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Abstract. We present a new conceptual framework for Hashiguchi-Ichijyo’s
theorems concerning Wagner manifolds and prove them intrinsically.
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0. Introduction

In their joint work [4] M. HAsHIGUCHI and Y. ICHIJYO have explored the
significance of Wagner manifolds relating them to the conformal changes of
Riemann-Finsler metrics. One of the most important observations in [4] is
that the class of Wagner manifolds is closed under the conformal change
of the metric. In addition to this relevant (geometrical) property there are
other aspects accounting for dealing with Wagner manifolds. In his paper [3],
HAsHIGUCHI suggested and (in some sense!) solved the problem: under what
conditions does a Finsler manifold become conformal to a Berwald (or a lo-
cally Minkowski) manifold. “These conditions were, however, given in terms
of very complicated systems of differential equations, for which appropriate ge-
ometrical meanings have been wanted”, he wrote a year later in [4]. As it was
shown these “appropriate geometrical meanings” were hidden in the notion of
Wagner manifolds. Namely, in the classical terminology: “The condition that
a Finsler space be conformal to a Berwald space is that the space becomes a
Wagner space with respect to a gradient a;(z).” ([4], Theorem B.)

In the present paper, synthesizing our previous works [7] and [8], we insert
these wonderful results in the conceptual and technical framework elaborated
by J. GRIFONE [1], [2] (see also [5], [6] and [8]). We find it natural to consider
this paper as a direct continuation of [8], so its terminology and notations will
be retained. We shall refer to the results and formulas in [8] by their original
numbering, adding a great Roman I/ ... if necessary.
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1. Special Finsler connections and Finsler manifolds

Let (M, E) be a Finsler manifold. As it is well-known, the fundamental
lemma of Finsler geometry (see [7]) guarantees the existence and uniqueness
of a horizontal endomorphism A characterized by the following conditions:

(B1) dpnEE =0 (i.e., h is conservative),
(B2) the strong torsion of h vanishes.
Explicitly:

1
h = 5(1 +[J,5]),

where S is the canonical spray and J is the vertical endomorphism, respectively

(see e.g. [8]).
This h is called the Barthel endomorphism of the Finsler manifold (M, E) .

Theorem 1 ([5]). Let (M, E) be a Finsler manifold and let h be a horizontal
endomorphism on M. There is a unique Finsler connection (D,h) on M such
that

(01) the (v)hv-torsion P' of D vanishes,

(o}

(02) the (h)hv-torsion B of D vanishes.

[¢]
Then (D, h) is of Berwald-type, i.e., the covariant derivatives with respect

to D can be calculated by the formulas

(i) DyxJY = JJJX,Y],
(ii) DuxJY = o[hX, JY],
(iii) DyxhY = h[JX,Y],
(iv) DuxhY = hF[hX, JY],

where v := 1 — h, and F' is the almost complex structure associated with h.

If (D, h) satisfies the further conditions

(03) h is conservative,
(04) the h-deflection h* (DC') vanishes,

(05) the (h)h-torsion A of D vanishes,
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(e}

then h is just the Barthel endomorphism. In this special case (D,h) is called
the Berwald connection of the Finsler manifold (M, E) .

Definition ([6]). A Finsler manifold (M, E) is said to be a Berwald manifold
if there is a linear connection V on M such that

(VxY)" = [X" 7] for VX, Y € X(M)

where the horizontal lifting is taken with respect to the Barthel endomorphism.
Definition ([8]). Let (M, E) be a Finsler manifold. The triplet (D, h, «) is said
to be a Wagner connection if it satisfies the following conditions:

(W0) (D, h) is a Finsler connection on M,

(W1) D is metrical with respect to the prolonged metric s

(W2)  the (v)v-torsion S of D vanishes,

(W3) D is (h)h-semisymmetric, i.e., the (h)h-torsion A of D has the follow-
ing form:

A=da’"®h—h®da" for Yo € C®(M),
(W4)  the h-deflection " (DC) vanishes.
Then h is called a Wagner endomorphism on M.

Theorem 2 ([8]). Retaining the hypothesis of the preceding definition, the
Wagner endomorphism h and the Barthel endomorphism h of a Finsler man-
ifold are related as follows:

(1) h=h+a‘J— E[J,grada’] — d;E ® grad a’.
Definition ([8]). Let (M, E) be a Finsler manifold endowed with the Wagner
connection (D, h ) (M, E) is said to be a Wagner manifold (with respect

(
o (D,h,a)) i there is a linear connection V on M such that for any vector
fields X,Y € X(M)
(VxY)' =D, 5Y",
where the horizontal lifting is taken with respect to the Wagner endomorphism.
Theorem 3 ([8]). Let (D,h,a) be a Wagner connection on the Finsler man-

ifold (M, E) and let us consider the Finsler connection (D,h) described in
Theorem 1. Then the following assertions are equivalent:

(i) (M, E) is a Wagner manifold with respect to (D, h,a),

(ii) the hv-curvature tensor P of D vanishes.

