ON SUM-FREE SETS MODULO p

Jean-Marc Deshouillers ${ }^{1}$ \& Gregory A. Freiman ${ }^{2}$
To Professor Eduard Wirsing, with respect and friendship, for his 75th birthday

Abstract

Let p be a sufficiently large prime and \mathcal{A} be a sum-free subset of $\mathbb{Z} / p \mathbb{Z}$; improving on a previous result of V. F. Lev, we show that if $|\mathcal{A}|=\operatorname{card}(\mathcal{A})>0.324 p$, then \mathcal{A} is contained in a dilation of the interval $[|\mathcal{A}|, p-|\mathcal{A}|](\bmod . p)$. Keywords: additive combinatorics, sumfree sets.

1. Introduction

A subset \mathcal{A} of an additive monoid \mathcal{M} is said to be sum-free if the equation $a+b=c$ has no solution with elements a, b and c in \mathcal{A}. We are considering the case when $\mathcal{M}=\mathbb{Z} / p \mathbb{Z}$ for a prime number p. It follows easily from the Cauchy-Davenport Theorem (Lemma 1) that the cardinality of a sum-free subset \mathcal{A} of $\mathbb{Z} / p \mathbb{Z}$ is at most $(p+1) / 3$. Some time ago, Vsevolod F. Lev raised the question of studying the structure of a sum-free subset \mathcal{A} of $\mathbb{Z} / p \mathbb{Z}$ with cardinality less than $p / 3$. In [5], V . Lev gave the structure of such a sum-free set with cardinality larger than $0.33 p$.

In this paper, we extend Lev's result, showing the following.
Theorem 1. Let p be sufficiently large a prime and \mathcal{A} a sum-free subset of $\mathbb{Z} / p \mathbb{Z}$; if $|\mathcal{A}|=\operatorname{card}(\mathcal{A})>0.324 p$, then \mathcal{A} is contained in a dilation of the interval $[|\mathcal{A}|, p-|\mathcal{A}|](\bmod . p)$.

Our main ingredient (Lemma 3) is a combinatorial study of the so-called rectified part of \mathcal{A}, showing that it is included in an interval with many of its elements close to its end-points, which in turn leads to showing that many elements from $\mathbb{Z} / p \mathbb{Z}$ cannot be in \mathcal{A}. Equipped with this lemma, we show that if \mathcal{A} contains at least one element from the interval $[-p / 4, p / 4](\bmod . p)$, then there are so many places which must stay free from elements from \mathcal{A}, that it is impossible to

[^0]find room for the rectified part of \mathcal{A}. Thus, the set \mathcal{A} is included in the interval $[p / 4,3 p / 4](\bmod . p)$; at the very end of the paper, we easily deduce Theorem 1 from this fact.

This argument, when based on the classical rectification argument introduced by the second named author some forty years ago, would lead to the value $0.326 p$ in Theorem 1. Fortunately, our argument can be combined with the improved version of the rectification argument introduced by V. Lev in [4], improvement which plays a crucial rôle in [5].

We take this opportunity to thank V. Lev for having communicated to us the preprints of his two above-mentioned papers [4] and [5], and for his numerous and detailed comments on a first draft of this paper.

2. Notation

It will be convenient to speak about "intervals" in $\mathbb{Z} / p \mathbb{Z}$ and it will also be convenient to avoid the natural normalizing factor p when describing the size of subsets of $\mathbb{Z} / p \mathbb{Z}$ and more generally to simplify the presentation of numerical considerations concerning subsets of $\mathbb{Z} / p \mathbb{Z}$. For those reasons, we introduce the following definitions and conventions.

Let us denote by σ the canonical map from \mathbb{R} onto $\mathbb{T}=\mathbb{R} / \mathbb{Z}$; we keep the usual convention not to mention σ and write for example 0.5 , or -0.5 as well, for the non zero solution of $x+x=0$ in \mathbb{T}.

An interval in \mathbb{T} is the image by σ of an interval of \mathbb{R}. For given α and β in \mathbb{T}, there are exactly two closed intervals with border points α and β and their only common points are α and β; when we wish to describe a closed interval in \mathbb{T} the border points of which are α and β, we shall write $\langle\alpha,(\gamma), \beta\rangle$, where γ is a point from the interval under consideration, which is different from α and β. In practice, when there is no ambiguity about the interval we consider, we shall not mention a point γ. The size of an interval is its (normalized Haar) measure in \mathbb{T}.

