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1. A finite sequence
x̄ = {x0, x1, . . . , xn} (1)

of elements xi of a domain R is called a polynomial sequence of length n if there
exists a polynomial f ∈ R[X] such that for i = 0, 1, 2, . . . , n− 1 one has

f(xi) = xi+1. (2)

Such sequence is called a polynomial cycle of length n , or an n-cycle, if
the elements x0, x1, . . . , xn−1 are all distinct, and xn = x0 holds. Two polynomial
sequences (x0, x1, . . . , xn) and (y0, y1, . . . , ym) are called equivalent , if m = n and
there exists a ∈ R and an invertible element u ∈ R such that for j = 0, 1, . . . , n
one has

yj = a+ uxj .

Obviously every polynomial sequence is equivalent to a sequence containing 0.
A cycle ξ = (x0, x1, . . . , xn−1, x0) will be called normalized , if x0 = 0 and

x1 = 1. While studying cycle-lengths it suffices to consider only normalized cycles,
since if a polynomial f ∈ R[X] realizes the cycle ξ , and for i = 0, 1, . . . , n− 1 we
put

yi = (xi − x0)/(x1 − x0),
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then y0 = 0, y1 = 1, yi ∈ R (i = 2, 3, . . . , n − 1), and η = (0, 1, y2, . . . , yn−1, 0)
is a normalized cycle of length n , realized by the polynomial

g(X) =
f(X(x1 − x0) + x0)

x1 − x0
∈ R[X].

Denote by C(R) the set of all lengths of polynomial cycles in R .
We shall denote by U(R) the group of units, i.e., invertible elements of R .

If u ∈ U(R) satisfies 1 − u ∈ U(R), then u is called an exceptional unit of R .
The set of exceptional units in R we shall denote by Ex(R).

We shall also consider unit solutions of the equation

u+ v + w = 1. (3)

Such a solution will be called trivial , if one of the units u, v, w equals unity, and
will be called non-trivial otherwise.

It is easy to see that the length of a polynomial cycle in the ring of ratio-
nal integers equals 1 or 2, and the possible cycle-lengths in rings of integers of
quadratic extensions of the rationals were determined in [1] and [2] (see also [5]).
The purpose of this paper is to settle the same question for rings of integers in
cubic fields of negative discriminants.

Theorem 1. Let ZK be the ring of integers in a cubic field K of discriminant
d = d(K) < 0 . Then

C(ZK) =





{1, 2, 3, 4, 5} if d = −23,
{1, 2, 3, 4, 6} if d = −31,
{1, 2, 4} if d = −44,−59,
{1, 2} otherwise.

2. In the next proposition we collect some simple auxiliary results needed in the
sequel:

Proposition 1. Let R be an integral domain.
(i) If (x0 = 0, x1 = 1, x2, . . . , xn−1, 0) is a normalized cycle in R , and we

extend xj by putting xj = xj−n for j > n , then xi+1 − xi ∈ U(R) holds for
i = 1, 2, . . . . Moreover for every i and j 6= 0 the elements xi+j − xi and xj are
associated, i.e., differ by a unit factor, and if (j, n) = 1 then xj ∈ U(R) .

(ii) If R contains an ideal I of finite norm N = #(R/I) > 1 , then the prime
divisors of cycle-lengths in R cannot exceed N .

(iii) If there is a polynomial cycle of odd length in R , then the set Ex(R)
is non-empty.

(iv) If (0, 1, x2, . . . , xn−1, 0) is a normalized cycle of length n > 3 in R , and
I is an ideal in R of norm N(I) < n , then some non-zero element of that cycle
lies in I .
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(v) If (0, x1, x2, . . . , xn−1, 0) is an n -cycle in R , then x1 divides xj for
j = 2, 3, . . . , n − 1 , and if the polynomial f(X) = AmX

m + · · · + 1 realizes the
corresponding normalized cycle (0, 1, x2/x1, . . . , xn−1/x1, 0) , then Am is divisible
by xm−1

1 .

Proof. For the assertions (i), (ii) see Lemma 12.8 and its Corollary 1 in [7], (iii)
is a consequence of (i), and (iv) appears in [8] (Corollary 2 to Lemma 1). Finally,
for assertion (v) see the proof of Theorem 2 in [4].

