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Abstract: Let M(x) be the summatory function of the Möbius function and R(x) be the
remainder term for the number of squarefree integers up to x . In this paper, we prove the
explicit bounds |M(x)| < x/4345 for x > 2160535 and |R(x)| 6 0.02767

√
x for x > 438653 .

These bounds are considerably better than preceding bounds of the same type and can be used
to improve Schoenfeld type estimates.
Keywords: Möbius function, summatory functions.

1. Introduction

The Möbius function µ is defined by

µ(n) =

{ 1, if n = 1,
(−1)r, if n = p1p2...pr (where the pi are distinct primes),
0, otherwise.

We also define the summatory functions

M(x) =
∑

n6x
µ(n),

and

Q(x) =
x∑
n=1

|µ(n)|

i.e. Q(x) is the number of squarefree integers up to x .
Finally, we denote by R the remainder term R(x) = Q(x)− 6

π2x .
[Möbius 1832] introduced the µ -function to obtain inversion formulas for

arithmetic functions (in modern terms, µ is the arithmetic convolution inverse of
the constant function 1).
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The aim of this paper is to improve substantially on the following explicit
upper bounds which were the best to date:

|R(x)| 6 0.1333
√
x for x > 1 664,

([Cohen and Dress 1988]) and

|M(x)| 6 x

2 360
for x > 617 973

([Dress and El Marraki 1993]). This latter upper bound was itself an improvement
on the result |M(x)| 6 x

1 036 for x > 120 727 due to ([Pereira 1989]).
The results are given simultaneously, since they are obtained using convo-

lution formulas where each improvement of an effective estimate of one of the
functions gives an improvement for the other one.

It is reasonable to ask what is the point of obtaining bounds of the form
|M(x)| 6 εx for “small” ε since one knows by the Prime Number Theorem that
M(x) = o(x). The answer to this question is in the practical use of the results.

For example, such bounds are used as the starting point for convolutions
which give bounds of the form C(α) x

(log x)α , and the size of the constant C(α) is
strongly dependent on the size of the constant ε . (Note that, contrary to the case of
the remainder term for the Ψ or Θ functions, there does not exist effective upper
bounds for |M(x)| better than bounds of the form x

(log x)α .) The first bounds of this
form have been given by [Schoenfeld 1969]. Using the inequality |M(x)| < x/4345
given in the present paper, [El Marraki 1995] has given several bounds of this form,
improving by a factor of 15 the corresponding bounds given in [Schoenfeld 1969].
For example, he shows that

|M(x)| < 0.002969x
(log x)1/2

for x > 142194 .

However, notwithstanding these improvements, the bound |M(x)| < x/4345 is
still the best available up to x = 2 · 1072 , and so bounds of the form |M(x)| 6 εx
are interesting in themselves.

Note also that bounds of the form |M(x)| 6 εx and those deduced from it,
are also essential in the study of the discrepancy of the Farey sequence.

To bound |R(x)| , we use the method introduced by [Cohen et Dress 1988].
To bound |M(x)| we use a method initiated by [von Sterneck 1898], which

itself was inspired by Tchebychev’s method for ψ(x) [Tchebychev 1854]. The me-
thod that we use here contains improvements introduced by [Mac Leod 1969] and
[Costa Pereira 1989] for constructing a function which in some sense is close to
the constant function 1 (see Section 5 below), and a method introduced in [Dress
1977] for fine estimates of the complementary part of the bound.
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2. Estimates of Q(x)Q(x)Q(x) and R(x)R(x)R(x) : The basic formula

Let n be a positive integer which we shall choose later. For j = 1, 2, ..., n , we set
Xj :=

√
x
j . We have:

Q(x) =
∑

a26x
µ(a)

[ x
a2

]
=
∑

a6Xn
µ(a)

[ x
a2

]
+

∑

Xn<x6X1

µ(a)
[ x
a2

]
.