If two rational integers a and b are congruent modulo p, we have $\sigma(a / p)=$ $\sigma(b / p)$, which permits to define a map τ from $(\mathbb{Z} / p \mathbb{Z},+)$ to $(\mathbb{T},+)$, which is easily seen to be an injective group homomorphism. We say that a subset of $\mathbb{Z} / p \mathbb{Z}$ is an interval if it is the inverse image, by τ^{-1}, of an interval in \mathbb{T}. For a set \mathcal{A} in $\mathbb{Z} / p \mathbb{Z}$, we shall define its size by $\operatorname{size}(\mathcal{A})=\operatorname{card}(\mathcal{A}) / p$.

The notions of size we have introduced on $\mathbb{Z} / p \mathbb{Z}$ and \mathbb{T} are different since one is discrete and the other continuous; however, in the case of intervals they are closely connected: let I be an interval in \mathbb{T} and $\mathcal{J}=\tau^{-1}(I)$; we have the inequalities $\operatorname{size}(I)-1 / p \leqslant \operatorname{size}(\mathcal{J}) \leqslant \operatorname{size}(I)+1 / p$. In practice, since we are considering large p, we are not going to write explicitly the terms $O(1 / p)$ but use strict inequalities between the sizes of the sets under consideration.

For a real number u, we use the traditional notation $e(u)=\exp (2 \pi i u)$, $e_{p}(u)=\exp \left(\frac{2 \pi i u}{p}\right)$ and $\|u\|=\min _{z \in \mathbb{Z}}|u-z|$; when $b \in \mathbb{Z} / p \mathbb{Z}$, the expression $e_{p}(b)$ (resp. $\left.\|b / p\|\right)$ denotes the common value of all the $e_{p}(\tilde{b})$'s (resp. $\|\tilde{b} / p\|$), where \tilde{b} is any integer representing the class b.

Finally, for subsets \mathcal{E} and \mathcal{F} of an abelian group \mathcal{G} (in practice $\mathbb{Z} / p \mathbb{Z}$ or \mathbb{T}), we let $\mathcal{E}+\mathcal{F}=\{e+f: e \in \mathcal{E}, f \in \mathcal{F}\}$, we denote by $\mathcal{E}^{\text {sym }}$ the set $\mathcal{E} \cup(-\mathcal{E})$, and we say that \mathcal{E} is symmetric if $\mathcal{E}=\mathcal{E}^{s y m}$.

3. Preliminary lemmas

Our first lemma is fairly classical (cf. [1]).
Lemma 1 (Cauchy-Davenport Theorem). Let p be a prime number and \mathcal{E} and \mathcal{F} two non empty subsets of $\mathbb{Z} / p \mathbb{Z}$; then, one has $\operatorname{Card}(\mathcal{E}+\mathcal{F}) \geqslant$ $\min (p, \operatorname{Card}(\mathcal{E})+\operatorname{Card}(\mathcal{F})-1)$.

The following observation, discussed by V. F. Lev and the second named author, was presented in [5] as Lemma 2.
Lemma 2. Let B, m and L be natural integers with $1<L \leqslant 2 B$ and \mathcal{B} be a set of B integers included in $[m, m+L-1]$. Then, for any integer $k \geqslant 1$ one has

$$
((L-B) / k, B / k) \subset \mathcal{B}-\mathcal{B} .
$$

The next lemma is a formulation of the key innovation of the present paper. It says that if an interval \mathcal{L} of \mathbb{Z} of length L contains more than $L / 2$ elements from a sum-free set \mathcal{A}, and if a is an element from \mathcal{A} of size between $L / 4$ and $L / 2$, then many elements from \mathcal{A} are concentrated around the end-points of \mathcal{L}, and this in turn implies that \mathcal{A} cannot contain elements which are in absolute value close to L. In the present paper, we shall only use the case when $k=1$. We state and prove this lemma for natural integers; one readily checks that it can be extended to the case of residues modulo p, when $L<p$, if one interprets the interval $[m, m+L-1]$ as being $\langle m,(m+\lfloor L / 2\rfloor), m+L-1\rangle$.

Lemma 3. Let B, m and L be natural integers with $1<L<2 B$; let \mathcal{A} be a sum-free set and \mathcal{B} be a subset of $\mathcal{A} \cap[m, m+L-1]$ with cardinality B. Then, for any integer $k \geqslant 1$ and any element $a \in \mathcal{A}$ with $L / 4<k a<L / 2$, one has
(i) the intervals $[m, m+L-2 k a-1]$ and $[m+2 k a, m+L-1]$ contain each at least $B-k a$ elements from \mathcal{B},
(ii) the set $[2 k a-(2 B-L)+1,2 k a+(2 B-L)-1] \cap(\mathcal{A} \cup(-\mathcal{A}))$ is empty.

