
Functiones et Approximatio
XXXVII.1 (2007), 119–129

GENERALIZED SMIRNOV STATISTICS AND THE DISTRIBUTION
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Abstract: We apply recent bounds of the author for generalized Smirnov statistics to the
distribution of integers whose prime factors satisfy certain systems of inequalities.
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1. Introduction

For a positive integer n , denote by p1 < p2 < · · · < pω(n) the sequence of distinct
prime factors of n . In this note, we study integers for which

log2 pj > αj − β (1 6 j 6 ω(n)) (1.1)

or
log2 pj 6 αj + β (1 6 j 6 ω(n)), (1.2)

where α > 0 and log2 y denotes log log y . The distribution of integers satisfying
(1.1) is important in the study of the distribution of divisors of integers (see [3];
Ch. 2 of [4]). We present here estimates for

Nk(x;α, β) = #{n 6 x : ω(n) = k, (1.1)},
Mk(x;α, β) = #{n 6 x : ω(n) = k, (1.2)}.

It is a relatively simple matter, at least heuristically, to reduce the estimation
of Nk(x;α, β) and Mk(x;α, β) to the estimation of a certain probability connected
to Kolmogorov-Smirnov statistics. Let us focus on the upper bound for Nk(x;α, β).
If we suppose that pk > xc for some small c , then for each choice of (p1, . . . , pk−1),
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the number of possible pk is � x/(p1 · · · pk−1 log x). Since
∑
p6y 1/p ≈ log2 y ,

given a well-behaved function f , by partial summation we anticipate that

∑

p1<···<pk−16x

f
(

log2 p1
log2 x

, · · · , log2 pk−1
log2 x

)

p1 · · · pk−1
≈ (log2 x)k−1

∫
· · ·
∫

06ξ16···6ξk−161

f(ξξξ ) dξξξ , (1.3)

where ξξξ = (ξ1, . . . , ξk−1).
Let U1, . . . , Um be independent, uniformly distributed random variables in

[0, 1] and let ξ1, . . . , ξm be their order statistics (ξ1 is the smallest of the Ui ,
ξ2 is the next smallest, etc.). Taking m = k − 1, the right side of (1.3) is equal
to (log2 x)k−1/(k − 1)! times the expectation of f(ξ1, . . . , ξk−1). Letting f be
1 if (1.1) holds and 0 otherwise, the expectation of f is the probability that
ξj > (αj − β)/ log2 x for each j .

In general, let Qm(u, v) be the probability that ξi > i−u
v for 1 6 i 6 m .

Equivalently, if u > 0 then

Qm(u, v) = Prob
(
Fm(t) 6 vt+ u

m
(0 6 t 6 1)

)
,

where Fm(t) = 1
m

∑
Ui6t 1 is the associated empirical distribution function. The

first estimates for Qm(u, v) were given in 1939 by N. V. Smirnov [5], who proved
for each fixed λ > 0 the asymptotic formula

Qm(λ
√
m,m)→ 1− e−2λ2

(m→∞). (1.4)

The sharpest and most general bounds are due to the author [2]; see also [1]. For
convenience, write w = u + v −m . Uniformly in u > 0, w > 0 and m > 1, we
have

Qm(u, v) = 1− e−2uw/m +O

(
u+ w

m

)
. (1.5)

Moreover,
Qm(u, v) � min

(
1,
uw

m

)
(u > 1, w > 1). (1.6)

See [2] for more information about the history of such bounds and techniques for
proving them. A short proof of weaker bounds is given in §11 of [3].

Returning to our heuristic estimation of Nk(x) (and assuming that a similar
lower bound holds), we find that

Nk(x) ≈ x(log2 x)k−1

(k − 1)! log x
Qk−1

(
β

α
,

log2 x

α

)
.

We have (cf. Theorem 4 in §II.6.1 of [6])

πk(x) := #{n 6 x : ω(n) = k} �A x(log2 x)k−1

(k − 1)! log x
(1.7)
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uniformly for 1 6 k 6 A log2 x , A being any fixed positive constant. Thus, we
anticipate that

Nk(x;α, β) � Qk−1

(
β

α
,

log2 x

α

)
πk(x).

Observing that the vectors (ξ1, . . . , ξm) and (1 − ξm, 1 − ξm−1, . . . , 1 − ξ1) have
identical distributions, we have

Qm(u, v) = Prob
(
ξi 6 u+ v −m− 1 + i

v
(1 6 i 6 m)

)
.

Hence, we likewise anticipate that

Mk(x;α, β) � Qk−1

(
k +

β − log2 x

α
,

log2 x

α

)
πk(x).

