b) of Theorem 1. In view of equality
(24), it remains to show that if A is an extremal set, i.e.

R3(A) = |Diff(A)| = 3k −
√

3k, k = |A|, (29)



On a Kakeya-type problem 143

then A is isomorphic to H(α), for α =
√

k
3 . Assume that the set A lies on a lines

parallel to y = 0, on b lines parallel to x = 0 and on c lines parallel to x+y = 0.

Assertion 1. (i) There is a natural number α such that k = 3α2.
(ii) R3(A) = |Diff(A)| = 3k − a+b+c

2 = 3k −
√

3k.

(iii) a+ b+ c = 6α and k = (a+b+c)2

12 .

Proof. In view of (29) and (28) we may assume that there is α ∈ N such that

k = 3α2 and max{a, b, c} < a+ b+ c

2
. (30)

From (26), (27) and (29) we get that:

R3(A) = |Diff(A)| = 3k− a+ b+ c

2
− δ

2
= 3k−

√
3k − 3

4
δ− δ

2
= 3k−

√
3k. (31)

If δ = 1 then 3k−
√

3k − 3
4δ− δ

2 < 3k−
√

3k, which contradicts (31). Thus δ = 0,

which means that a+ b+ c = 2
√

3k = 6α. We get

R3(A) = |Diff(A)| = 3k − a+ b+ c

2
= 3k −

√
3k, k =

(a+ b+ c)2

12
(32)

and so Assertion 1 is proved.

Assertion 2. (i) |D0(A) ∪D1(A)| = |D0(A)|+ |D1(A)| = 2k − a.
(ii) |D0(A) ∪D2(A)| = |D0(A)|+ |D2(A)| = 2k − b.

(iii) |D1(A) ∪D2(A)| = |D1(A)|+ |D2(A)| = 2k − c.
(iv) Let 0 6 i 6= j 6 2 . For every line ` parallel to the segment [ei, ej ] the

set A ∩ ` is an arithmetic progression of difference ei − ej .

Proof. Using inequality (16) and equality (ii) of Assertion 1 we get dij = |Di(A)∩
Dj(A)| = 0 and thus |Di(A)∪Dj(A)| = |Di(A)|+|Dj(A)| , for every 0 6 i 6= j 6 2.
Moreover, from the proof of Lemma 2(b) we get that an extremal set A satisfies

3k − a+ b+ c

2
= R3(A) = |Diff(A)| 6 1

2

∑

06i 6=j62

(|Di(A) ∪Dj(A)|) (33)

6 1
2

((2k − a) + (2k − b) + (2k − c)) = 3k − a+ b+ c

2
. (34)

We conclude that for an extremal set A equalities (i), (ii) and (iii) are true. In
order to check part (iv), we may assume without loss of generality that i = 0, j = 1
and we will show that if |D0(A)∪D1(A)| = 2k−a , then for every line ` parallel to
the segment [e0, e1] the set A∩` is an arithmetic progression of difference e1−e0 .

Let us recall that Ah = A ∩ (y = h) and A±h = Ah ∪A−h. From the proof
of Lemma 2 we get that (33) implies:
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(i) |D0(A0) ∪D1(A0)| = 2|A0| − 1, if A0 6= ∅
and

(ii) |D0(A±h) ∪D1(A±h)| = 2|A±h| − 2, for every integer h > 0 such that
A±h 6= ∅. In view of Proposition 2 and assertion (c) of Lemma 1 we get that
for every line ` parallel to the segment [e0, e1] the set A ∩ ` is an arithmetic
progression of difference e1 − e0 .

For the next two results we shall use the notations of Lemma 3. Let K be
a finite nonempty subset of Q2. Assume that K lies on a > 1 lines parallel to
y = 0, on b > 1 lines parallel to x = 0 and on c > 1 lines parallel to x + y = 0.
If P = (x, y) = K \ K ′ , we say that P is a boundary point of K and write
P ∈ Bd(K) (see Figure 2).

`a

`
′

a

`b

`
′

b

`c

`
′

c

Figure 2. The set H(3) and the boundary Bd(H(4)) = H(4) \H(3) .

Assertion 3. If k = |K| = (a+b+c)2

12 = 3α2, then
(i) a > 2, b > 2, c > 2 and max{a, b, c} < a+b+c

2 .
(ii) the set of all boundary points of K satisfies |Bd(K)| = a+ b+ c− 3.