In the second sum, we group terms giving the same value of
[
x
a2

]
. Since

[
x
a2

]
= j

if and only if
[
Xj+1

]
+ 1 6 a 6

[
Xj

]
, we get:

Q(x) =
∑

a6Xn
µ(a)

[ x
a2

]
+
n−1∑

j=1

( [Xj ]∑

a=[Xj+1]+1

µ(a)
)
j

=
∑

a6Xn
µ(a)

[ x
a2

]
+
n−1∑

j=1

j
(
M(Xj)−M(Xj+1)

)
,

hence, finally:

Q(x) =
∑

a6Xn
µ(a)

[ x
a2

]
+
n−1∑

j=1

M(Xj)− (n− 1)M(Xn). (2.1)

This formula can be used in several ways, with quite different optimal values
of n :

– numerical computation of Q(x); if we can store in the computer’s main
memory all the values M(y) up to

√
x , we must the minimize the number of terms

in formula (2.1), which gives an n of the order of x1/3 , and the running time is
also O(x1/3);

– obtaining upper bounds for |R(x+ y)−R(x)| ; depending on the size of y
with respect to x , the optimal value of n will either be x1/3 or x

y ; this is how the
following bounds were obtained:

|R(x+ y)−R(x)| < 0.7343
y

x1/3
+ 1.4327x1/3 (2.2)

et
|R(x+ y)−R(x)| < 1.6749

√
y + 0.6212

x

y
, (2.3)

valid for all x and y > 1, given in [Cohen and Dress 1988]. Contrary to the other
bounds, the bounds for |R(x+ y)−R(x)| depend very little on the quality of the
effective bounds for |M(x)| and cannot be substantially improved.

– bounds for |R(x)| , using a bound for |M(x)| of the form ε(x)x , where ε
is either a constant or a slowly varying function which tends to 0 when x → ∞ .
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We then choose n close to 1
4π
√

3ε(x)
# 0.046√

ε(x)
, and we then get a bound close to

1.7
√
ε(x)
√
x . It is this type of bounds that we study in detail below (under the Rie-

mann hypothesis, we would obtain in this way a bound of the form O(x1/4 log x)).

To obtain bounds for |R(x)| in terms of
√
x , we transform the first term in

the fundamental formula (2.1):

∑

a6Xn
µ(a)

[ x
a2

]
= x

∑

a6Xn

µ(a)
a2 −

1
2
M(Xn)−

∑

a6Xn
µ(a)

({
x

a2

}
− 1

2

)
,

and we also have

∑

a6Xn

µ(a)
a2 =

6
π2 −

∑

a>Xn

µ(a)
a2 =

6
π2 −

∫ ∞
Xn

dM(t)
t2

=
6
π2 +

M(Xn)
X2
n

− 2
∫ ∞
Xn

dM(t)
t3

.

Grouping all the terms, we obtain

R(x) = Q(x)− 6
π2 x

= −2x
∫ ∞
Xn

dM(t)
t3

+
n−1∑

j=1

M(Xj) +
1
2
M(Xn)−

∑

a6Xn
µ(a)

({
x

a2

}
− 1

2

)
.

We will use this formula in the form |R(x)| 6 T1 + T2 + T3 , where

T1 := 2x
∫ ∞
Xn

|M(t)|
t3

dt,

T2 :=
n−1∑

j=1

|M(Xj)|+ 1
2
|M(Xn)|,

T3 :=
∑

a6Xn

∣∣∣∣µ(a)
({

x

a2

}
− 1

2

)∣∣∣∣.

Initially, we can apply these formulas by using the bounds |M(x)| 6 x
2 360

for x > 617 973 (see introduction).
As mentioned in the introduction, there will be an interaction between all

the bounds. We will first give the basic lemma, not with the bound x
2 360 but with

the parametric bounds |M(x)| < εx for x > x1 = x1(ε) and |R(x)| < b
√
x for

x > x2 = x2(b).
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Lemma 1. For Xn =
√

x
n > max(x1, x2) , we have

T1 6 2ε
√
n
√
x

T2 6 2ε
√
n
√
x− 1.46 ε

√
x

T3 6
√(

6
√
x

π2
√
n

+ b
x1/4

n1/4

)( √
x

18
√
n− 0.02

+
(12x)1/3

6
− 2

3

(
n− 1

2

))

The proofs of the first two bounds are immediate:

T1 = 2x
∫ ∞
Xn

|M(t)|
t3

dt 6 2εx
∫ ∞
Xn

dt

t2
= 2ε

x

Xn
,

and

T2 =
n−1∑

j=1

|M(Xj)|+ 1
2

∣∣M(Xn)
∣∣ 6 ε

(
X1 +X2 + ...+Xn−1 +

1
2
Xn

)

= ε
√
x

(
1 +

1√
2

+ ...+
1√
n− 1

+
1

2
√
n

)

and the result follows from the elementary inequality
(

1+ 1√
2
+...+ 1√

n−1
+ 1

2
√
n

)
<

2
√
n− 1.46.

