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Abstract: Let p be a sufficiently large prime and A be a sum-free subset of Z/pZ ; improving
on a previous result of V. F. Lev, we show that if |A| = card(A) > 0.324p , then A is contained
in a dilation of the interval [|A| , p− |A|] (mod. p) .
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1. Introduction

A subset A of an additive monoid M is said to be sum-free if the equation a+b = c
has no solution with elements a, b and c in A . We are considering the case when
M = Z/pZ for a prime number p . It follows easily from the Cauchy-Davenport
Theorem (Lemma 1) that the cardinality of a sum-free subset A of Z/pZ is at
most (p + 1)/3. Some time ago, Vsevolod F. Lev raised the question of studying
the structure of a sum-free subset A of Z/pZ with cardinality less than p/3. In [5],
V. Lev gave the structure of such a sum-free set with cardinality larger than 0.33p .

In this paper, we extend Lev’s result, showing the following.

Theorem 1. Let p be sufficiently large a prime and A a sum-free subset of
Z/pZ ; if |A| = card(A) > 0.324p , then A is contained in a dilation of the interval
[|A| , p− |A|] (mod. p) .

Our main ingredient (Lemma 3) is a combinatorial study of the so-called
rectified part of A , showing that it is included in an interval with many of its
elements close to its end-points, which in turn leads to showing that many elements
from Z/pZ cannot be in A . Equipped with this lemma, we show that if A contains
at least one element from the interval [−p/4 , p/4] (mod. p), then there are so
many places which must stay free from elements from A , that it is impossible to
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find room for the rectified part of A . Thus, the set A is included in the interval
[p/4 , 3p/4] (mod. p); at the very end of the paper, we easily deduce Theorem 1
from this fact.

This argument, when based on the classical rectification argument introduced
by the second named author some forty years ago, would lead to the value 0.326p
in Theorem 1. Fortunately, our argument can be combined with the improved
version of the rectification argument introduced by V. Lev in [4], improvement
which plays a crucial rôle in [5].

We take this opportunity to thank V. Lev for having communicated to us
the preprints of his two above-mentioned papers [4] and [5], and for his numerous
and detailed comments on a first draft of this paper.

2. Notation

It will be convenient to speak about “intervals” in Z/pZ and it will also be conve-
nient to avoid the natural normalizing factor p when describing the size of subsets
of Z/pZ and more generally to simplify the presentation of numerical considera-
tions concerning subsets of Z/pZ . For those reasons, we introduce the following
definitions and conventions.

Let us denote by σ the canonical map from R onto T = R/Z ; we keep the
usual convention not to mention σ and write for example 0.5, or −0.5 as well, for
the non zero solution of x+ x = 0 in T .

An interval in T is the image by σ of an interval of R . For given α and β
in T , there are exactly two closed intervals with border points α and β and their
only common points are α and β ; when we wish to describe a closed interval in
T the border points of which are α and β , we shall write 〈α , (γ) , β〉 , where γ is
a point from the interval under consideration, which is different from α and β . In
practice, when there is no ambiguity about the interval we consider, we shall not
mention a point γ . The size of an interval is its (normalized Haar) measure in T .

If two rational integers a and b are congruent modulo p , we have σ(a/p) =
σ(b/p), which permits to define a map τ from (Z/pZ,+) to (T,+), which is easily
seen to be an injective group homomorphism. We say that a subset of Z/pZ is
an interval if it is the inverse image, by τ−1 , of an interval in T . For a set A in
Z/pZ , we shall define its size by size(A) = card(A)/p .

The notions of size we have introduced on Z/pZ and T are different since
one is discrete and the other continuous; however, in the case of intervals they
are closely connected: let I be an interval in T and I = τ−1(I); we have the
inequalities size(I ) − 1/p 6 size(I) 6 size(I ) + 1/p . In practice, since we are
considering large p , we are not going to write explicitly the terms O(1/p) but use
strict inequalities between the sizes of the sets under consideration.