(iii) the set K ′ = K \ Bd(K) lies on a′ = a − 2 lines parallel to y = 0, on
b′ = b − 2 lines parallel to x = 0 and on c′ = c − 2 lines parallel to
x + y = 0. Moreover, if K ′ 6= ∅ , then max{a′, b′, c′} < a′+b′+c′

2 and if
K ′ = ∅ , then a = b = c = 2, k = 3.

(iv) |K ′| = (a′+b′+c′)2

12 = 3(α− 1)2.

Proof. If min{a, b, c} = 1, then a+ b+ c is odd and this contradicts k = |K| =
(a+b+c)2

12 . Therefore, in what follows we will assume that

max{a, b, c} = a > b > c > 2.

We prove first that the set K satisfies

max{a, b, c} < a+ b+ c

2
. (35)

To the contrary, if a = max{a, b, c} > a+b+c
2 , then bc > k = (a+b+c)2

12 > (b+c)2

3
implies b2 − bc+ c2 6 0, which is impossible for a nonempty set K .
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We clearly have

a′ 6 a− 2, b′ 6 b− 2, c′ 6 c− 2, a′ + b′ + c′ 6 a+ b+ c− 6. (36)

Case 1. Assume that max{a′, b′, c′} > a′+b′+c′
2 . We shall prove that

a′ = b′ = c′ = 0,K ′ = ∅, a = b = c = 2, k = |K| = 3. (37)

Using (36) we get max{a′, b′, c′} 6 max{a, b, c} − 2 = a − 2 and Lemma 4(a)

implies k′ = |K ′| 6 (a−2)2

4 . From inequality (19) we get that

(a+ b+ c)2

12
= k 6 k′ + (a+ b+ c− 3) 6 (a− 2)2

4
+ (a+ b+ c− 3)

and so
(a+ b+ c− 6)2 6 3(a− 2)2.

Note that a = max{a, b, c} < a+b+c
2 and a+ b+ c is even imply that b+ c > a+ 2

and we obtain that 4(a− 2)2 6 (a+ b+ c− 6)2 6 3(a− 2)2, a = max{a, b, c} = 2;
we conclude that a = b = c = 2, k = 3, a′ = b′ = c′ = 0, which proves (37).

Case 2. Assume that max{a′, b′, c′} < a′+b′+c′
2 . Using (19) and Lemma 4(b)

for the set K ′ we obtain

(a+ b+ c)2

12
= k 6 k′ + (a+ b+ c− 3) 6 (a′ + b′ + c′)2

12
+
δ′

4
+ (a+ b+ c− 3).

Note that if a′+ b′+ c′ 6 a+ b+ c−7, then k 6 (a+b+c−7)2

12 + 1
4 + (a+ b+ c−3) <

(a+b+c)2

12 , which contradicts the hypothesis k = (a+b+c)2

12 . Therefore, inequalities
(36) imply

a′ + b′ + c′ = a+ b+ c− 6, a′ = a− 2, b′ = b− 2, c′ = c− 2,

a′ + b′ + c′ ≡ a+ b+ c ≡ 0(mod 6), δ′ = δ = 0

and we conclude that

(a+ b+ c)2

12
= k 6 k′+(a+b+c−3) 6 (a′ + b′ + c′)2

12
+(a+b+c−3) =

(a+ b+ c)2

12

and so

k − k′ = |Bd(K)| = a+ b+ c− 3, k′ =
(a′ + b′ + c′)2

12
.

Assertion 3 is proved.
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Using the same notations we have

Assertion 4. If k = |K| = (a+b+c)2

12 = 3α2, then a = b = c = 2α.

Proof. We shall use induction on min = min{a, b, c} > 2. Note that min{a, b, c} =
1 is impossible, because of assertion 3(i).

If min = 2, then we may assume that 2 = c 6 b 6 a and we get

k = |K| = (a+ b+ c)2

12
6 2b. (38)

These inequalities have only one solution, namely a = b = c = 2. Indeed, if a > 4,
then 24b > (a + b + c)2 > (b + 6)2 implies a > b = 6, c = 2 and this contradicts
(38). If a = 3, then (a, b, c) = (3, 3, 2) or (a, b, c) = (3, 2, 2) and this contradicts
a+ b+ c ≡ 0(mod 6). We get that a = b = c = 2.

