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THE MATHEMATICAL WORK OF EDUARD WIRSING

Andrzej Schinzel & Wolfgang M. Schmidt

The papers of Eduard Wirsing can be divided into following subjects.
1. Elementary number theory.
2. Sequences and sests.
3. Polynomials and matrices.
4. Diophantine approximation.
5. Metric theory of algorithms.
6. Multiplicative number theory.
7. Additive number theory.
8. Subjects outside number theory.

We shall comment on his papers in the indicated order.

1. Here belong two papers [5] and [9] on the distribution of perfect and multiply
perfect numbers, the first written together with B. Hornfeck. The estimate for the
number Nκ(x) of solutions n < x of the equation σ(n) = κn given in [11]:

Nκ(x) = O
(
ec

log x
log log x

)
, c a number independent of κ,

is for κ = 2 the best upper bound known at present for the number of perfect
numbers less then x .

2. In his first paper [1] Wirsing proves that almost all sets of positive integers are
totally primitive (also called asymptotically indecomposable), i.e. cannot be repre-
sented in the form ((A+B) ∪C) \D , where |A| > 1, |B| > 1, |C| <∞, |D| <∞ .

In [4] multiplicative bases for the set of positive integers are studied. A
sequence of integers 1 6 a1 < a2 < . . . is called a multiplicative basis of order
k , if every integer is the product of k or fewer a ’s. Denote by A(x) the counting
function of ai . The author proves that for every k

lim inf x−1A(x) log x > 1

and that for every ε and every k there exists a multiplicative basis of order k
satisfying

lim inf X−1A(x) log x < 1 + ε.
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In [3] Stöhr and Wirsing give examples of an essential component that is not
an additive basis, simpler than the first such exampe due to Linnik (1942). This
topic is pursued further in [27], where for every ε > 0 an essential component is
constructed with the counting function

W (x) = O
(
eε
√

log x log log x
)
.

This construction was superseded only 11 years later by Ruzsa (1987) who obtained
essential components with W (x) = O((log x)1+ε) for every ε > 0.

Finally in [29] Wirsing considers additive bases of order k for the set of
integers and shows that from every such basis satisfying some technical conditions
on can choose a subbasis of order k with the counting function O((x log x)1/k).
This applies in particular to the sequence of squares, which forms a basis of order
4 and improves upon a result of Zöllner (1985).

3. Here belong paper [40], [42] and [43]. Let Φn(z) be the n-th cyclotomic poly-
nomial, A(n) the maximum of the absolute values of its coefficients and ω(n) the
number of distinct prime factor of n . The main result of [40] is that for each ε > 0

sup
|z|=1

log |Φn(z)| > 2( 1
2−ε)ω(n) if ω(n) > k0(ε).

This implies that for every C > 2/ log 2 the inequality

A(n) > exp
(

(log n)C
log 2

2 −ε
)

holds for all n with ω(n) > C log log n and n > n0(ε).
The main result of [42] says the following. Let A = (aij) be a complex 3× 3

matrix. If for sufficiently small δ > 0 we have 1 − δ 6 |aij | 6 1 + δ for all i, j
and |detA| 6 δ3/2 , then there are either two rows or two columns in A such that
all three subdeterminants built from these rows or columns are � δ1/2 . It follows
that if |aij | = 1 and det A = 0, then either two rows or two columns of A are
linearly dependent.

The results of [43] and [44] are more technical.

4. The paper [10] deals with a question of central importance in Diophantine
approximation. Wirsing proves that given a real algebraic number ξ and given
d ∈ N , there are for any ε > 0 only finitely many algebraic numbers α of degree
d with

|ξ − α| < H(α)−2d−ε, (1)

where H(α) is the height of α , i.e. the maximum modulus of the coefficients of
the defining polynomial of α over Z . This generalizes a famous theorem of Roth
(1955) which deals with the case d = 1. The proof combines Roth’s arguments with
certain inequalities coming from probability theory. The −2d in the exponent can



The mathematical work of Eduard Wirsing 9

now be improved to −d−1 (see Schmidt (1971)), but on the other hand, as pointed
out by Vojta, the exponent −2d is the right exponent for certain generalizations.

In [19] Wirsing again takes up approximation by algebraic numbers of degree
at most d . Following Mahler (1932) and Koksma (1939), define ωd = ωd(ξ) as
the supremum of the numbers ω such that there are infinitely many polynomials
f ∈ Z[X] of degree at most d with 0 < |f(ξ)| < H(f)−ω where H(f) is the
maximum modulus of the coefficients of f , and ω∗d = ω∗d(ξ) in the supremum
of the numbers ω∗ such that there are infinitely many α of degree 6 d with
|ξ−α| < H(α)−1−ω∗ . It is easily seen that unless ξ is algebraic ωd > d , ωd > ω∗d ,
and in this terminology, Wirsing’s result on (1) says that ω∗d 6 2d − 1 when
ξ is algebraic. In [19] it is shown that ω∗d > 1

2 (ωd + 1), which shown that the
classifications of Mahler and Koksma of transcendental numbers coincide.