For a real number u , we use the traditional notation e(u) = exp(2πiu),
ep(u) = exp( 2πiu

p ) and ‖u‖ = minz∈Z |u − z| ; when b ∈ Z/pZ , the expression

ep(b) (resp. ‖b/p‖) denotes the common value of all the ep(b̃)’s (resp. ‖b̃/p‖),
where b̃ is any integer representing the class b .
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Finally, for subsets E and F of an abelian group G (in practice Z/pZ or T),
we let E + F = {e + f : e ∈ E, f ∈ F} , we denote by Esym the set E ∪ (−E), and
we say that E is symmetric if E = Esym.

3. Preliminary lemmas

Our first lemma is fairly classical (cf. [1]).

Lemma 1 (Cauchy-Davenport Theorem). Let p be a prime number
and E and F two non empty subsets of Z/pZ ; then, one has Card(E + F) >
min(p,Card(E) + Card(F)− 1) .

The following observation, discussed by V. F. Lev and the second named
author, was presented in [5] as Lemma 2.

Lemma 2. Let B , m and L be natural integers with 1 < L 6 2B and B be a
set of B integers included in [m, m+ L− 1] . Then, for any integer k > 1 one has

((L− B)/k , B/k) ⊂ B−B.

The next lemma is a formulation of the key innovation of the present paper.
It says that if an interval L of Z of length L contains more than L/2 elements
from a sum-free set A , and if a is an element from A of size between L/4 and
L/2, then many elements from A are concentrated around the end-points of L ,
and this in turn implies that A cannot contain elements which are in absolute
value close to L . In the present paper, we shall only use the case when k = 1.
We state and prove this lemma for natural integers; one readily checks that it can
be extended to the case of residues modulo p , when L < p , if one interprets the
interval [m, m+ L− 1] as being 〈m, (m+ bL/2c) , m+ L− 1〉 .
Lemma 3. Let B , m and L be natural integers with 1 < L < 2B ; let A be a
sum-free set and B be a subset of A ∩ [m, m+ L− 1] with cardinality B . Then,
for any integer k > 1 and any element a ∈ A with L/4 < ka < L/2 , one has

(i) the intervals [m, m + L − 2ka − 1] and [m + 2ka , m + L − 1] contain
each at least B− ka elements from B ,

(ii) the set [2ka− (2B− L) + 1, 2ka+ (2B− L)− 1] ∩ (A ∪ (−A)) is empty.

Proof. Since A is sum-free, for any element a from A , any interval [n , n+2a−1]
contains at most a elements from A : otherwise, by the pigeon-hole principle, we
could find an element c in [n , n + a − 1] ∩ A such that c + a is also in A ,
a contradiction. Since 0 < 2ka < L , each of the intervals [m, m + 2ka − 1]
and [m + L − 2ka , m + L − 1], which is the union of k intervals of the shape
[n , n+2a−1], contains at most ka elements of A (and so from B); since 2ka 6 L
and ka < L/2 < B , then there are at least B− ka elements from B in each of the
intervals [m, m+ L− 2ka− 1] and [m+ 2ka , m+ L− 1]. This proves (i).

Let us assume that the interval [2ka − (2B − L) + 1, 2ka + (2B − L) − 1]
contains an element from A ∪ (−A), say |x| , where x ∈ A .
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If |x| > 2ka , we consider all the pairs (m + h,m + h + |x|), for 0 6 h
6 L− |x| − 1; they have the following properties:

— at least one of the element in each pair does not belong to A ,
— all the elements from those pairs belong to [m, m + L − 2ka − 1] ∪

[m+ 2ka , m+ L− 1],
— the number of those pairs is L−|x| > L−(2ka+(2B−L)) = 2(L−B−ka).

This implies that strictly more than 2(L − B − ka) elements from [m, m + L −
2ka − 1] ∪ [m + 2ka , m + L − 1] do not belong to A , and so strictly less than
2(B− ka) belong to B , which contradicts (i).

Similarly, if |x| < 2ka , we get a contradiction by the same reasoning, con-
sidering the pairs (m + h,m + h + |x|) for 2ka − |x| 6 h 6 L − 2ka − 1. This
proves (ii).