To make our heuristics rigorous, we must impose some conditions on α and
β to ensure among other things that there are integers satisfying (1.1) or (1.2).
To that end, we set

u =
β

α
, v =

log2 x

α
, w = u+ v − (k − 1) =

log2 x+ β

α
− k + 1 (1.8)

for the estimation of Nk(x;α, β) and

u = k +
β − log2 x

α
, v =

log2 x

α
, w = u+ v − (k − 1) =

β

α
+ 1 (1.9)

for the estimation of Mk(x;α, β).

Theorem 1. Suppose ε > 0 , A > 1 and 1 6 k 6 A log2 x . Assume (1.8), β > 0 ,
α− β 6 A , w > 1 + ε and

eα(w−1) − eα(w−2) > 1 + ε. (1.10)

Then, for sufficiently large x , depending on ε and A ,

Nk(x;α, β) �ε,A min
(

1,
(u+ 1)w

k

)
πk(x),

the implied constants depending only on ε and A .

Theorem 2. Suppose A > 1 and 1 6 k 6 A log2 x . Assume (1.9), u > 1 , w > 0
and that for 1 6 j 6 k , there are at least j primes 6 exp exp(αj + β) . Then, for
sufficiently large x , depending on A ,

Mk(x;α, β) �A min
(

1,
u(w + 1)

k

)
πk(x),

the implied constants depending only on A .
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Remarks. Inequality (1.10) is necessary, since for large k , (1.1) implies

logn >
k∑

j=1

log pj >
k∑

j=1

eαj−β ≈ eαk−β

1− e−α =
log x

eα(w−1) − eα(w−2)
.

The condition α−β 6 A in Theorem 1 means that there is no significant restriction
on p1 .

It is a simple matter to apply the estimates for Nk(x;α, β) and Mk(x;α, β)
to problems of the distribution of prime factors of integers where ω(n) is not fixed.
In the following, let ω(n, t) be the number of distinct prime factors of n which
are 6 t . It is well-known (cf. Ch. 1 of [4]) that ω(n, t) has normal order log2 t .
We estimate below the likelihood that ω(n, t) does not stray too far from log2 t
in one direction.

Corollary 1. Uniformly for large x and 0 6 β 6
√

log2 x , we have

#{n 6 x : ∀t, 2 6 t 6 x, ω(n, t) 6 max(0, log2 t+ β)} � (β + 1)x√
log2 x

(1.11)

and

#{n 6 x : ∀t, 2 6 t 6 x, ω(n, t) > log2 t− β} �
(β + 1)x√

log2 x
(1.12)

Proof. The quantity of the left side of (1.11) is
∑
kNk(x; 1, β). Here u = β ,

v = log2 x and w = log2 x+ β − k + 1. By Theorem 1 and (1.7),

∑

log2 x−2
√

log2 x6k6log2 x−
√

log2 x

Nk(x; 1, β)� (β + 1)x√
log2 x

,

since πk(x) � x/√log2 x for |k− log2 x| 6 2
√

log2 x . This proves the lower bound
in (1.11). For the upper bound, we note that if k > log2 x+β , then Nk(x; 1, β) = 0.
Hence, by Theorem 1 and (1.7),

∑

k

Nk(x; 1, β)�
∑

k6log2 x+β−2

(β + 1)(log2 x+ β − k + 1)
k

πk(x)

+
∑

log2 x+β−2<k6log2 x+β

πk(x)� (β + 1)x√
log2 x

.

This proves the upper bound in (1.11).
The quantity on the left side of (1.12) is

∑
kMk(x; 1, β−1). Here v = log2 x ,

u = β + k − log2 x and w = β . By Theorem 2,

∑

log2 x+
√

log2 x6k6log2 x+2
√

log2 x

Mk(x; 1, β − 1)� (β + 1)x√
log2 x,
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proving the lower bound in (1.12). Also by Theorem 2,

∑

log2 x−β+1<k610 log2 x

Mk(x; 1, β − 1)� (β + 1)x√
log2 x

.

If ω(n) = k > 10 log2 x , then the number, τ(n), of divisors of n satisfies τ(n) >
2ω(n) > (log x)6 . Since

∑
n6x τ(n) ∼ x log x , the number of n 6 x with ω(n) >

10 log2 x is O(x/ log5 x). By (1.7), the number of n 6 x with log2 x−β−4 < k 6
log2 x− β + 1 is O(x/

√
log2 x). Finally, suppose k 6 log2 x− β − 4. The number

of n 6 x for which d2|n for some d > log x is O(x
∑
d>log x 1/d2) = O(x/ log x).