Proof. Since \mathcal{A} is sum-free, for any element a from \mathcal{A}, any interval [$n, n+2 a-1$] contains at most a elements from \mathcal{A} : otherwise, by the pigeon-hole principle, we could find an element c in $[n, n+a-1] \cap \mathcal{A}$ such that $c+a$ is also in \mathcal{A}, a contradiction. Since $0<2 k a<L$, each of the intervals $[m, m+2 k a-1]$ and $[m+L-2 k a, m+L-1]$, which is the union of k intervals of the shape $[n, n+2 a-1]$, contains at most $k a$ elements of \mathcal{A} (and so from \mathcal{B}); since $2 k a \leqslant L$ and $k a<L / 2<B$, then there are at least $B-k a$ elements from \mathcal{B} in each of the intervals $[m, m+L-2 k a-1]$ and $[m+2 k a, m+L-1]$. This proves (i).

Let us assume that the interval $[2 k a-(2 B-L)+1,2 k a+(2 B-L)-1]$ contains an element from $\mathcal{A} \cup(-\mathcal{A})$, say $|x|$, where $x \in \mathcal{A}$.

If $|x| \geqslant 2 k a$, we consider all the pairs $(m+h, m+h+|x|)$, for $0 \leqslant h$ $\leqslant L-|x|-1$; they have the following properties:

- at least one of the element in each pair does not belong to \mathcal{A},
- all the elements from those pairs belong to $[m, m+L-2 k a-1] \cup$ $[m+2 k a, m+L-1]$,
- the number of those pairs is $L-|x|>L-(2 k a+(2 B-L))=2(L-B-k a)$. This implies that strictly more than $2(L-B-k a)$ elements from $[m, m+L-$ $2 k a-1] \cup[m+2 k a, m+L-1]$ do not belong to \mathcal{A}, and so strictly less than $2(B-k a)$ belong to \mathcal{B}, which contradicts (i).

Similarly, if $|x|<2 k a$, we get a contradiction by the same reasoning, considering the pairs $(m+h, m+h+|x|)$ for $2 k a-|x| \leqslant h \leqslant L-2 k a-1$. This proves (ii).

The next lemma is due to V. Lev [4]. When the cardinal of \mathcal{A} is large compared to p, which is our case, it improves on a result of the second named author (cf. [3] for this lemma and some uses of it for inverse additive questions).
Lemma 4. Let \mathcal{D} be a subset of $\mathbb{Z} / p \mathbb{Z}$. There exists an interval \mathcal{J} of $\mathbb{Z} / p \mathbb{Z}$ with size at most $1 / 2$ such that

$$
\operatorname{size}(\mathcal{D} \cap \mathcal{J}) \geqslant \frac{\operatorname{size}(\mathcal{D})}{2}+\frac{\arcsin \left(\left|\sum_{d \in \mathcal{D}} e_{p}(d)\right| \sin \left(\frac{\pi}{p}\right)\right)}{2 \pi}
$$

For the sake of further reference, we state a last combinatorial lemma.
Lemma 5. Let K, H and m be positive integers such that $2 K \leqslant H+1$, and \mathcal{K} be a set of K integers included in $[m, m+H-1]$. There exists a pair of elements k_{1} and k_{2} in \mathcal{K} such that

$$
\begin{equation*}
K-1 \leqslant k_{2}-k_{1} \leqslant H-K+1 . \tag{1}
\end{equation*}
$$

Proof. We first prove the lemma under the extra assumption that $m=0$ and m belongs to \mathcal{K}. If some element k from \mathcal{K} lies in $[K-1, H-K$], the lemma is proved with $k_{1}=0$ and $k_{2}=k$. We may assume that the K elements of \mathcal{K} belong to $[0, K-2] \cup[H-K+1, H-1]$. Since all the K elements from \mathcal{K} belong to one term of the $K-1$ pairs $(n, n+H-K+1)$ for $0 \leqslant n \leqslant K-2$, there exists an n_{0} for which both terms from $\left(n_{0}, n_{0}+H-K+1\right)$ belong to \mathcal{K}; the lemma is also proved in this case by taking $k_{1}=n_{0}$ and $k_{2}=n_{0}+H-K+1$. The general case is deduced from the special one we have just proved, by considering $\mathcal{K}^{\prime}=\left\{k-\min _{\ell \in \mathcal{K} \ell} \ell: k \in \mathcal{K}\right\}$.