The next lemma is due to V. Lev [4]. When the cardinal of A is large
compared to p , which is our case, it improves on a result of the second named
author (cf. [3] for this lemma and some uses of it for inverse additive questions).

Lemma 4. Let D be a subset of Z/pZ . There exists an interval I of Z/pZ with
size at most 1/2 such that

size(D ∩ I) > size(D)
2

+
arcsin(|∑d∈D ep(d)| sin(πp ))

2π
.

For the sake of further reference, we state a last combinatorial lemma.

Lemma 5. Let K , H and m be positive integers such that 2K 6 H + 1 , and K

be a set of K integers included in [m, m+ H− 1] . There exists a pair of elements
k1 and k2 in K such that

K− 1 6 k2 − k1 6 H− K + 1. (1)

Proof. We first prove the lemma under the extra assumption that m = 0 and
m belongs to K . If some element k from K lies in [K − 1 , H − K] , the lemma
is proved with k1 = 0 and k2 = k . We may assume that the K elements of K

belong to [0 , K− 2]∪ [H−K + 1 , H− 1]. Since all the K elements from K belong
to one term of the K − 1 pairs (n , n + H − K + 1) for 0 6 n 6 K − 2, there
exists an n0 for which both terms from (n0 , n0 + H − K + 1) belong to K ; the
lemma is also proved in this case by taking k1 = n0 and k2 = n0 +H−K+ 1. The
general case is deduced from the special one we have just proved, by considering
K′ = {k −min`∈K ` : k ∈ K} .

4. Partial rectification

We show the existence of a subset B of (some dilation of) A which is included in
half a circle, with

B > 0.2431 (2)

and which is included in an interval L with size

L < 0.6760−B < 0.4329 , (3)
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the end points of which belong to B . Moreover, in the sequel, B is chosen as a
maximal subset of (some dilation of) A included in half a circle, and among those,
it is chosen so that L is minimal.

A first consequence of the extremal properties of B and L is that the
end-points of L belong to B and thus to A .

A second consequence of the maximal choice for B is the following

If I is an interval of Z/pZ of size 0.5 then 0.324−B 6 size (I ∩A) 6 B . (4)

The upper bound comes from the maximal choice for B . Let J be the comple-
mentary interval of I in Z/pZ . We have size(J) = 0.5 and, again by the maximal
choice for B , we have size(J ∩A) 6 B , so that size(I ∩A) > A−B > 0.324−B ,
which proves the lower bound in (4).

Due to Lemma 4, our first task is to show that for some non zero t , the sum
|∑a∈A ep(t.a)| is large. Let us assume on the contrary that for all non zero t we
have

|S(t)| 6 0.1552899p , where S(t) =
∑

a∈A

ep(t.a). (5)

Since A is sum-free, the equation a − b = c has no solution in A and thus we
have

∑p−1
t=0 |S(t)|2S(t) = 0, whence

|A|3 6
p−1∑
t=1

|S(t)|3 6 0.1552899p
p−1∑
t=1

|S(t)|2 6 0.1552899p|A|(p− |A|),

leading to a contradiction since card A > 0.324p. Thus, there exists a non zero
t for which relation (5) is not satisfied; by Lemma 4, there exists a subset C of
t ·A := {ta/a ∈ A} with cardinality larger than 0.2431p . Since t ·A is sum-free,
we have card(C + C) + card t ·A 6 p , whence

card(C + C) 6 0.676p < 3C− 3. (6)