Let min > 3 and assume that Assertion 4 holds for smaller values of min.
Using Assertion 3 (iii) and (iv) we get that

k′ = |K ′| = (a′ + b′ + c′)2

12
= 3(α− 1)2;

moreover, the set K ′ = K \Bd(K) lies on a′ = a− 2 > 1 lines parallel to y = 0,
on b′ = b − 2 > 1 lines parallel to x = 0 and on c′ = c − 2 > 1 lines parallel to
x+ y = 0. Note that min{a′, b′, c′} = 1 is impossible, in view of assertion 3(i). By
the induction hypothesis for the set K ′ we obtain a′ = b′ = c′ = 2(α − 1) and
thus a = b = c = 2α. Assertion 4 is proved.

We shall use the following definition. We say that a planar S ⊆ Q2 is an
α−regular set with respect to the basis B = {e0, e1, e2} if:

(a) |S| = 3α2 ,
(b) S lies on a = 2α lines parallel to the segment [e0, e1], on b = 2α lines

parallel to the segment [e0, e2] and on c = 2α lines parallel to the segment [e1, e2] .
(c) For every line ` parallel to the segment [ei, ej ] , 0 6 i 6= j 6 2, the set

S ∩ ` is an arithmetic progression of difference ei − ej .
Note that assertions 1, 2, 3 and 4 imply that every extremal set A is an

α−regular set . Moreover, if f0 is an arbitrary point on the plane and f1 and f2

are defined by

(fi = f0 +
ei
2
, i = 1, 2) or (fi = f0 − ei

2
, i = 1, 2),

then the affine isomorphism of the plane T that maps ei to fi , i = 1, 2 defines
an α−regular set denoted by

H(α, f0, f1, f2) = T
(
H(α)

)
.

For example, (see Figure 3) if f0 = ( 1
2 ,

1
2 ), f1 = (0, 1

2 ), f2 = ( 1
2 , 0), this set contains

all the lattice points P = (x, y) ∈ Z2 such that

−α < x, y, x+ y 6 α.
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∗

∗

∗

f2

f1
f0

Figure 3. The set H(α, f0, f1, f2), α = 3.

In order to conclude the proof of assertion (b) of Theorem 1 it is enough to
check

Assertion 5. For every α−regular set S there are three non-collinear points
f0, f1, f2 such that S = H(α, f0, f1, f2).

Proof. We shall use induction on α .
For α = 1 the set S contains three points and is affine isomorphic to H(1) =

{(−1, 1), (1,−1), (1, 1)}.
Let α > 2 and assume that Assertion 5 holds for smaller values for α . Let

S be an α−regular set . Clearly S = 3α2 = 1
12 (a+ b+ c)2 . We note first that

S′ = S \Bd(S)

is an (α−1)− regular set. Indeed, Assertion 3 implies that: |Bd(S)| = a+b+c−3 =
6α− 3, |S′| = 3(α− 1)2 and the set S′ lies on a′ = 2α− 2 lines parallel to y = 0,
on b′ = 2α−2 lines parallel to x = 0 and on c′ = 2α−2 lines parallel to x+y = 0.
Moreover, the third property of an α−regular set is still valid for the set S′ . By the
induction hypothesis, we get that the set S′ is equal to S′ = H(α− 1, f0, f1, f2).
The set S is obtained from the set S′ by adding the 6α−3 points of Bd(S). This
can be done in an unique way, in view that S and S′ satisfy both condition (c).
We conclude that S = H(α, f0, f1, f2).

4. Some final remarks

This section contains some concluding remarks and open problems.

4.1. Theorem 1 describes the structure of extremal sets A such that k = |A| = 3α2.
We conjecture that an extremal set A with 3(α− 1)2 < k < 3α2 is included in a
set isomorphic to H(α).

4.2. It would be interesting to generalize Theorem 1 and Propositions 1 and 2 to
the general case s > 4. More precisely, we should obtain sharp upper estimates
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for Rs(A) = |D0 ∪D1 ∪D2 ∪ ...∪Ds−1| and to describe the structure of extremal
sets A∗.

4.3. We conjecture that an isomorphic projection P : Z2 → Z maps the set
H(α) ⊆ Z2 into a set of integers A∗ = P (H(α)) that is the extremal set for the
problem

R3(k) = max{R3(A) : A ⊆ Z, |A| = k}.
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