The proof of the third bound is much more tricky. We first use Schwartz’s
inequality:

T3 6
√ ∑

a6Xn
µ2(a)

√ ∑

a6Xn
|µ(a)|({ x

a2

}− 1
2

)2
.

Let h(a) be the characteristic function of integers which are not divisible by 4 or
by 9. We have |µ(a)| 6 h(a), so if we set:

S(z) :=
∑

a6z
h(a)

({ x
a2

}− 1
2

)2

,

we have
T3 6

√
Q(Xn)

√
S(Xn).

We trivially have

Q(Xn) 6 6
√
x

π2
√
n

+ b
x1/4

n1/4
.

To bound S(Xn), we set Sk :=
∑
Xk+1+16a6Xk h(a)

({
x
a2

})2
and H(z) :=∑

a6z h(z) = [z] − [ z4
] − [ z9

]
+
[
z
36

]
. Thus, we have S(Xn) < Sn + Sn+1 + ... +

SN + 1
4H(XN ).
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We first note that H(z) = 2
3z + ρ(z) with |ρ(z)| 6 4

3 .
An easy but detailed and delicate study of a few functions gives the following

inequality:

Sk =
((

16k
9

+
4
3

+
1
6k

)√
k −

(
16k
9

+
4
9

+
1

6(k + 1)

)√
k + 1

)√
x

+
1
4

(
ρ

(√
x

k

)
− ρ
(√

x

k + 1

))
+ rk with |rk| 6 2

3
.

For k > 4, the main term can be bounded by

1
18

(
1√

k − 0.02
− 1√

k + 0.98

)√
x.

Finally, we obtain

S(Xn) 6
√
x

18
√
n− 0.02

+
1
9

(√
x

N
+ 6N

)
− 2

3

(
n− 1

2

)
.

The best bound is obtained by choosing N =
[(

x
144

)1/3]
, which gives

S(Xn) 6
√
x

18
√
n− 0.02

+
(12x)1/3

6
− 2

3

(
n− 1

2

)

as claimed.
Note that the bounds for Q(Xn) and S(Xn) are valid for n > 4 and√

x
n > x2 .

3. Estimates for small xxx

The bound for T3 given in the above lemma is useful only when x is rather large.
Hence it is important to have estimates for “small” values of x .

Proposition 2. We have
∣∣R(x)

∣∣ 6 0.02
√
x for x ∈ [2 050 244 , 1.6 1015].

We first show that the bounds (2.2) and (2.3) for |R(x + y) − R(x)| imply
that, if we know that |R(x)| 6 0.001

√
x and |R(1.0001x)| 6 0.001

√
1.0001x then

|R(z)| 6 0.02
√
z for all z in the interval [x, 1.0001x] . We first use (2.2) and (2.3)

together to give a single increasing bound fx(y) for |R(x+ y)−R(x)| , where

fx(y) = 0.7343
y

x1/3
+ 1.4327x1/3 if y < 1.3007x2/3

fx(y) = 1.6749
√
y + 0.6212

x

y
if y > 1.3007x2/3.
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We have fx(0.00005 y) = 0.36715 10−4 x2/3 + 1.4327x1/3 if x < (26014)3 =
1.76044 1013 , and fx(0.00005 y) = 1.18433 10−2√x + 12414 if x > 1.76044 1013 .
Hence our claim is valid as soon as fx(0.00005 y) 6 0.019

√
x , which is true when

x > 5.92 1011 .
The explicit computations of the necessary values of R(x) are done using

formula (2.1) with x =
[
x1/3

2

]
.

Thus we have proved that the bound of Proposition 2 is valid on the interval

[5.92 1011 , 1.6 1015].

It is a simple (but long) matter to check explicitly that it is also valid on the
interval [2 050 244, 5.92 1011] , thus proving the proposition.

4. Estimates for Q(x)Q(x)Q(x) and R(x)R(x)R(x) : Numerical results

Theorem 3. We have
∣∣R(x)

∣∣ 6 0.036438
√
x for x > 82 005

Form 82 005 to 2 050 244, we check directly. From 2 050 244 to 1.6 1015 , the
result follows from the proposition above. Above 1.6 1015 we use the lemma of
Section 2 with ε = 1

2 360 , x1 = 617 973, b = 0.1333, x2 = 1 664. One easily checks
that the optimal value of n is n = 109. Thus, for x > 1.6 1015 we obtain

Q(Xn) 6
√

x

109

(
6
π2 + b

1091/4

(1.6 1015)1/4

)

S(Xn) 6
√

x

109

( √
109

18
√

107.98
+

121/3 1091/2

6(1.6 1015)1/6

)

hence
T3 6

√
Q(Xn)S(Xn) = 0.019361

√
x.