4. Partial rectification

We show the existence of a subset \mathcal{B} of (some dilation of) \mathcal{A} which is included in half a circle, with

$$
\begin{equation*}
B>0.2431 \tag{2}
\end{equation*}
$$

and which is included in an interval \mathcal{L} with size

$$
\begin{equation*}
L<0.6760-B<0.4329 \tag{3}
\end{equation*}
$$

the end points of which belong to \mathcal{B}. Moreover, in the sequel, \mathcal{B} is chosen as a maximal subset of (some dilation of) \mathcal{A} included in half a circle, and among those, it is chosen so that L is minimal.

A first consequence of the extremal properties of \mathcal{B} and \mathcal{L} is that the end-points of \mathcal{L} belong to \mathcal{B} and thus to \mathcal{A}.

A second consequence of the maximal choice for \mathcal{B} is the following
If \mathcal{J} is an interval of $\mathbb{Z} / p \mathbb{Z}$ of size 0.5 then $0.324-B \leqslant \operatorname{size}(\mathcal{J} \cap \mathcal{A}) \leqslant B$.
The upper bound comes from the maximal choice for \mathcal{B}. Let \mathcal{J} be the complementary interval of \mathcal{J} in $\mathbb{Z} / p \mathbb{Z}$. We have $\operatorname{size}(\mathcal{J})=0.5$ and, again by the maximal choice for \mathcal{B}, we have $\operatorname{size}(\mathcal{J} \cap \mathcal{A}) \leqslant B$, so that $\operatorname{size}(\mathcal{J} \cap \mathcal{A}) \geqslant A-B \geqslant 0.324-B$, which proves the lower bound in (4).

Due to Lemma 4, our first task is to show that for some non zero t, the sum $\left|\sum_{a \in \mathcal{A}} e_{p}(t . a)\right|$ is large. Let us assume on the contrary that for all non zero t we have

$$
\begin{equation*}
|S(t)| \leqslant 0.1552899 p, \text { where } S(t)=\sum_{a \in \mathcal{A}} e_{p}(t . a) \tag{5}
\end{equation*}
$$

Since \mathcal{A} is sum-free, the equation $a-b=c$ has no solution in \mathcal{A} and thus we have $\sum_{t=0}^{p-1}|S(t)|^{2} S(t)=0$, whence

$$
|\mathcal{A}|^{3} \leqslant \sum_{t=1}^{p-1}|S(t)|^{3} \leqslant 0.1552899 p \sum_{t=1}^{p-1}|S(t)|^{2} \leqslant 0.1552899 p|\mathcal{A}|(p-|\mathcal{A}|)
$$

leading to a contradiction since $\operatorname{card} \mathcal{A}>0.324 p$. Thus, there exists a non zero t for which relation (5) is not satisfied; by Lemma 4, there exists a subset \mathcal{C} of $t \cdot \mathcal{A}:=\{t a / a \in \mathcal{A}\}$ with cardinality larger than $0.2431 p$. Since $t \cdot \mathcal{A}$ is sum-free, we have $\operatorname{card}(\mathcal{C}+\mathcal{C})+\operatorname{card} t \cdot \mathcal{A} \leqslant p$, whence

$$
\begin{equation*}
\operatorname{card}(\mathcal{C}+\mathcal{C}) \leqslant 0.676 p<3 \mathcal{C}-3 \tag{6}
\end{equation*}
$$