In the next proposition we collect certain results concerning cycle lengths:

Proposition 2. (i) If ε is an exceptional unit, then (0, 1, ε, 0) is a 3 -cycle, and
every normalized 3 -cycle arises in this way.

(ii) If α, β ∈ R , then (0, 1, α, β, 0) is a normalized 4 -cycle for a polynomial
in R[X] if and only if β 6= 1 , the elements β, 1−α , α−β are units of R , and the
elements α and 1 − β are associated. If R does not contain the fourth primitive
root of unity, and the equation u+ v +w = 1 has no solutions in units 6= 1 , then
there are no 4-cycles in R .

(iii) Let R be a finitely generated integral domain and assume that we have
a complete list, say

(0, αj , βj , 0) (j = 1, 2, . . . , N)

of pairwise non-equivalent 3 -cycles in R . Without restriction we may assume,
multiplying, if necessary, all elements of a cycle by a unit, that if αj and αk are
associated then they are equal.

If now
ξ = (0, 1, x2, x3, x4, x5, 0)

is a normalized 6 -cycle in R , then there exists j and k such that αj = αk and

x2 = εαj , x3 = 1 + βαj , x4 = εβj , x5 = 1 + ηβk,

where ε = 1/u , η = −1/z , u is a solution of the unit equation u + v = αj , and
z is a solution of the unit equation z + w = βk .

(iv) Let p be a prime, and denote by Zp the ring of integers of the p -adic
field Qp . Then

C(Zp) =




{1, 2, 4} if p = 2,
{1, 2, 3, 4, 6, 9} if p = 3,
{ab : 1 6 a 6 p, b|p− 1} if p > 5.

Proof. The assertion (i) is a direct consequence of Proposition 1 (i), for (ii) see
Lemma 5 of [3], and for (iii) see Lemma 9 (i) in [8]. The last assertion has been
proved in [10].

Corollary. Let R be a finitely generated domain of zero characteristics, and as-
sume that it does not contain a primitive fourth root of unity. The following
procedure leads to a complete list of all normalized 4 -cycles in R :
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Let (uj , vj , wj) (j = 1, 2, . . . , N ) be the complete list of all non-trivial solu-
tions of the equation u+ v + w = 1 in units of R .

(i) If 1 − uj and 1 + uj are associated, then (0, 1, 1 − uj , 1 + uj , 0) is a
4 -cycle, and the same applies if one replaces uj by vj , or wj .

(ii) If 1− vj and 1− uj are associated, then (0, 1, 1− vj , uj , 0) is a 4-cycle,
and the same applies if one replaces the pair uj , vj by uj , wj , or by wj , vj .

Proof. Part (ii) of the Proposition shows that every 4-cycle (0, 1, α, β, 0) leads
to a solution of the equation (3), due to

(1− α) + (α− β) + β = 1.

If this solution is trivial, then one sees easily that α−β = 1, since otherwise
we would have 1 + β2 = 0. This corresponds to the case (i). If it is non-trivial,
then we arrive at the case (ii).

3. We need also certain results concerning unit equations, but first we recall certain
well-known properties of cubic fields with negative discriminants of small absolute
values:

Proposition 3. Let K be a real cubic field of discriminant d(K) .

(i) If d(K) = −23 , then K = Q(θ1) with θ3
1 − θ1 − 1 = 0 . The smallest

prime ideal norms equal 5 and 7 , and θ1 = 1.3247 . . . .

(ii) If d(K) = −31 , then K = Q(θ2) with θ3
2 − θ2

2 − 1 = 0 . The minimal
ideal norm equals 3 , and θ2 = 1.4655 . . . .

(iii) If d(K) = −44 , then K = Q(θ3) with θ3
3−θ2

3−θ3−1 = 0 . The minimal
ideal norm equals 7 , and θ3 = 1.8392 . . . .

(iv) If d(K) = −59 , then K = Q(θ4) with θ3
4 − 2θ2

4 − 1 = 0 . The minimal
ideal norm equals 2 , and θ4 = 2.2055 . . . .