Since
T1 + T2 6 0.847458 10−3 (2

√
109− 0.73

)√
x = 0.017077

√
x,

Theorem 3 follows.

5. Estimates for M(x)M(x)M(x) : description of the method

Let E be the function E(x) =
∑
n6x µ(n)

[
x
n

]
, which is constant and equal to 1,

and which trivially satisfies the condition

∑

n6x
µ(n)

(
1− E(x

n

))
= M(x)−

∑

n6x
µ(n).
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We consider an approximation F (x) =
∑m
i=1 ci

[
x
ai

]
of this function. We

have ∑

n6x
µ(n)

(
1− F (x

n

))
= M(x)−

∑

ai6x
ci .

If
∑m
i=1

ci
ai

= 0 and if F is a “good” approximation of E , we can thus obtain
good bounds for |M(x)| . We refer to [El Marraki 1991] for a detailed description
of this method.

Here, we use the same method with a more efficient function F and better
bounds for R(x) (which are used in the final estimates).

We use the following function

F (x) =
m∑

i=1

ci

[
x

ai

]
+ cm+1

[
x

am+1

]
+ cm+2

[
x

am+2

]

with the following four conditions:
(i) F (x) = 1 for 1 6 x 6 k0 ,
(ii) the function G(x) := |1− F (x)| is close to 1 for k0 6 x 6 2 k0 ,

(iii) I(F ) := 6
π2

∫ |1−F (u)|
u2 du is “small”,

(iv) the function F is periodic, i.e.
∑m+2
i=1

ci
ai

= 0 (this last condition is
absolutely necessary).

We build the function F in the following way. For condition (i), we choose
an integer k0 , we set m1 = Q(k0 − 1), and we define the first m1 terms of F
by setting (ai) to be the increasing sequence of squarefree integers less than or
equal to k0 and ci = µ(ai). We then add corrective terms of the form ci

[
x
ai

]
so

that condition (ii) is satisfied. We then compute the integral I(f), and we add
other terms so that condition (iii) is satisfied. Finally, we add two terms with not
necessary integral ai so that the periodicity condition (iv) is satisfied.

We have written a program which, given k0 , automatically computes a num-
ber of possible functions, which only differ by the number of corrective terms.
Heuristic reasons and experimental observation show that efficient values of k0

are obtained when both M(k0) and m(k0) =
∑
n6k0

µ(n)
n are small. The upper

bound |M(x)| 6 x
2 360 (see Introduction) was obtained using a function where

k0 = 26 442, for which M(k0) = −1 and m(k0) = 1.59 10−5 .
Here we will use a function where k0 = 100 882, for which M(k0) = 1

and m(k0) = 4.34 10−7 . This function F , given by our program, is built with
m1 = 61 334 and m = 63 951 as follows:

F (x) =
61 334∑

i=1

ci

[
x

ai

]
+

63 951∑

i=61 335

ci

[
x

ai

]
+
[

x

1 436 009.0

]
−
[

x

47 666 734 237 381.39

]

We obtain an upper bound max(G) of G by splitting G = |1 − F | into an
affine part (which vanishes) and a periodic part:
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|1− F (x)| =
∣∣∣∣1 +

1
2

m+2∑

i=1

ci − x
m+2∑

i=1

ci
ai

+
m+2∑

i=1

ci

({
x

ai

}
− 1

2

)∣∣∣∣

6
∣∣∣∣1 +

1
2

m+2∑

i=1

ci

∣∣∣∣+ 0 +
∣∣∣∣
m1∑

i=1

ci

({
x

ai

}
− 1

2

)∣∣∣∣+
∣∣∣∣

m+2∑

i=m1+1

ci

({
x

ai

}
− 1

2

)∣∣∣∣.

The term
∣∣1 + 1

2

∑m+2
i=1 ci

∣∣ is equal to 2.
We bound the term

∣∣∑m1
i=1 ci

({
x
ai

}− 1
2

)∣∣ by using a technique due to Costa
Pereira and explained in detail in Lemma 5.1 of [El Marraki 1991]. The result is
that this term is bounded by 14 891. Finally, the term

∣∣∑m+2
i=m1+1 ci

({
x
ai

} − 1
2

)∣∣
can be trivially bounded by 1

2

∑m+2
i=m1+1 |ci| , which gives 7634.5.