265



266 C. VINCZE

Proposition 1. Let (M, E) be a Wagner manifold with respect to (D, h,a).
Then the following assertions are equivalent:

(i) R=0 (ie., h is integrable),

(ii) the h-curvature tensor R of D vanishes,
o o
(iii) the h-curvature tensor R of D vanishes.

Proof. As it was shown in Proposition 8 of [8], the second Cartan tensor C be-
long—ing to h vanishes in any Wagner manifold. This means that the Bianchi
identity IV (see [8], Corollary 5) reduces to the formula

(2) (D5xP) (Y, 2) — (DgyP) (X, Z) + (D,2zR) (X,Y)
= -R(X,FC(Y,Z)) +R(Y,FC(X, Z))

Substituting a semispray Sy into (2), by Corollary 4 of [8] we get the relation
(DjzR) (X.Y) —R(X,Y)Z = —R(X,FC(Y, Z)) + R(Y,FC(X, Z)).

Therefore the implication (i) = (ii) holds. The converse is an immediate
consequence of the relation

R(X,Y)S, = R(X,Y)

(see [8], Corollary 4).
Finally, by Proposition 7 of [8],

R(X,Y)Z = ﬁ(x, Y)Z +C(FR(X,Y),Z),

so (ii) and (iii) are also equivalent. O

Corollary 1. If (M, E) is a Berwald manifold, then the following assertions
are equivalent:

(i) R=0 (i.e., h is integrable),

(ii) the h-curvature tensor R of the Cartan connection (D,h) vanishes,

o o
(iii) the h-curvature tensor R of the Berwald connection (D, h) vanishes.

Definition ([6]). Let (M, E) be a Berwald manifold. If one, and therefore all,
of the conditions

() R=0, (i) R=0, (i) R=0

are satisfied, then (M, E) is called a locally Minkowski manifold.
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2. Conformal changes of Riemann-Finsler metrics

Definition [7]. Consider two Finsler manifolds (M, E) and (M, E) and denote
by g and g their Riemann-Finsler metrics. We say that g and g are conformally
equivalent if there exists a function § € C°°(M) satisfying the condition

(CE) g=¢g9  (p:=expofi® =expofom).

The function ¢ is called the scale function or the proportionality function
and g is called a conformal change of the metric g.

Lemma 1. If a Finsler manifold (M, E) with the Riemann-Finsler metric g,
and a function § € C* (M), are given, then g = ¢g (¢ := expof3?) is the
Riemann-Finsler metric of the Finsler manifold (M, E), where E := pE.

Proof. 1t is enough to show that the form w := dd JE is nondegenerate. Since
E = pF we get immediately the relation

(3) w=dpNd;jE + puw.

Then the following assertions are equivalent:

(4) 0=ixw,

(5) 0= (Xg)d;E— JX(E)dy + pixw.

Applying both sides of (5) to a vertical vector field JY (Y € X(TM)) we

have

0 = pixw(JY) = pw(X, JY) 7S _pg(I X, JY).

Therefore JX = 0 and thus X € X¥(TM). Hence
D=ixw & 0=ypixwe X =0,

which means that @ is nondegenerate.
Finally, for any vector fields X,Y € X(T M),

GIX,IY) = 0(IX,Y) Y pu(JX,Y) = pg(JX, JY),

i.e., the Riemann-Finsler metrics ¢ and g are conformally equivalent. D

Proposition 2 ([7]). Under the conformal change g = pg (¢ = expof3’)
of the Riemann-Finsler metric g, the Barthel endomorphisms are related as
follows:

~ 1 1 1
(6) h=h-— E(BCJ +dp'®C) + EE[J’ grad 3°] + EdJE ® grad 5°.
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Proposition 3. Let (M, E) be a Finsler manifold and o € C*°(M). Then
the tensors
E[J,grad o], djE @ grad o

are invariant under any conformal changes of the metric g.

Proof. Let us consider the conformal change g = pg (¢ = expof3¥). Since
grad o’ € XV(TM) (see [7]), we get from (3) the relation

) ~ . 1 —
lgrad @ = Plgrad avw = pda’ = — grad o’ = grada".
P

Therefore ]
E[J,grada’] = pE|J, 2 grad o’] = E[J, grad o]

since ¢ is a vertical lift.
In the same way

~ — 1 1
dyE®grada’” = dj(pE)®@— grada’ = pd;EQ — grad o’ = dyjE®grada’. O
P P

3. Hashiguchi-Ichijyo’s theorems for Wagner manifolds

Theorem 4. Let (M, E) be a Wagner manifold with respect to (D, h,«) and
let us consider the conformal change g = pg (¢ = expof3”) of the metric g.