We can find a set $\mathcal{C}^{\prime}=\left\{c_{1}^{\prime}, \ldots, c_{k}^{\prime}\right\}$ of integral representatives of \mathcal{C} with $c_{k}^{\prime}-c_{1}^{\prime}<p / 2$. Since \mathcal{C} is included in half a circle, we have $\operatorname{card}(\mathcal{C}+\mathcal{C})=\operatorname{card}\left(\mathcal{C}^{\prime}+\right.$ $\left.\mathcal{C}^{\prime}\right)$. If the greatest common divisor of the mutual distances between the (c_{k}^{\prime})'s is 1 , then the so-called "Freiman's $3 \mathrm{k}-3$ theorem" (cf. [6], Theorem 1.15) tells us that $\operatorname{card}\left(\mathfrak{C}^{\prime}+\mathfrak{C}^{\prime}\right) \geqslant c_{k}^{\prime}-c_{1}^{\prime}+\operatorname{card} \mathfrak{C}^{\prime}$; by the inequalities we have on card \mathcal{C}^{\prime} and $\operatorname{card}\left(\mathfrak{C}^{\prime}+\mathfrak{C}^{\prime}\right)$, we get $c_{k}^{\prime}-c_{1}^{\prime} \leqslant \operatorname{card}\left(\mathfrak{C}^{\prime}+\mathrm{C}^{\prime}\right)-\operatorname{card} \mathfrak{C}^{\prime} \leqslant 0.676 p-\operatorname{card} \mathcal{C}<0.4329 p$. If the common divisor of the mutual distances between the $\left(c_{k}^{\prime}\right)$'s is not 1 , it has to be 2 since card $\mathcal{C}^{\prime}>p / 6$. In this case, we consider the integer t^{\prime} in $[1, p-1]$ such that $2 t^{\prime} \equiv t(\bmod \mathrm{p})$; it is then possible to choose a set of integers $\mathcal{C}^{\prime \prime}=\left\{c_{1}^{\prime \prime}, \ldots, c_{k}^{\prime \prime}\right\}$ which represents the set $\{x \in \mathbb{Z} / p \mathbb{Z} / 2 x \in \mathcal{C}\}$ and is such that $c_{k}^{\prime \prime}-c_{1}^{\prime \prime}<p / 2$ and the greatest common divisor of the mutual distances between the $\left(c_{k}^{\prime \prime}\right)$'s is 1 . As above, we show that $c_{k}^{\prime \prime}-c_{1}^{\prime \prime}<0.676 p-\operatorname{card} \mathcal{C}<0.4329 p$. In both cases, we have shown that there exists a non zero u (which is t in the first case and t^{\prime} in the
second one) such that the set $u \cdot \mathcal{A}$ has a subset with more than $0.2431 p$ elements which is included in an interval of size less than $0.676-\operatorname{size} \mathcal{C}<0.4329$. Since the statement of Theorem 1 is invariant under a dilation of \mathcal{A}, we shall assume in the sequel, without loss of generality, that $u=1$.

5. Zones of $\mathbb{Z} / p \mathbb{Z}$ free from elements from \mathcal{A}

It will be convenient to identify \mathcal{A} and its image $\tau(\mathcal{A})$ in \mathbb{T}. We assume, throughout this section, that \mathcal{A} contains at least one element from the interval $\mathcal{J}^{+}:=$ $\langle-0.25,(0), 0.25\rangle$. We first produce some bounds for B and L and show that \mathcal{A} contains a certain amount of well located elements in \mathfrak{J}^{+}; we then use Lemma 3 and give further zones which are forbidden to elements from \mathcal{A}.
5.1. Due to the bounds (3) and (2), we have $5 L<9 B$ and thus the intervals $\langle(L-B) / \ell, B / \ell\rangle$ and $\langle(L-B) /(\ell+1), B /(\ell+1)\rangle$ have a non trivial overlap for $\ell \geqslant 4$. By Lemma 2, and the trivial remark that 0 does not belong to \mathcal{A}, the set

$$
\begin{equation*}
(\langle 0, B / 4\rangle \cup\langle(L-B) / 3, B / 3\rangle \cup\langle(L-B) / 2, B / 2\rangle \cup\langle(L-B), B\rangle)^{\text {sym }} \tag{7}
\end{equation*}
$$

contains no element from \mathcal{A}.
5.2. Let us now show that we have

$$
\begin{equation*}
B \leqslant 0.2571 \tag{8}
\end{equation*}
$$

Indeed, if we have $B>0.2571$, then, by (3) we have $L<0.4189$ and thus the union $\langle 0, B / 4\rangle \cup\langle(L-B) / 3, B / 3\rangle \cup\langle(L-B) / 2, B / 2\rangle$ is the interval $\langle 0, B / 2\rangle$; since $B>0.25$, all the elements from $\mathcal{A} \cap I^{+}$must be in $(\langle B / 2, L-B\rangle)^{\text {sym }}$. But the size of this non empty set is $2((L-B)-B / 2)=2(L-B)-B<0.3236-B$; however, by (4), the size of the set $\mathcal{A} \cap \mathcal{J}^{+}$must be at least $0.324-B$, leading to a contradiction.
5.3. By a similar argument, we give a lower bound for L, namely

$$
\begin{equation*}
L>0.3982 \tag{9}
\end{equation*}
$$

Let us assume that $L \leqslant 0.3982$; this and (2) imply $(L-B) / 2 \leqslant 0.08<B / 3$. Thus, all the elements in $\mathcal{A} \cap \mathcal{J}^{+}$are in $(\langle B / 2,(L-B)\rangle \cup\langle B, 0.25\rangle)^{\text {sym }}$ when $B \leqslant 0.25$, or in $\langle B / 2,(L-B)\rangle^{\text {sym }}$ otherwise; in either case the size of $\mathcal{A} \cap \mathcal{J}^{+}$is at most $2(0.25-0.2431+(L-B)-B / 2)=0.0138+2 L-3 B$, a quantity which is strictly less than $0.324-B$, the minimal size for $\mathcal{A} \cap \mathcal{J}^{+}$(cf. (4)).
5.4. We now prove

$$
\begin{equation*}
\operatorname{size}\left(\langle B / 2, L-B\rangle^{\text {sym }} \cap \mathcal{A}\right) \geqslant 0.0343 \tag{10}
\end{equation*}
$$

by considering two cases, according as B is smaller or larger than 0.25 .