In all cases the generating element θi is the unique fundamental unit exce-
eding 1 .

Proposition 4. ([6]) Let K be a cubic field of negative discriminant d(K) .

(i) If d(K) 6= −23,−31 then Ex(K) = ∅ .

(ii) If d(K) = −23 , then

Ex(K) = {±θ1, θ
2
1,±(1− θ2

1), 1± θ1,−θ1 ± θ2
1, 2− θ2

1, 1 + θ1 ± θ2
1}.

(iii) If d = −31 , then

Ex(K) = {θ2, 1− θ2,−θ2
2, 1 + θ2 − θ2

2,−θ2 + θ2
2, 1 + θ2

2}.
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We need also a complete list of non-trivial unit solutions 6= 1 of the equ-
ation (3) in the considered cubic fields. Note that if we have such a solution, then
dividing both sides of the equation consecutively by u , v and w we obtain again
its solutions. Since all units in the considered fields are of the form ±εk , where
ε > 1 is the fundamental unit and k is a rational integer, therefore its suffices to
find all solutions u, v, w 6= 1 of (3) satisfying u = ±εa , v = ±εb , w = ±εc with
a, b, c > 0. Such solutions will be called fundamental .

Lemma 1. Let K be a real cubic field of discriminant d(K) < 0 .

(i) ([9]) If d(K) 6∈ {−23,−31,−44,−59} then the equation (3) has no
non-trivial solutions in units 6= 1 of K .

(ii) If d(K) = −23 , then all fundamental solutions of (3) are given by

1 = θ10
1 − θ9

1 − θ4
1 = θ8

1 − θ7
1 − θ1

1 = θ8
1 − θ6

1 − θ4
1 = θ6

1 − θ4
1 − θ1

1,

1 = θ5
1 − θ2

1 − θ1
1 = θ7

1 − θ4
1 − θ4

1 = −θ4
1 + θ3

1 + θ2
1 = −θ6

1 + θ5
1 + θ3

1,

1 = −θ9
1 + θ8

1 + θ5
1 = −θ7

1 + θ5
1 + θ5

1.

(iii) If d(K) = −31 , then all fundamental solutions of (3) are given by

1 = θ7
2 +(−θ5

2)+(−θ5
2) = θ6

2 +(−θ5
2)+(−θ2

2) = (−θ5
2)+θ4

2 +θ3
2 = θ4

2 +(−θ2
2)+(−θ2)

(iv) If d(K) = −44 , then all fundamental solutions of (3) are given by

1 = θ3
3 + (−θ2

3) + (−θ3) = −θ4
3 + θ3

3 + θ3
3.

(v) If d(K) = −59 , then the only fundamental solution of (3) is given by

1 = θ3
4 + (−θ2

4) + (−θ2
4).

Proof. Let u be a fixed real number larger than 1, and let G be the group
consisting of all elements of the form ±uk with rational integral k .

We outline now a very simple elementary approach to find all solutions of
the equation x+ y + z = 1 with x, y, z being elements of G not equal to 1. This
equation can be written in the form

η1u
a + η2u

b + η3u
c = 1, (4)

with a, b, c ∈ Z and ηi = ±1. We may assume that the inequalities a > b > c
hold.

Consider first the case c > 1. It is clear that η1 = η2 = η3 is impossible, and
moreover the cases

[η1, η2, η3] ∈ {[1, 1,−1], [1,−1, 1], [−1, 1,−1], [−1,−1, 1]}
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are also excluded, because in these cases we would have either ua + ub = 1 + uc 6
1+ub or ua+uc = 1+ub 6 1+ua or ub = 1+ua+uc > ub , or uc = 1+ua+ub > uc ,
respectively. Hence we have either

ub + uc = 1 + ua, (5)

or
ua = 1 + ub + uc. (6)

The equation (5) leads to

ua−c − ub−c = 1− u−c < 1,

and the equation (6) implies

ua−c − ub−c = 1 + u−c < 2.

Our assumptions imply that a > b , and in view of limn→∞(un+1−un) =∞
this shows that in both cases there are only finitely many possibilities for a − c
and b− c . It follows that c lies in a finite set, and as ua − ub = uc ± 1, it follows
that there are only finitely many possibilities for a, b and c .