Then the Finsler manifold (M, E) is also a Wagner manifold with respect to
the Wagner connection induced by %ﬁ +a € C>®(M).

Proof. Let us consider the Wagner endomorphism Z induced by the function
38+ a. We get from the relation (1)

v

= ~ [1 ¢ ~ (1 ~ — /1 v
h:h+(§ﬂ+a> J — E[J, grad <§B+a> ]—dJE®grad<§B+oz>

v
ProR. 3.

~ (1 ¢ 1 L ’

h+ (554_@) J — E[J,grad (554—@) | —ds;E ® grad <§ﬁ+a>
~ 1 1 1

=h+ 56 = 5Bl grad f°] — 5d;E © grad 5

1
+atJ — ElJ,grada’] — dsE @ grada® £ h— 546" ® C +a°J

—~

— E[J,grad a’] — dsE ® grad o” Dy ag’ @ C.

1
2
Using this form of ﬁ, we easily obtain that the hv-curvature tensor of the

Berwald-type connection associated with I vanishes (see Theorem 1). This
means that (M, F) is a Wagner manifold. O
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Definition. A Finsler manifold (M, E) is said to be conformal to a Berwald
(or a locally Minkowski) manifold if there is a conformal change g = g
(p = exp o3V) such that (M, E) is a Berwald (or a locally Minkowski) manifold.

Theorem 5. A Finsler manifold is conformal to a Berwald manifold if and
only if it is a Wagner manifold with respect to a gradient vector field c.

Proof. Let us suppose that the Finsler manifold (M, E) is conformal to a
Berwald manifold, i.e., there is a conformal change g = ¢g (¢ = exp o3”) such
that (M, E) is a Berwald manifold. Since the Berwald manifolds are, in partic-
ular, Wagner manifolds (c.f. [8], Prop. 6), in view of Theorem 4, the conformal
change

g= %ﬁ yields a Wagner manifold with respect to the Wagner connection in-
duced by
—%,8 € C>®(M). Explicitly, the Wagner endomorphism A and the Barthel

endomorphism £ of the Berwald manifold (M, E) are related as follows:
- ~ 1
h=h+ §dﬂ” ®C.

Conversely, let us suppose that (M, E) is a Wagner manifold with respect
to (D, h, ) where « is a gradient. Then, in view of Theorem 4, the conformal
change g = pg (p = expof3¥, B := —2«) yields a Wagner manifold whose
Wagner connection is induced by the function % B+a = —a+a = 0. Therefore
(c.f. [8], Prop. 6) (M, E) is a Berwald manifold. The Barthel endomorphism
h and the Wagner endomorphism A of the Wagner manifold (M, E) are related
as follows: _

h=h+da"®C. O

Theorem 6. A Finsler manifold is conformal to a locally Minkowski manifold
if and only if it is a Wagner manifold and one (therefore all) of the conditions

i) R=0, (i) R=0, (iii) ﬁ:o

are satisfied.

Proof. Let us suppose that the Finsler manifold (M, E) is conformal to a
locally Minkowski manifold, i.e., there is a conformal change g = ¢g (¢ =
exp of3’) such that (M, E) is a locally Minkowski manifold. Then, in view of
Theorem 5, (M, E) is a Wagner manifold with respect to the Wagner connec-
tion induced by the function —18 € C*(M) and

- ~ 1
h=h+gdf*®C
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Since (M, E) is a locally Minkowski manifold, R := —
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L[h, h] = 0. This implies

by an easy (but little lengthy) calculation, that R := —1[h, ] also vanishes.

in

Conversely, if (M, E) is a Wagner manifold with respect to (D, h, ) then,
view of Theorem 5, the conformal change g = pg(p :=expoff?, B := —2a)

yields a Berwald manifold with the Barthel endomorphism A such that

h=h+da’®C.

Now applying the further condition R = 0, we get:

7.

8.

Cs

B —%[ﬁ,ﬁ] _ —%([ﬁ,ﬁ] + 2, da’ @ C]

— 1
+ [da’ ® C,da’ ® C)) = —[h,da’ ® C] — E[da” ® C,da’” ® C]

_ 1
1/() —dyda’ @ C +da” ® [h,C] — Eddav@)cdav ®C

I/Cor. 1. 1 1/(5)

1
+ Eda” Alde’ ® C,C]| 2da” Alda’ @ C,C] '="0. O
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