If there is no such d , then by (1.2),

logn 6 2 log2 x+
k∑

j=1

log pj 6 2 log2 x+
k∑

j=1

ej+β−1 6 2 log2 x+ 2ek+β−1 6 1
2

log x,

thus n 6 √x . This completes the proof of the upper bound in (1.12).
Our methods for proving Theorems 1 and 2 are borrowed from [3], especially

sections 8, 10 and 12 therein. The tools there are adequate for making precise
the heuristic argument outlined above when the function f is monotonic in each
variable, even if f is discontinuous. We provide details only for Theorem 1. In
lower bound for Mk(x;α, β), we may need to fix several of the smallest prime
factors of n , but otherwise the details of the proof of Theorem 2 are very similar.

2. Certain partitions of the primes

We describe in this section certain partitions of the primes which will be needed
in the proof of Theorems 1 and 2. The constructions are similar to those given in
§4 and §8 of [3].

Let λ0 = 1.9 and inductively define λj to be the largest prime such that

∑

λj−1<p6λj

1
p

6 1.

In particular, λ1 = 3 and λ2 = 109. By Mertens’ estimate, log2 λj = j + O(1).
Let Gj be the set of primes in (λj−1, λj ] for j > 1. Then there is an absolute
constant K so that if p ∈ Gj then | log2 p− j| 6 K .

Next, let Q > e10 and γ = 1/ logQ . If p 6 Q , then pγ 6 e , hence pγ 6
1 + (e− 1)γ log p . By Mertens’ estimates,

∑
p6Q
f>1

1
pf(1−γ)

= O(1) +
∑

p6Q

(
1
p

+ (e− 1)γ
log p
p

)
= log2Q+O(1).
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It follows for an absolute constant K ′ , independent of Q , that the set of primes
p 6 Q may be partitioned into at most 1

2 log2Q + K ′ sets Ej so that (i) for
each j , ∑

p∈Ej
f>1

1
pf(1−γ)

6 2

and (ii) for p ∈ Ej , | log2 p − 2j| 6 K ′ . We stipulate that the above sum is 6 2
rather than 6 1 in order to accomodate the prime 2.

3. Proof of Theorem 1 upper bound

Without loss of generality, suppose that k is large, (u + 1)w 6 k/10, and n >
x/ log x . We have v 6 1.1k and consequently α > 1/(1.1A). Also, by (1.1),

log2 pk > αk − β =
k − u
v

log2 x > 9
11

log2 x.

We may suppose p2
k - n , as the number of n 6 x with p2

k|n is O(x exp(−(log x)
9
11 ))

= O(πk(x)/k). For brevity, write x` = x1/e` . For some integer ` satisfying ` >
0 and exp exp(αk − β) 6 x` , we have x`+1 < pk 6 x` . With ` fixed, given
p1, . . . , pk−1 with exponents f1, . . . , fk−1 , the number of possibilities for pk is

� x

pf1
1 · · · pfk−1

k−1 log x`
� x1−γ/2e`

(pf1
1 · · · pfk−1

k−1 )1−γ log x
,

where γ = 1/ log x` . This follows for ` > 1 from pf1
1 · · · pfk−1

k−1 > x/(pk log x) >
x1/2 . We conclude that

Nk(x;α, β)� x

log x

∑

`

e`−
1
2 e
` ∑
p1<···<pk−16x`
f1,...,fk−1>1

(1.1)

1

(pf1
1 · · · pfk−1

k−1 )1−γ
. (3.13)

Consider the intervals Ej defined in the previous section corresponding to
Q = x` . Put J =

⌊
1
2 log2 x` +K ′

⌋
and define j1, . . . , jk−1 by pi ∈ Eji . Let J

denote the set of tuples (j1, . . . , jk−1) so that 1 6 j1 6 · · · 6 jk−1 6 J and such
that ji > 1

2 (αi−β−K ′−A) for every i . Given p1, . . . , pk−1 , let bj be the number
of pi in Ej , for 1 6 j 6 J . The contribution to the inner sum of (3.13) from those
tuple of primes with a fixed (j1, . . . , jk−1) is

6
J∏

j=1

1
bj !