One often attributes to Wirsing the conjecture that for transcendental real
ξ, ω∗d(ξ) = d , i.e. that given ε > 0 there are infinitely many α of degree 6 d with

|ξ − α| < H(α)−d−1+ε.

This attribution may not be fair (especially since the conjecture may well be false),
for Wirsing only says that the above is vielleicht (i.e. perhaps) true. In fact Wirsing
establishes ω∗d(ξ) > 1

4 (d+2+
√
d2 + 4d− 4) = d

2 +ν(d), where ν(d) > 1
2 , ν(d)→ 1.

His proofs uses estimates on resultants of polynomials. A slight improvement was
given by Bernik and Tishchenko (1993/94) with ω∗d(ξ) > d

2 + ν′(d) where ν′(d)→
2. On the other hand the conjecture is true for d = 2 according to Davenport and
Schmidt (1967). There are related papers on approximation by algebraic numbers
of exact degree d , as well as by algebraic integers.

In [23] Wirsing and coauthors show that when f : Z → A , where A is the
field of algebraic numbers in C is periodic with period q and has

∞∑
n=1

f(n)
n

= 0 (i)

and if moreover (ii) f(r) = 0 for r with 1 < (r, q) < q , (iii) the cyclotomic
polynomial Φq is irrducible over the field Q(f(1), . . . , f(q)), then f = 0. This
implies a generalized version of a conjecture of Chowla. A crucial lemma in the
proof says that the set Gq of functions g : Z→ A with period q having

q−1∑
s=1

g(s) log(1− ξs) = 0,

where ξ = exp(2πi/q) and the logarithms are the principal values is invariant
under automorphisms σ of A , i.e. invariant under replacing g(s) by σg(s). This
is a consequence of Baker work on linear forms in logarithms, in particular of the
fact that the logarithms of algebraic numbers which are linearly independent over
Q are linearly independent over A .
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Moreover, it is shown that functions f : Z → A with period q and (i), (ii)
are necesarily odd and the odd functions f : Z → A with period q and (i) are
determined. In particular, they form a vector space of dimension [(q − 3)/2].

In [26] Wirsing and coauthors generalize a rezult of Newman (1976). Let T
be the circle group consisting of z in C with |z| = 1, and Un the group of n -th
roots of unity. Then if ρ1, . . . , ρn are distinct elements of T and ε1, . . . , εn are in
T with

n∑

i=1

εiρ
k
i > 0 for k = 1, 2, . . . ,

then {ρ1, . . . , ρn} = Un and ρi → εi is a group homomorphism. Diophantine
approximation enters the picture in a deduction of this result from the special case,
when ρ1, . . . , ρn are roots of unity. Kronecker’s theorem on the density of sequences
kβ1, . . . , kβn, k = 1, 2, . . . modulo 1, where β1, . . . , βn are linearly independent
over Q, is used.

A number of further results are established. For instance, when χ1, . . . , χn
are distinct characters of a compact abelian group C , and ε1, . . . , εn are in T ,
having

α(t) =
n∑

i=1

εiχi(t) > 0 for t ∈ C,

then {χ(1), . . . , χ(n)} makes a subgroup of the character group, and χi → εi is a
character of the latter group.

In [34], written jointly with Schlickewei, estimates on heights are given exten-
ding some estimates of S. Zhang (1992) and Zagier (1993), these estimates being
useful for subsequent work on diophantine equations ax + by = 1. More general
estimates were later derived by Bombieri and Zannier (1995), Schmidt (1996), Da-
vid and Philippon (1999), and led to a conjecture of Bogomolov which was proved
in increasing generality by S. Zhang, Ulmo and Zhang, and David and Philippon.