In the first case, the size of the elements of $\mathcal{A} \cap \mathcal{J}^{+}$which are not in $\langle B / 2, L-B\rangle^{\text {sym }}$ is at most $2((L-B) / 3-B / 4+(L-B) / 2-B / 3+0.25-B)$; by keeping one B as such and using the bounds (2) and (3) for L and the other B 's, our last expression is at most $0.2897-B<A-B-0.0343$, which, thanks to (4) leads to (10).

In the second case, we have $B>0.25$; the first inequality in (3) then leads to $L<0.426$; moreover, we have $B / 4>(L-B) / 3$; thus, in this case, the size of the elements of $\mathcal{A} \cap \mathcal{J}^{+}$which are not in $\langle B / 2, L-B\rangle^{\text {sym }}$ is at most $\max (0,2((L-$ $B) / 2-B / 3))=\max (0, L-2 B / 3-B<0.324-B-0.0343)$, which leads again to the validity of (10).
5.5. From (10), we deduce that, up to symmetry, the size of $\mathcal{A} \cap\langle B / 2, L-B\rangle$ is larger than 0.0171 . If $(L-B)-B / 2<0.0514$, we immediately obtain the existence of two elements a_{1} and a_{2} in $\mathcal{A} \cap\langle B / 2, L-B\rangle$ such that

$$
\begin{equation*}
0.0171<\operatorname{size}\left(\left\langle a_{1}, a_{2}\right\rangle\right)<0.0514 \tag{11}
\end{equation*}
$$

Let us now assume that $(L-B)-B / 2 \geqslant 0.0514$; we can select a subset \mathcal{K} of $\mathcal{A} \cap\langle B / 2, L-B\rangle$ with size between 0.0171 and 0.01711 , and by Lemma 5 (which was stated for integers but can readily be extended to short intervals in $\mathbb{Z} / p \mathbb{Z}$), we can find two elements a_{1} and a_{2} in $\mathcal{A} \cap\langle B / 2, L-B\rangle$ such that $0.0171<\operatorname{size}\left(\left\langle a_{1}, a_{2}\right\rangle\right)<(L-B)-B / 2-0.0171$. But, by (2) and (3) we have $(L-B)-B / 2<0.06825$; this implies that the elements a_{1} and a_{2} satisfy (11).

By Lemma 3, if an element a in \mathcal{A} is in $\langle B / 2, L-B\rangle$, then the set $\langle 2 a-$ $(2 B-L), 2 a+(2 B-L)\rangle^{\text {sym }}$ is free from elements from \mathcal{A}. Since $2 \times 0.0514<$ $0.1066 \leqslant 2(2 B-L)$, the two intervals $\left\langle 2 a_{1}-(2 B-L), 2 a_{1}+(2 B-L)\right\rangle$ and $\left\langle 2 a_{2}-(2 B-L), 2 a_{2}+(2 B-L)\right\rangle$ overlap; thus, the set $\left(\left\langle 2 a_{1}-(2 B-L), 2 a_{2}+(2 B-\right.\right.$ $L)\rangle)^{\text {sym }}$ contains no element from \mathcal{A}. Moreover, relation (11) implies that the size of $\left\langle 2 a_{1}-(2 B-L), 2 a_{2}+(2 B-L)\right\rangle$ is at least $2 \times 0.0171+2(2 B-L) \geqslant 0.1408$. Since $a_{1} \leqslant(L-B)-0.0171$, we have $2 a_{1}-(2 B-L) \leqslant 0.2921$, and since $a_{2} \geqslant B / 2+0.0171$, we have $2 a_{2}+(2 B-L)-0.1408 \geqslant 3 B / 2-L-0.1408+0.0342 \geqslant$ 0.1898. Letting $u=\max \left(2 a_{1}-(2 B-L), 0.1898\right)$, we have the following
for some u with $0.1898 \leqslant u \leqslant 0.2921$,
the set $\langle u, u+0.1408\rangle^{\text {sym }}$ contains no element from \mathcal{A}.