If c = 0, then our assumptions imply η3 = −1, so our equation becomes

η1u
a ± η2u

b = 2,

and the only possibility turns out to be

ua − ub = 2,

which can hold only for finitely many values of a
It is clear that for any fixed value of u the obtained bounds for a, b, c are in

all cases effective, and if u is not too close to 1, then these bounds are rather small,
so a simple computer search leads to all fundamental solutions of the equation (4).
In our case we have

1.3 < θi < 2.3,

and this leads to 0 6 b− c 6 a− c 6 7, which makes the computation trivial, even
by hand.

Corollary. Let K be a cubic field with d(K) < 0 and let ZK be its ring of
integers.

(i) If d(K) 6∈ {−23,−31,−44,−59} , then the length of any polynomial cycle
in ZK equals 1 or 2 .

(ii) If d ∈ {−44,−59} then every cycle length in ZK is a power of 2 .

Proof. Follows from Proposition 1 (iii), Proposition 2 (ii), and the last Lemma.
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4. Proof of the theorem

If d(K) 6∈ X = {−23,−31,−44,−59} , then the assertion results from the Co-
rollary to Lemma 1, hence we may assume that d(K) lies in X . Observe now
that Proposition 2 (ii) implies that if there is a non-trivial solution of (3) with
u = v ∈ ZK , then there exists a 4-cycle. Using Lemma 1 we obtain thus the
existence of 4-cycles in every of the four fields considered.

Let now d = −23. In this case there is an ideal P of norm 5, hence ZK ⊂ Z5 ,
and using Proposition 2 (iv) we obtain that the possible cycle lengths are contained
in {1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20} . Moreover, there is an unramified prime ideal of
norm 7, hence, using again that Proposition, we eliminate 16 and 20 from this
list. Since the polynomial

(2θ2
1 − 3)X4 + (7− 5θ1)X3 − (7θ2

1 − 9θ1 + 1)X2 + (5θ2
1 − 5θ1 − 4)X + 1

realizes the 5-cycle
(0, 1, θ1,−θ1, θ

2
1,−θ1 + θ2

1, 0),

hence it remains to consider possible cycles of length 6, 8 and 10.
Proposition 2 (i) and Proposition 4 (ii) were used to make a list of all normali-

zed 3-cycles. It turned out that the leading coefficients of the relevant interpolation
polynomials were either units, or associated to the number 2 + θ1 . In view of Pro-
position 1 (v) every 3-cycle must be equivalent to a cycle of the form (0, a, ua, 0),
u ∈ Ex(ZK), and u ∈ {1, 2 + θ1} . Now a simple computer check using PARI, and
based on Proposition 2(iii) showed that there are no 6-cycles.

If (0, 1, x2, . . . , x7, 0) were an 8-cycle, then the elements x3, x5, x7 would be
units, and therefore, according to Proposition 1 (iv), the prime ideal P7 of norm 7
would divide one of the elements x2, x4, x6 . However (0, x2, x4, x6, 0) is a 4-cycle,
and a simple computer search, based on a list of all 4-cycles prepared with the
help of Corollary to Proposition 2, shows that no element of a 4-cycle is contained
in P7 .

To deal with cycles of length 10 we first made, with PARI, a list of all
normalized 5-cycles, using the fact that they must be of the form (0, 1, a, b, c),
where a, b, c are exceptional units. It turned out that there are 118 such cycles,
and none of their leading coefficient is divisible by a non-unit cube, so every 5-cycle
differs from a normalized cycle by a unit factor. If now (0, 1, x2, . . . , x9, 0) is a
normalized 10-cycle, then by Proposition 1 (i) the elements x3, x7 and x9 are
units, and since (0, x2, x4, x6, x8, 0) is a 5-cycle, the elements x2m are units for
m = 1, 2, 3. It follows moreover form Proposition 1 (i) that x2 − 1 is a unit,
hence x2 is an exceptional unit, and repeating this argument we see that for
j = 2, 3, 4, 7, 8, 9 the element xj is an exceptional unit. Therefore the only non-zero
non-unit element of our cycle must be x5 , and by Proposition 1 (iv) it must be
contained in ideals of norm 5 and 7. By Proposition 1 (i) the numbers x7−x2 and
x5 are associated, hence |N(x7 − x2)| must be divisible by 35. This is, however,
not possible, since the maximal norm of an ideal generated by the difference of
two exceptional units equals 11. Therefore there are no 10-cycles in ZK .
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Now let d = −31. Since there is an unramified prime ideal P of norm 3,
thus ZK ⊂ Z3 , and we obtain that the set of possible cycle-lengths is contained
in {1, 2, 3, 4, 6, 9} . Since the polynomial