5. In [20] Wirsing reports on his new work on the Gauss-Kusmin Theorem. In
the later presentation [22] he brings question left open by the theorem to definite
conclusion. When irrational α in 0 < α < 1 has the regular continued fraction
expansion α = [0; a1, a2, . . .] , set αn = αn(α) = [0, an, an+1, . . .] . Let Mn(α) be
the measure of the set of α in 0 < α < 1 with αn 6 x . Gauss in a letter in 1812 had
asserted that mn(x) ∼ (log(1 + x))/ log 2 as n→∞ , and Kusmin (1929) showed
that in fact mk(x) = (log(1 + x))/ log 2 + τn(x) where τn(x) � q

√
n for some

q, 0 < q < 1. This was later improved to � qn by Lévy (1929) and Szüsz (1961).
Efforts were made to find small values of q where this holds. Wirsing now shows
that τn(x) = (−x)nΨ(x)+O(x(1−x)µn) with constants 0 < µ < λ = 0, 303663 . . .
and ψ is a smooth function with ψ(x) > 0 for 0 < x < 1. Thus the best value for q
is λ . The sophisticated proof begins with a functional equation on the mn(x) and
proceeds via a new result on the spectrum of positive linear operators, generalizing
an old result of Frobenius (1908). This information is of indenendent interest and
gives information on Ψ on a holomorphic function.
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6. In [2] Wirsing proves that if T is a set of primes and
∑
p∈T
p6x

1
p = τ log log x+ c′ +

o(1), then the counting function of integers composed of primes in T is asymptotic
to cx/(log x)1−τ with c a constant. This generalizes a result of Landau (1909) in
which T is a union arithmetic progressions.

In his habilitation thesis [13] Wirsing obtains, under very general assump-
tions on a multiplicative function λ(n), an asymptotic formula for

∑
n6x

λ(n). This

result is further extended in the brilliant paper [16] in the following manner. Let
p be a typical prime and λ be a nonnegative multiplicative function satisfying

∑

p6x

log p
p

λ(p) ∼ τ log x (τ > 0), (2)

λ(p)� 1, (3)
∑

p,ν>2

λ(pν)
pν

<∞ (4)

and if τ 6 1 ∑

p,ν>2
pν6x

λ(pν)� x/ log x. (5)

Then ∑

n6λ
λ(n) ∼ (eγτ/Γ(τ))

x

log x

∏

p6x

(
1 +

λ(p)
p

+
λ(p2)
p2 + · · ·

)
,

where γ is Euler’s constant.
The same conclusions holds for a complex-valued multiplicative function λ ,

if (2) holds, (3), (4) and (5) (in case τ 6 1) hold with |λ| in place of λ and if,
besides, ∑

p

p−1(|λ(p)| − Reλ(p)) <∞.

The author obtains also as a special case of a more general theorem the following
solution to a difficult problem of Wintner (1944).

If λ is a real multiplicative function satisfying |λ(n)| 6 1, then

lim
x→∞

x−1
∑

n6x
λ(n) = lim

x→∞

∏

p6x

(
1− 1

p

)(
1 +

λ(p)
p

+
λ(p2)
p2 + · · ·

)

(Wintner’s problem concerned the case λ(n) = ±1).
The proofs of the above theorems are elementary, by complicated and the

author asks for analytic proofs, which may be simpler and may help to solve some
outstanding problems. Such proof have been supplied by Halász (1968), who has,
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indeed, solved one of the problems. Taking for λ(n) the Möbius function µ(n) one
obtains from (6)

M(x) =
∑

n6x
µ(n) = o(x),

which has long been known to be equivalent elementarily to the prime number
theorem (Landau 1911). Thus [16] contains implicitly an elementary proof of the
prime number theorem.

Several years earlier, in [12] and [13], Wirsing provided elementary proofs of
the prime number theorem with an error term, namely

ψ(x) = x+O(x/ logm x)

where m = 3/4 in [12] and m arbitrary in [13]. The proofs are based on Selberg’s
formula. The same error term (m arbitrary) has been obtained about the same
time by Bombieri (1962), who first generalized Selberg’s formula. The present
record due to Diamond and Steinig (1970) is

ψ(x) = x+O(x exp(−c(log x)1/6)), c a constant.

Another group of Wirsing’s papers deals with a circle of problems originating in
the paper of Erdös (1946) and concerning a characterization of logarithm as an
additive function. In [17] Wirsing proves that if an additive function f(n) satisfies
f(n + 1) = f(n) + O(1), then f(n) = c logn + O(1). Another result in the same
direction proved in [19] is the following: Let f(n) be an additive function. If there
is a constant γ > 1 and a sequence of numbers xi →∞ such that, as i→∞

∑

xi6n<γxi
|f(n+ 1)− f(n)| = o(xi),

then f(n) = c log n . Taking γ = 2 and xi = i/2 one obtains the following conjec-
ture of Erdös proved independently by Kátai (1970).