( ∑

p∈Ej ,f>1

1
pf(1−γ)

)bj

6 2k−1

b1! · · · bJ !
.
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We observe that 1/(b1! · · · bJ !) is the volume of the region (y1, · · · , yk−1) ∈ Rk−1

satisfying 0 6 y1 6 · · · 6 yk−1 6 J and ji − 1 < yi 6 ji for each i (there are bj
numbers yi in each interval (j − 1, j]). Making the change of variables ξi = yi/J
and summing over all possible vectors (j1, . . . , jk−1) ∈ J , we find that the inner
sum in (3.13) is

6(2J)k−1Vol
{

06ξ1 6 · · ·6ξk−1 61 : ξi>
(αi− β −K ′ −A− 2)

2J
(16 i6k − 1)

}

6 (log2 x+ 2K ′)k−1

(k − 1)!
Qk−1

(
β +K ′ +A+ 2

α
,

2J
α

)

�A
(log2 x)k−1

(k − 1)!
(u+ 1)w

k
,

where we have used (1.6). By (3.13), summing on ` and using (1.7) completes the
proof.

4. Proof of Theorem 1 lower bound

First, we assume k > 2, since if k = 1 then N1(x;α, β) = π1(x)+O(log x) trivially
as A+β > α (powers of primes 6 eα−β are not counted in N1(x;α, β)). Also, we
may assume that α > 1/2A . If α < 1/2A , then Nk(x;α, β)> Nk(x; 1/2A,0) and
we prove below that Nk(x; 1/2A, 0)� πk(x) (here u = 0, v > 2k and w > k ).

Let T be a sufficiently large constant, depending on ε and A , and put

C = e3T+2K+10.

We first prove the theorem in the case that

eα(w−1) − eα(w−2) > C. (4.14)

Notice that
αj − β = log2 x− α(w + k − 1− j). (4.15)

In particular,
αk − β = log2 x− α(w − 1) 6 log2 x− logC.

Let J = blog2 x−K − log T − 2c . Recall the definition of the numbers λj and
sets Gj from section 2. Consider squarefree n satisfying (1.1), with pk−1 6 λJ
and for which

p1 · · · pk−1 6 x1/2.

Also take pk so that x/2 < n 6 x . Given p1, . . . , pk−1 , the number of possible pk
is � x/(p1 · · · pk−1 log x). Put b1 = · · · = bT−1 = 0 and for T 6 j 6 J , suppose
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bj 6 min(T (j − T − 1), T (J − j + 1)). Suppose there are exactly bj primes pi in
the set Gj for 1 6 j 6 J . By the definition of J ,

k−1∑

i=1

log pi 6 TeJ+K
k−1∑
r=1

re1−r < 3TeJ+K 6 1
2

log x,

as required. Define the numbers ji by pi ∈ Gji . The inequalities (1.1) will be
satisfied if

ji > αi− β +K (1 6 i 6 k − 1). (4.16)

This is possible since by (4.14)

α(k − 1)− β = log2 x− αw 6 log2 x− 2K − 3T − 10 < J − T − 1.

With (j1, . . . , jk−1) fixed (so that b1, . . . , bJ are fixed), the sum of 1/p1 · · · pk−1

is

=
J∏

j=T

1
bj !

( ∑

p1∈Gj

1
p1

∑
p2∈Gj
p2 6=p1

1
p2
· · ·

∑
pbj
∈Gj

pbj
6∈{p1,...,pbj−1}

1
pbj

)

>
J∏

j=T

1
bj !

(∑

p∈Gj

1
p
− bj − 1

λj−1

)bj

>
J∏

j=T

1
bj !

(
1− bj

λj−1

)bj

>
J∏

j=T

1
bj !

(
1− T (j − T + 1)

exp exp(j − 1−K)

)T (j−T+1)

> 1/2
bT ! · · · bJ !

if T is large enough. The right side is 1/2 of the volume of the region of (y1, · · · ,
yk−1) ∈ Rk−1 satisfying 0 6 y1 6 · · · 6 yk−1 6 J−T+1 and ji−T 6 yi 6 ji+1−T
for each i . Set H = J − T + 1. Assume that

jmT+1 > T +m, jk−1−mT 6 J −m (integers m > 1), (4.17)

so that bj 6 min(T (j − T + 1), T (J − j + 1)) for each j . Making the substitution
ξi = yi/H and summing over all tuples (j1, · · · , jk−1) yields

Nk(x;α, β)� xHk

log x
Vol(R)�A

x(log2 x)k

log x
Vol(R), (4.18)

where, by (4.16) and (4.17), R is the set of ξξξ satisfying (i) 0 6 ξ1 6 · · · 6 ξk−1 6
1, ξi > (αi−β+K−T )/H for each i , (ii) ξmT+1 > m/H and ξk−1−mT 6 1−m/H
for each positive integer m .
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It remains to estimate from below the volume of R . Let S be the set of ξξξ
satisfying (i), so that

Vol(S) =
Qk−1(µ, ν)

(k − 1)!
, µ =

β + T −K
α

, ν =
H

α
.