−(1 + 4θ2
2)X5 + (16θ2

2 + 9θ2 + 8)X4 − (33θ2
2 + 17θ2 + 22)X3

+(31θ2
2 + 15θ2 + 20)X2 − (10θ2

2 − 6θ2 − 6)X + 1

realizes the 6-cycle (0, 1, θ2, θ
2
2 − θ2 + 1, θ2

2, θ
2
2 − θ2, 0), it remains to show that

there are no 9-cycles in this case.
Assume now that (0, 1, x2, . . . , x8, 0) is a 9-cycle. By Proposition 1 (i) x2, x4,

x5, x7 and x8 are units, and x2, x5 are exceptional units. According to Proposi-
tion 2 (i) every normalized 3-cycle has the form (0, 1, ε, 0), where ε is an excep-
tional unit. Constructing the Lagrange interpolation polynomials realizing these
cycles one sees that their leading coefficients are either units, or are associated
with 1 + θ2 , therefore (by Propositions 1 (v) and 2 (i)) every 3-cycle containing 0
has the form (0, ua, uaε, 0), where u is a unit, u ∈ {1, 1 + θ2} and ε is an excep-
tional unit. Since (0, x3, x6, 0) is a 3-cycle we see that x3, x6 are either units, or
are associated with 1 + θ2 . The norm of 1 + θ2 being equal to 3 we see that none
of the elements of our cycle can be divisible by the ideal I2 generated by 2, and
since I2 is of norm 8 < 9, this contradicts Proposition 1 (iv).

In the case d = −44 we have to exclude the existence of an 8-cycle. Assume
thus that (0, 1, x2, . . . , x7, 0) is such a cycle. Then (0, x2, x4, x6, 0) is a 4-cycle.
Using Lemma 1 (iv) and Proposition 2 (ii) we obtain that every normalized 4-cycle
is of the form (0, 1, α, β, 0), where

(a, b) ∈{(1− θ3
3,−θ3), (1− θ3,−θ−1

3 ), (1− θ−3
3 , θ3), (1 + θ3,−θ−1

3 ),

(1 + θ−1
3 ,−θ3), (1− θ−1

3 , θ−3
3 ), (1− θ3

3, θ
3
3), (1− θ−1

3 , θ−1
3 )}.

Note that in all cases we have N(a) = ±2 and b is a unit. Since the only principal
ideal of norm 2 is generated by 1 − θ3 it follows that every element a has the
form u(1− θ3) with some unit u .

Computing the cubic polynomials realizing these cycles one finds that the
norms of their leading coefficients lie in the set {−4, 8, 47} . Proposition 1 (v)
implies that x2

2 divides one of these coefficients. Since the prime 47 splits in
our field it follows that x2 is either a unit, or is of norm ±2, hence has the
form ε(1 − θ3) with a unit ε . The first case is impossible, because x2 − 1 is a
unit, due to Proposition 1 (i), so x2 would be an exceptional unit, contradicting
Proposition 3 (i). Thus x2 = ε(1−θ3), and since N(x4/x2) = ±2, so N(x4) = ±4.
Now Proposition 1 (i) shows that x3, x5, x7 are units, and since there is a prime
ideal P of norm 7 we deduce by Proposition 1(iv) that x6 is divisible by P . This
is however not possible, as N(x6/x2) = 2. Therefore there is no 8-cycle in the
case d = −44.

If d = −59, then Proposition 3 implies ZK ⊂ Z2 , hence by [10] the possible
cycle-lengths lie in {1, 2, 4} .
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