6. End of the proof of Theorem 1

We begin by showing in the next three subsections, that our assumption that \mathcal{A} contains at least one element from the interval \mathcal{J}^{+}, defined as $\langle-0.25,(0), 0.25\rangle$, leads to a contradiction. We show indeed that there is no room in $\mathbb{Z} / p \mathbb{Z}$ for our interval \mathcal{L}; crucial facts concerning \mathcal{L} is that it is not too small (by (9)), that its end-points are in \mathcal{A} (by construction) and that it contains many elements of \mathcal{A} around its ends (by Lemma 3). Theorem 1 is finally proved in the last subsection.
6.1. By the Cauchy-Davenport theorem, we have $\operatorname{card}(\mathcal{A}+(-\mathcal{A})) \geqslant 2 \operatorname{card} \mathcal{A}-1$ and so we have size $\{\mathbb{Z} / p \mathbb{Z} \backslash(\mathcal{A}+(-\mathcal{A}))\}<0.3521$. Moreover, the set $\mathbb{Z} / p \mathbb{Z} \backslash(\mathcal{A}+$ $(-\mathcal{A}))$ is symmetric and contains \mathcal{A} and thus it contains \mathcal{B} as well as $\mathcal{B}^{\text {sym }}$; since $\mathcal{B}^{\text {sym }}$ is the disjoint union of $\mathcal{B} \cap(-\mathcal{B})$ and $(\mathcal{B} \backslash(-\mathcal{B}))^{\text {sym }}$, we have size $(\mathcal{B} \cap$ $(-\mathcal{B}))>0.1341$. The interval \mathcal{L} in $\mathbb{Z} / p \mathbb{Z}$ has a size which is at most 0.4329 (<0.5) and contains at least $0.1341 p$ symmetric elements: thus, either it contains $\langle-0.067,(0), 0.067\rangle$ or $\langle 0.433,(0.5), 0.567\rangle$.

Let us exclude the first case. Since $L>0.3982$ (cf. (9)), \mathcal{L} contains $\langle-0.067$, $0.25\rangle,\langle-0.14,0.14\rangle$ or $\langle-0.25,0.067\rangle$. But, by (7), (2) and (3), we see that the set $(\langle 0,0.0607\rangle \cup\langle 0.0633,0.0810\rangle \cup\langle 0.0949,0.1215\rangle \cup\langle 0.1898,0.2431\rangle)^{\text {sym }}$ contains no element from \mathcal{A}. This readily implies that $\operatorname{size}(\mathcal{L} \backslash \mathcal{B}) \geqslant \operatorname{size}(\mathcal{L} \backslash \mathcal{A})>0.2>$ $0.4329-0.2431=L-B$, a contradiction. We thus have

$$
\begin{equation*}
\langle 0.433,(0.5), 0.567\rangle \subset \mathcal{L} \tag{13}
\end{equation*}
$$

6.2. Let us write $\mathcal{L}=\left\langle\ell_{1},(0.5), \ell_{2}\right\rangle$ with $0<\ell_{1}<0.5<\ell_{2}<1$. Recalling (12), we see that for no u with $0.1898 \leqslant u \leqslant 0.2921$ the interval \mathcal{L} can contain all the symmetric set $\langle u, u+0.1408\rangle^{s y m}$, since otherwise it would contain too many points which are not in \mathcal{A}; but on the other hand, for no u the set \mathcal{L} can avoid it completely, since otherwise \mathcal{L} should be included in $\langle 0.33,0.67\rangle$, which is too short in view of (9). But the interval \mathcal{L} has, by its definition, its end points in \mathcal{A}; this implies that for some u with $0.1898 \leqslant u \leqslant 0.2921, \mathcal{L}$ contains one, and only one, of the intervals $\langle u, u+0.1408\rangle$ or $-\langle u, u+0.1408\rangle$. Considering $-\mathcal{L}$ instead of \mathcal{L} if necessary, we may assume without loss of generality that $\ell_{1} \leqslant 1-\ell_{2}$ and that for some u with $0.1898 \leqslant u \leqslant 0.2921, \mathcal{L}$ contains an interval $\langle u, u+0.1408\rangle$ free of elements from \mathcal{A}.
6.3. We now know that ℓ_{1} has to be less than u. Let us first exclude the case when $B \leqslant \ell_{1} \leqslant u$, which implies $u \geqslant B$. Since the size of $\mathcal{A} \cap\langle B / 2, L-B\rangle$ is larger than 0.0174 (cf. the beginning of 5.5), there exists an element a of \mathcal{A} in $\langle B / 2+0.0174, L-B\rangle$ and a fortiori in $\langle 0.1386,0.1898\rangle$. This implies that $L-2 a<0.4329-2 \times 0.1386 \leqslant 0.1557$. By the first part of Lemma 3, the size of $\mathcal{A} \cap\left\langle\ell_{1}, \ell_{1}+L-2 a\right\rangle$ is at least $B-a>0.2431-0.1898=0.0533$. If $\ell_{1}+L-2 a<u+0.1408$, then $\mathcal{A} \cap\left\langle\ell_{1}, \ell_{1}+L-2 a\right\rangle$ is included in $\langle B, u\rangle$ and its size is at most $0.2921-0.2431=0.0490$, a contradiction. If $\ell_{1}+L-2 a \geqslant u+0.1408$, then the "forbidden" interval $\langle u, u+0.1408\rangle$ is included in $\left\langle\ell_{1}, \ell_{1}+L-2 a\right\rangle$ and the size of $\mathcal{A} \cap\left\langle\ell_{1}, \ell_{1}+L-2 a\right\rangle$ is at most $0.1557-0.1408=0.0149$, leading again to a contradiction.