If f(n) is an additive function and if

∑

n6x
|f(n+ 1)− f(n)| = o(x),

then f(n) = c logn with a constant c .
In the paper [27] it is proved that if a completely additive function satisfies

f(n + 1) − f(n) = o(log n), then f(n) = c logn and in [33] that if f is additive
and ‖f(n+ 1)− f(n)‖ = o(1), then there exists c such that ‖f(n)− c logn‖ = 0
(‖x‖ is the distance of x to the nearest integer). Additive functions are studied
also in [25] and [28]. One of the results of [25] is that if f is additive and real and
lim
p→∞

f(p + 1) = 0, then f = 0. In [27] it is shown that if an additive function f

satisfies
f(n+ 1)− f(n)� logα n, 1 < α 6 6/5,
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then
f(n)� logα n.

In [28] the same implication is shown to hold for α > 3. It is an interesting
question, whether the implication holds for all α > 1.

The papers [38], [39] and [41] deal with multiplicatiive functions. One of the
results of [38] is that if f : N→ C is multiplicative and f(n+ 1)− f(n)→ 0, then
either f(n) = ns with s ∈ C, 0 6 Res < 1 or else f(n)→ 0 as n→∞ .

The results of [39] are rather technical, but the main result of [40] is simple
and general: if f is a multiplicative function from N to any multiplicative abelian
group and the set of limit points of f(n + 1)/f(n) is finite, then the set of limit
points of f(n) is also finite.

A completely different type of problems is considered in [37] A. Selberg (1991)
has introduced a class of function, now called S , central to analytic number theory
and proposed several conjectures concerning these functions. A function f ∈ S is
called primitive if an equation f = f1f2, fi ∈ S implies f1 = 1 or f2 = 1 Selberg’s
orthonormality conjecture in the weak form asserts that for primitive functions

P (s) =
∞∑
n=1

a(n)
ns

and P ′(s) =
∞∑
n=1

a′(n)
ns

we have ∑

p6x
pprime

a(p)a′(p)
p

= δ(P, P ′) log log x+ o(log log x)

where δ(P, P ′) = 1 if P = P ′ and δ(P, P ′) = 0, otherwise.
Two functions F ∈ S and F ′ ∈ S are shifted with respect to each other, if

F ′ = F (s+ iϑ), ϑ ∈ R . Countability conjecture says that there are only countably
many shift classes of primitive functions in S .

A continuous family of functions in S (resp. primitive functions in S ) on an
interval I ⊂ R is a set of functions P (s, ξ), ξ ∈ I , where for every ξ, P (s, ξ) ∈ S
(resp. P (s, ξ) is primitive) and P (s, ξ) is a continuous function of ξ . Sarnak’s
Rigidity Conjecture says that

(i) any continuous primitive family on an interval I ⊂ R is of the form
P (s, ξ) = P (s+ ih(ξ)), where P is primitive and h : I→C is continuous.

(ii) any continuous family can be factored into primitive continuous families.
In [37] the authors show that the weak Orthonormality Conjecture and Co-

untability Conjecture imply Sarnak’s Rigidity Conjecture. Their proof is based on
a topological result of Sierpiński (1918). Earlier a proof of the theorem based on
a different principle was published by Kaczorowski and Perelli (2000).

7. Wirsing [10] proves that if f is a non-constant integer-valued polynomial with
the leading coefficient positive then the density of the integers of the form p +
f(q), p, q primes is positive. For f(x) = xk one obtains a result of Romanov
(1934).
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The paper [30] is concerned with ω

(
N∏
m=1

p(m)
)

, where ω(n) is the number

of distinct prime factors of n and p(m) is the number of partitions of m . It is
proved that

ω

(
N∏
m=1

p(m)

)
> (1− ε) logN

log 2
if N > N0(ε).

The papers [35] and [36] together with a paper of Vorhauer (1999) present a simpler
and cleaner proof of the Chen theorem in the circle problem, namely

∑
n2

1+n2
26x

1 =

πx + O(x12/37+ε). Moreover, denoting by r2(n) the number of solutions of n2
1 +

n2
2 = n the authors prove that

1
Γ(κ+ 1)

∑

n6x
r2(n) logκ

(x
n

)
= πx+O

(
x

12
37− 25

37κ+ε
)

for every non-negative κ 6 7/30 and every ε > 0.

8. In an early paper [8] Wirsing considers convex curves with two equichordal
points and proves that a boundary of such a curve is regular. It has since been
proved by Rychlik (1997) that there are no such curves. The two papers [14] and

[15] are concerned with the zeros of infinite series
∞∑
n=0

(n+1)kzn, k real, and extend

some results of Peyerimhoff (1966).
The paper [31] studies convergence properties of algorithms similar to the

”regula falsi”.
The highly original paper [32] studies those meromorphic functions w such

that all residues of w and w−1 equal zero.
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