The properties of the function F can be summarized in the following table:

k0 m1 m max(G)

100 882 61 334 63 951 22 527.5

6. Estimates for M(x)M(x)M(x) : Numerical results

To bound |M(x)| we use the same method as in [Dress et El Marraki 1993]. It can
be summarized in the following lemma:

Lemma 4. If x > τ and τ > max(ai, (N + 1)x(b)) , we have

∣∣M(x)
∣∣ 6

(
6
π2u+

b v√
τ

+
w

τ

)
x,

where, if we denote by N the upper bound for direct computations,

u(N) =
N∑
n=1

1
n

(
G(n)−G(n− 1)

) − 1
N + 1

G(N),

v(N) =
N∑
n=1

1√
n

∣∣G(n)−G(n− 1)
∣∣ − 1√

N + 1
G(N)

u = u(N) +
1

N + 1
max(G), v = v(N) +

1√
N + 1

max(G), w =
∣∣∣∣
m+2∑

i=1

ci

∣∣∣∣.

Recall also the following two results.
∣∣M(x)

∣∣ 6 0.570591
√
x for 33 6 x 6 1012 (6.1)

[Dress 1993] ∣∣M(x)
∣∣ 6 x

4 257
for 1012 6 x 6 2.590 1015 (6.2)

[Dress and El Marraki 1993].
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Theorem 5. We have ∣∣M(x)
∣∣ 6 x

4 257
for x > 2 159 561

To prove this, we use the function F given above (for which w = 8), the
value b = 0.036438 given in Theorem 3, and τ = 2.590 1015 . We split the interval
[2 159 561 ; +∞[ in four consecutive sub-intervals as follows.

(i) For x ∈ [2 159 561 ; 5 900 070] : we make a direct check on the computer.
(ii) For x ∈ [5 900 070 ; 1012] : the bound (6.1) implies |M(x)| 6 x

4257 .
(iii) For x ∈ [1012 ; 2.590 1015] : this is (6.2).
(iv) Finally, for x ∈ [2.590 1015,+∞] : the bound follows from the use of the

function F (x) as explained in Lemma 4.

The first table below gives the basic results for using Lemma 4 up to N =
1.62 109 . The total running time on a Sparcstation 10 was approximately 6 months.
We decided to stop there since we would only very slightly improve the final result
by going any further.

N
106 u(N) v(N)

60 0.00033225264406 6993.26247
120 0.00033278045122 9798.92803
180 0.00033297524343 11924.63733
240 0.00033307188379 13701.60869
300 0.00033313444950 15258.91664
360 0.00033317548479 16659.86951
420 0.00033320547881 17943.01439
480 0.00033322821023 19132.56364
540 0.00033324602713 20245.63763
600 0.00033326069524 21294.91286
660 0.00033327290186 22290.10075
720 0.00033328301510 23238.79402
780 0.00033329184416 24146.22679
840 0.00033329909164 25017.15026
900 0.00033330533451 25855.13303
960 0.00033325085140 26664.09029

1020 0.00033332552935 27446.77662
1080 0.00033332997683 28205.29763
1140 0.00033333387044 28941.39330
1200 0.00033333739947 29656.91071
1260 0.00033334068787 30353.50586
1320 0.00033334359056 30560.02903
1380 0.00033334623636 31222.56618
1440 0.00033334870142 31869.60823
1500 0.00033335094814 32502.25952
1560 0.00033335300301 33121.36884
1620 0.00033335488681 33727.85805
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The second table gives the results obtained after applying Lemma 4, with b =
0.036438 and τ = 2.590 1015 . The term w (=8), which only changes the 10-th
significant figure, has been completely neglected. The bound is given through the
value u = u(N) + 1

N+1 max(G), v = v(N) + 1√
N+1

max(G), M = 6
π2u + bv√

τ

and 1
M .