We now know that ℓ_{1} is less than B and thus less than $L-B$. By (13) and (3), we have $\ell_{1} \geqslant 0.567-L>0.134$, so that ℓ_{1} is an element from $\mathcal{A} \cap$ $\langle B / 2, L-B\rangle$. We may use Lemma 3, taking ℓ_{1} itself as an element a; the interval $\left\langle\ell_{1}, L-\ell_{1}\right\rangle$ must contain at least $B-\ell_{1}$ elements from \mathcal{A}. Since $L-\ell_{1} \geqslant L-B$, the interval $\left\langle\ell_{1}, L-\ell_{1}\right\rangle$ contains the "forbidden" interval $\langle L-B, B\rangle$; because of the other "forbidden" interval $\langle u, u+0.1408\rangle$, the interval $\left\langle\ell_{1}, L-\ell_{1}\right\rangle$ contains at most $u-B+(L-B)-\ell_{1}$ elements from \mathcal{A}; but we have, using (2) and (3): $u-B+(L-B)-\ell_{1}<0.2921+L-3 B+\left(B-\ell_{1}\right)<B-\ell_{1}$, a final contradiction.
6.4. We have proved that \mathcal{A} contains no element from \mathcal{J}^{+}. Let us denote by \mathcal{L} the smallest interval that contains \mathcal{A}, this notation being consistent with our previous use of \mathcal{L}. The size of \mathcal{L} is obviously at most $1 / 2$ and thus $L-A$ is less than 0.25. Arguing as in the beginning of Section 5 , one shows that no element from $(\langle L-A, A\rangle)^{\text {sym }}$ is in \mathcal{A}; since \mathcal{A} contains no element from $\langle-0.25,(0), 0,25\rangle$, we have proved that \mathcal{A} is included in $\langle A,(0,5), 1-A\rangle$, which is Theorem 1.

References

[1] A.L. Cauchy, Recherches sur les nombres, J. École Polytechnique 9 (1813), 99-116.
[2] G.A. Freiman, Inverse problems of additive number theory, VI. On the addition of finite sets, III. Izv. Vysš. Učebn. Zaved. Matematika 28 (1962), 151-157.
[3] G.A. Freiman, Foundations of a structural theory of set addition. Translations of mathematical monographs, v. 37, AMS, Providence (RI), 1973, vii+108 pp.
[4] V.F. Lev, Distribution of points on arcs, INTEGERS: The Electronic Journal of Combinatorial Number Theory 5 (2) (2005), \sharp A11.
[5] V.F. Lev, Large sum-free sets in $\mathbb{Z} / p \mathbb{Z}$, Israel Journal of Mathematics (to appear).
[6] M.B. Nathanson, Additive number theory: inverse problems and the geometry of sumsets, Graduate Texts in Mathematics 165, Springer, New York (NY), 1996, xiv+293 pp.

[^1]
[^0]: 2000 Mathematics Subject Classification: 11P70, 05D05.
 ${ }^{1}$ Supported by Université Victor Segalen Bordeaux 2 (EA 2961), Université Bordeaux1 and CNRS (UMR 5465)
 ${ }^{2}$ Supported by Tel Aviv University and ADEMAS Association

[^1]: Addresses: Jean-Marc Deshouillers, Équipe de Statistique Mathématique et Applications, EA 2961, Université Victor Segalen Bordeaux 2, 33076 BORDEAUX Cedex (France) et
 A2X, UMR 5465, Université Bordeaux 1 et CNRS, 33405 TALENCE Cedex (France); Gregory A. Freiman, Tel Aviv University, Usha 11, Ramat Aviv, TEL AVIV (Israel)
 E-mail: jean-marc.deshouillers@math.u-bordeaux1.fr; grisha@post.tau.ac.il
 Received: 1 March 2006