We can find a set C′ = {c′1, . . . , c′k} of integral representatives of C with
c′k−c′1 < p/2. Since C is included in half a circle, we have card(C+C) = card(C′+
C′). If the greatest common divisor of the mutual distances between the (c′k)’s
is 1, then the so-called “Freiman’s 3k-3 theorem” (cf. [6], Theorem 1.15) tells us
that card(C′ + C′) > c′k − c′1 + card C′ ; by the inequalities we have on card C′ and
card(C′+C′), we get c′k−c′1 6 card(C′+C′)−card C′ 6 0.676p−card C < 0.4329p .
If the common divisor of the mutual distances between the (c′k)’s is not 1, it has to
be 2 since card C′ > p/6. In this case, we consider the integer t′ in [1 , p−1] such
that 2t′ ≡ t(mod p); it is then possible to choose a set of integers C′′ = {c′′1 , . . . , c′′k}
which represents the set {x ∈ Z/pZ / 2x ∈ C} and is such that c′′k − c′′1 < p/2 and
the greatest common divisor of the mutual distances between the (c′′k)’s is 1. As
above, we show that c′′k − c′′1 < 0.676p− card C < 0.4329p . In both cases, we have
shown that there exists a non zero u (which is t in the first case and t′ in the



56 Jean-Marc Deshouillers & Gregory A. Freiman

second one) such that the set u ·A has a subset with more than 0.2431p elements
which is included in an interval of size less than 0.676− size C < 0.4329. Since the
statement of Theorem 1 is invariant under a dilation of A , we shall assume in the
sequel, without loss of generality, that u = 1.

5. Zones of Z/pZZ/pZZ/pZ free from elements from AAA

It will be convenient to identify A and its image τ(A) in T . We assume, thro-
ughout this section, that A contains at least one element from the interval I+ :=
〈−0.25 , (0) , 0.25〉 . We first produce some bounds for B and L and show that A

contains a certain amount of well located elements in I+ ; we then use Lemma 3
and give further zones which are forbidden to elements from A .

5.1. Due to the bounds (3) and (2), we have 5L < 9B and thus the intervals
〈(L− B)/`,B/`〉 and 〈(L− B)/(` + 1), B/(` + 1)〉 have a non trivial overlap for
` > 4. By Lemma 2, and the trivial remark that 0 does not belong to A , the set

(〈0 , B/4〉 ∪ 〈(L−B)/3 , B/3〉 ∪ 〈(L−B)/2 , B/2〉 ∪ 〈(L−B) , B〉)sym (7)

contains no element from A .

5.2. Let us now show that we have

B 6 0.2571. (8)

Indeed, if we have B > 0.2571, then, by (3) we have L < 0.4189 and thus the
union 〈0 , B/4〉 ∪ 〈(L−B)/3 , B/3〉 ∪ 〈(L−B)/2 , B/2〉 is the interval 〈0 , B/2〉 ;
since B > 0.25, all the elements from A∩ I+ must be in (〈B/2 , L−B〉)sym . But
the size of this non empty set is 2((L−B)−B/2) = 2(L−B)−B < 0.3236−B ;
however, by (4), the size of the set A ∩ I+ must be at least 0.324−B , leading to
a contradiction.

5.3. By a similar argument, we give a lower bound for L , namely

L > 0.3982. (9)

Let us assume that L 6 0.3982; this and (2) imply (L − B)/2 6 0.08 < B/3.
Thus, all the elements in A ∩ I+ are in (〈B/2 , (L − B)〉 ∪ 〈B , 0.25〉)sym when
B 6 0.25, or in 〈B/2 , (L−B)〉sym otherwise; in either case the size of A ∩ I+ is
at most 2(0.25− 0.2431 + (L−B)−B/2) = 0.0138 + 2L− 3B , a quantity which
is strictly less than 0.324−B , the minimal size for A ∩ I+ (cf. (4)).

5.4. We now prove

size(〈B/2 , L−B〉sym ∩A) > 0.0343, (10)

by considering two cases, according as B is smaller or larger than 0.25.
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In the first case, the size of the elements of A∩I+ which are not in 〈B/2 , L−B〉sym
is at most 2((L − B)/3 − B/4 + (L − B)/2 − B/3 + 0.25 − B); by keeping one
B as such and using the bounds (2) and (3) for L and the other B ’s, our last
expression is at most 0.2897 − B < A − B − 0.0343, which, thanks to (4) leads
to (10).