If T > K + A , then µ �A (u + 1). By the definition of C and J , if T is large
enough then

µ+ ν − (k − 1) =
J −K + 1 + β

α
− (k − 1) > w − log T + 2K + 2

α
> w

1 + ε
> 1.

Hence, by (1.6),

Vol(S)� f

(k − 1)!
, f = min(1, (u+ 1)w/k). (4.19)

The implied constant in (4.19) does not depend on T , but the inequality does
require that T be sufficiently large.

For a positive integer m , let

V1(m) = Vol{ξξξ ∈ S : ξmT+1 < m/H},
V2(m) = Vol{ξξξ ∈ S : ξk−1−mT > 1−m/H}.

We have by (1.6),

V1(m)

6 (m/H)mT+1

(mT + 1)!
Vol{0 6 ξmT+2 6 · · ·6 ξk−1 61 : ξi > i− µ

ν
(mT + 2 6 i6 k −1)}

=
(m/H)mT+1

(mT + 1)!
Qk−2−mT (µ− (mT + 1), ν)

(k − 2−mT )!

� (m/H)mT+1

(mT + 1)!
µ(µ+ ν − (k − 1))

(k −mT )(k − 2−mT )!

� fk(m/H)mT+1

(k −mT )(mT + 1)!(k − 2−mT )!

6 f

(k − 1)!
(km/H)mT+1

(mT + 1)!
k

k −mT .

Since k/H �A 1 and r! > (r/e)r , it follows from (4.19) that for large enough T ,

∑
m

V1(m) 6 1
4

Vol(S).

Similarly,

V2(m) 6 Qk−2−mT (µ, ν)
(k − 2−mT )!

(m/H)mT+1

(mT + 1)!
.
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By (1.6),

Qk−2−mT (µ, ν)� min
(

1,
µ(µ+ ν − (k − 1) +mT + 1)

k −mT
)
� mTkf

k −mT .

Hence, if T is large enough then

∑
m

V2(m) 6 1
4

Vol(S).

We therefore have, for T large enough,

Vol(R) > Vol(S)−
∑

m>1

(V1(m) + V2(m))�A
f

(k − 1)!
.

Together with (4.18) and (1.7), this completes the proof under the assumption
(4.14).

It remains to consider the case

1 + ε 6 eα(w−1) − eα(w−2) 6 C.

Since w > 1 + ε and α > 1/2A , we find that α �ε,A 1 and w �ε,A 1. Hence, if
x is large enough,

k = u+ v − w + 1 > v − w > log2 x

4A
.

Let B be a large integer depending on ε . Suppose that

αj − β 6 log2 pj 6 αj − β + log(1 + ε/2) (k −B 6 j 6 k − 1) (4.20)

Then, by (4.15),

k−1∑

j=k−B
log pj 6 (1 + ε/2)

(
e−αw + e−α(w+1) + · · ·+ e−α(w+B−1)

)
log x

< (1 + ε/2)
(

1
eα(w−1) − eα(w−2)

− e−α(w−1)
)

log x.

Assume also that

k−B−1∑

j=1

log pj 6 ε/2
eα(w−1) − eα(w−2)

log x. (4.21)

If in addition αk − β 6 log2 pk 6 αk − β + log(1 + ε/2), then by (1.10),

log n =
k∑

j=1

log pj 6 ε/2 + 1 + ε/2
eα(w−1) − eα(w−2)

log x 6 log x,
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as required. Thus, given p1, . . . , pk−1 satisfying (4.20) and (4.21), the number of
pk is � x/(p1 · · · pk−1 log x). If B is large enough, there is great flexibility in
choosing p1, . . . , pk−B−1 , since by (4.15),

k−B−1∑

j=1

eαj−β 6 e−α(B+1)

eα(w−1) − eα(w−2)
log x,

which is small compared with the right side of (4.21). By the same argument used
to give a lower bound for the sum of 1/(p1 · · · pk−1) under the assumption (4.14),
we obtain ∑

p1,...,pk−B−1

1
p1 · · · pk−B−1

�A,ε
f(log2 x)k−B−1

(k −B − 1)!
.

Also, since k �A log2 x , we have

∑
pk−B ,...,pk−1

1
pk−B · · · pk−1

�ε,B 1�ε,A (log2 x)B
(k −B − 1)!

(k − 1)!
.

The proof is again completed by applying (1.7).
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