N
106

6
π2u

bv√
τ

M = 6
π2u+ bv√

τ
1
M

60 0.00043023667963 0.00000500916169 0.00043524584133 2297.55
180 0.00027850843979 0.00000853907793 0.00028704751773 3483.74
300 0.00024817171955 0.00001092610491 0.00025909782447 3859.55
420 0.00023517196904 0.00001284773765 0.00024801970670 4031.94
540 0.00022795054659 0.00001449629117 0.00024244683777 4124.62
660 0.00022335574718 0.00001596003228 0.00023931577946 4178.58
780 0.00022017493691 0.00001728894260 0.00023746387950 4211.17
900 0.00021784209912 0.00001851245600 0.00023635455513 4230.93

1020 0.00021606416987 0.00001965201822 0.00023571618809 4242.39
1140 0.00021465591992 0.00002072211581 0.00023537803574 4248.48
1200 0.00021405740402 0.00002123440431 0.00023529180832 4250.04
1260 0.00021351594765 0.00002173314560 0.00023524909325 4250.81
1320 0.00021302366185 0.00002188100289 0.00023490466474 4257.05
1380 0.00021257418079 0.00002235536058 0.00023492954137 4256.60

Note that I(F ) := 6
π2

∫ |1−F (u)|
u2 du# 1

4 930 .
It is trivial to control the accuracy of the computations: we deal with sums∑

n
1
n

(
G(n) − G(n − 1)

)
and

∑
n

1√
n

∣∣G(n) − G(n − 1)
∣∣ , where G(n) − G(n − 1)

is exact since it is integral. If we sum up to N = 1.62 109 using double precision
floating point real numbers in C, which have a relative accuracy of at least 10−15 ,
the accuracy of the final result is at least 10−6 , which is more than enough.

This finishes the proof of Theorem 5.

7. Final Numerical Estimates

Theoreme 3 bis. We have

∣∣R(x)
∣∣ 6 0.02767

√
x for x > 438 653

We follow again the proof of Theorem 3, but now with ε = 1
4 257 , x(ε) =

2 159 561, b = 0.036438, x1(b) = 82 005. The optimal value of n for minimizing



62 Henri Cohen, Francois Dress & Mohamed El Marraki

the sum T1 + T2 + T3 is now n = 197. Thus, we have for x > 1.6 1015 :

Q(Xn) 6
√

x

197

(
6
π2 + b

1971/4

(1.6 1015)1/4

)

S(Xn) 6
√

x

197

( √
197

18
√

196.98
+

121/3 1971/2

6(1.6 1015)1/6

)

hence
T3 6

√
Q(Xn)S(Xn) = 0.01479

√
x.

Since
T1 + T2 6 0.472478 10−3 (2

√
197− 0.73

)√
x = 0.012845

√
x,

we obtain the theorem.

Theorem 5 bis. We have
∣∣M(x)

∣∣ 6 x

4 345
for x > 2 160 535

We follow the proof of Theorem 5. The following table gives the results of
applying Lemma 4 with b = 0.02767 and τ = 2.401 1015 . As in the preceding
table, the bound is given through the value u = u(N)+ 1

N+1 max(G), v = v(N)+
1√
N+1

max(G), M = 6
π2u+ bv√

τ
and 1

M .

N
106

6
π2u

bv√
τ

M = 6
π2u+ bv√

τ
1
M

60 0.00043023667963 0.00000395069480 0.00043418737443 2303.15
180 0.00027850843979 0.00000673471787 0.00028524315766 3505.78
300 0.00024817171955 0.00000861735126 0.00025678907082 3894.25
420 0.00023517196904 0.00001013293110 0.00024530490015 4076.56
540 0.00022795054659 0.00001143313505 0.00023938368164 4177.39
660 0.00022335574718 0.00001258757859 0.00023594332577 4238.31
780 0.00022017493691 0.00001363568192 0.00023381061883 4276.97
900 0.00021784209912 0.00001460065937 0.00023244275849 4302.13

1020 0.00021606416987 0.00001549942503 0.00023156359490 4318.47
1140 0.00021465591992 0.00001634340437 0.00023099932430 4329.02
1260 0.00021351594765 0.00001714079730 0.00023065674496 4335.45
1380 0.00021257418079 0.00001763153440 0.00023020571519 4343.94
1440 0.00021216218064 0.00001799690788 0.00023015908852 4344.82
1500 0.00021178312766 0.00001835415541 0.00023013728308 4345.23
1560 0.00021143322102 0.00001870375628 0.00023013697731 4345.24
1620 0.00021110922195 0.00001904623100 0.00023015545295 4344.89

This proves Theorem 5 bis.
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It is not really useful to iterate once more the process, since the improvements
would be marginal (around 0.9% for |R(x)| and 0.07% for |M(x)|).
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expérimentales, Experimental Mathematics, 2 (1993), No 2, 89–98.

[5] F. Dress et M. El Marraki, Fonction sommatoire de la fonction de Möbius,
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