In the second case, we have B > 0.25; the first inequality in (3) then leads to
L < 0.426; moreover, we have B/4 > (L−B)/3; thus, in this case, the size of the
elements of A ∩ I+ which are not in 〈B/2 , L − B〉sym is at most max(0, 2((L −
B)/2 − B/3)) = max(0, L − 2B/3 − B < 0.324 − B − 0.0343), which leads again
to the validity of (10).

5.5. From (10), we deduce that, up to symmetry, the size of A ∩ 〈B/2 , L − B〉
is larger than 0.0171. If (L − B) − B/2 < 0.0514, we immediately obtain the
existence of two elements a1 and a2 in A ∩ 〈B/2 , L−B〉 such that

0.0171 < size(〈a1 , a2〉) < 0.0514. (11)

Let us now assume that (L − B) − B/2 > 0.0514; we can select a subset K

of A ∩ 〈B/2 , L − B〉 with size between 0.0171 and 0.01711, and by Lemma 5
(which was stated for integers but can readily be extended to short intervals in
Z/pZ), we can find two elements a1 and a2 in A ∩ 〈B/2 , L − B〉 such that
0.0171 < size(〈a1 , a2〉) < (L − B) − B/2 − 0.0171. But, by (2) and (3) we have
(L−B)−B/2 < 0.06825; this implies that the elements a1 and a2 satisfy (11).

By Lemma 3, if an element a in A is in 〈B/2 , L− B〉 , then the set 〈2a−
(2B − L) , 2a + (2B − L)〉sym is free from elements from A . Since 2 x 0.0514 <
0.1066 6 2 (2B − L), the two intervals 〈2a1 − (2B − L) , 2a1 + (2B − L)〉 and
〈2a2−(2B−L) , 2a2+(2B−L)〉 overlap; thus, the set (〈2a1−(2B−L) , 2a2+(2B−
L)〉)sym contains no element from A . Moreover, relation (11) implies that the size
of 〈2a1 − (2B − L) , 2a2 + (2B − L)〉 is at least 2 x 0.0171 + 2(2B − L) > 0.1408.
Since a1 6 (L − B) − 0.0171, we have 2a1 − (2B − L) 6 0.2921, and since
a2 > B/2+0.0171, we have 2a2+(2B−L)−0.1408 > 3B/2−L−0.1408+0.0342 >
0.1898. Letting u = max(2a1 − (2B − L) , 0.1898), we have the following

for some u with 0.1898 6 u 6 0.2921,

the set 〈u , u+ 0.1408〉sym contains no element from A.
(12)

6. End of the proof of Theorem 1

We begin by showing in the next three subsections, that our assumption that A

contains at least one element from the interval I+ , defined as 〈−0.25 , (0) , 0.25〉 ,
leads to a contradiction. We show indeed that there is no room in Z/pZ for our
interval L ; crucial facts concerning L is that it is not too small (by (9)), that its
end-points are in A (by construction) and that it contains many elements of A

around its ends (by Lemma 3). Theorem 1 is finally proved in the last subsection.
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6.1. By the Cauchy-Davenport theorem, we have card(A + (−A)) > 2 card A− 1
and so we have size{Z/pZ\(A + (−A))} < 0.3521. Moreover, the set Z/pZ\(A +
(−A)) is symmetric and contains A and thus it contains B as well as Bsym ;
since Bsym is the disjoint union of B∩ (−B) and (B\(−B))sym , we have size(B∩
(−B)) > 0.1341. The interval L in Z/pZ has a size which is at most 0.4329
(< 0.5) and contains at least 0.1341p symmetric elements: thus, either it contains
〈−0.067 , (0) , 0.067〉 or 〈0.433 , (0.5) , 0.567〉 .

Let us exclude the first case. Since L > 0.3982 (cf. (9)), L contains 〈−0.067,
0.25〉 , 〈−0.14 , 0.14〉 or 〈−0.25 , 0.067〉 . But, by (7), (2) and (3), we see that the set
(〈0 , 0.0607〉 ∪ 〈0.0633 , 0.0810〉 ∪ 〈0.0949 , 0.1215〉 ∪ 〈0.1898 , 0.2431〉)sym contains
no element from A . This readily implies that size(L\B) > size(L\A) > 0.2 >
0.4329− 0.2431 = L−B , a contradiction. We thus have

〈0.433 , (0.5) , 0.567〉 ⊂ L. (13)

6.2. Let us write L = 〈`1 , (0.5) , `2〉 with 0 < `1 < 0.5 < `2 < 1. Recalling
(12), we see that for no uwith 0.1898 6 u 6 0.2921 the interval L can contain all
the symmetric set 〈u , u+ 0.1408〉sym , since otherwise it would contain too many
points which are not in A ; but on the other hand, for no u the set L can avoid
it completely, since otherwise L should be included in 〈0.33 , 0.67〉 , which is too
short in view of (9). But the interval L has, by its definition, its end points in A ;
this implies that for some uwith 0.1898 6 u 6 0.2921, L contains one, and only
one, of the intervals 〈u , u+0.1408〉 or −〈u , u+0.1408〉 . Considering −L instead
of L if necessary, we may assume without loss of generality that `1 6 1− `2 and
that for some uwith 0.1898 6 u 6 0.2921, L contains an interval 〈u , u+ 0.1408〉
free of elements from A .

6.3. We now know that `1 has to be less than u . Let us first exclude the case
when B 6 `1 6 u , which implies u > B . Since the size of A ∩ 〈B/2 , L − B〉
is larger than 0.0174 (cf. the beginning of 5.5), there exists an element a of
A in 〈B/2 + 0.0174 , L − B〉 and a fortiori in 〈0.1386 , 0.1898〉 . This implies
that L − 2a < 0.4329 − 2x0.1386 6 0.1557. By the first part of Lemma 3, the
size of A ∩ 〈`1 , `1 + L − 2a〉 is at least B − a > 0.2431 − 0.1898 = 0.0533. If
`1 +L− 2a < u+ 0.1408, then A∩ 〈`1 , `1 +L− 2a〉 is included in 〈B , u〉 and its
size is at most 0.2921−0.2431 = 0.0490, a contradiction. If `1+L−2a > u+0.1408,
then the “forbidden” interval 〈u , u+ 0.1408〉 is included in 〈`1 , `1 +L− 2a〉 and
the size of A∩〈`1 , `1 +L−2a〉 is at most 0.1557−0.1408 = 0.0149, leading again
to a contradiction.

We now know that `1 is less than B and thus less than L − B . By (13)
and (3), we have `1 > 0.567 − L > 0.134, so that `1 is an element from A ∩
〈B/2 , L−B〉 . We may use Lemma 3, taking `1 itself as an element a ; the interval
〈`1 , L− `1〉 must contain at least B− `1 elements from A . Since L− `1 > L−B ,
the interval 〈`1 , L− `1〉 contains the “forbidden” interval 〈L−B , B〉 ; because of
the other “forbidden” interval 〈u , u+ 0.1408〉 , the interval 〈`1 , L− `1〉 contains
at most u − B + (L − B) − `1 elements from A ; but we have, using (2) and (3):
u−B+ (L−B)− `1 < 0.2921 +L− 3B+ (B− `1) < B− `1 , a final contradiction.
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6.4. We have proved that A contains no element from I+ . Let us denote by L the
smallest interval that contains A , this notation being consistent with our previous
use of L . The size of L is obviously at most 1/2 and thus L − A is less than
0.25. Arguing as in the beginning of Section 5, one shows that no element from
(〈L − A , A〉)sym is in A ; since A contains no element from 〈−0.25 , (0) , 0, 25〉 ,
we have proved that A is included in 〈A , (0, 5) , 1−A〉 , which is Theorem 1.
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A2X, UMR 5465, Université Bordeaux 1 et CNRS, 33405 TALENCE Cedex (France);
Gregory A. Freiman, Tel Aviv University, Usha 11, Ramat Aviv, TEL AVIV (Israel)

E-mail: jean-marc.deshouillers@math.u-bordeaux1.fr; grisha@post.tau.ac.il
Received: 1 March 2006


