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Abstract. We find necessary conditions and sufficient conditions on weights
u(.) and v(.) for which the fractional integral operator I is bounded from the
weighted Lebesgue spaces LY into LY whenever 1 < ¢ < p < oo and 0 < a < n.
Actually such a boundedness is characterized for a large class of weights.
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§1. INTRODUCTION

The fractional integral operator I, of order e, 0 < a < n, acts on locally
integrable functions of R™ as

L@ = [ o=y )y

Our purpose in this paper is to derive conditions on weight functions wu(.)
and v(.) for which there is a constant C' > 0 such that

(1.1) 1 _
</ n(Iaf)q(ﬂﬂ)“(ﬂﬂ)d$> ‘<o </R" f”(x)u(z)dz> for all £(.) >0

and for 1 < ¢ < p < 0o. The boundedness defined by (1.1) will be also denoted
by I, : L? — L%,

Since inequalities (1.1) have a fundamental role in Analysis (in deriving
weighted Poinca ré and Sobolev inequalities, in estimating eigenvalues of some
Schrodinger operators,....), they have been studied extensively by many au-
thors for the range p < ¢. Recent papers on this topic can be found in
[Sa-Wh-Zh] for the American school, in [Ge-Go-Ko| for the Georgian school
and in [Ra2] for the author’s contribution. Considering (1.1) for the range
g < p would enlarge for instance the available results (for p < ¢q) for weighted
Sobolev and Poincaré inequalities.
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210 Y. RAKOTONDRATSIMBA

A significant attempt on a characterization for I, : L? — LI with ¢ < p,
based on a previous work of I. Verbitski [Ve] and E. Sawyer [Sa-Wh-Zh], was
done by S. Zhao [Zh]. In the present work we do not investigate on such a
question since a necessary and sufficient condition with general weight func-
tions would be useless for practical computations mainly when it is expressed
in term of the operator I, itself and integrations over some set of cubes (see
for instance Theorem 1.2, p.98 in [Zh]).

According to a work of I. Verbitski [Ve], a necessary condition for the bound-
edness I, : LP — LI when g < p is

. bq
1.2 / D" (x)u(z)dr < o0 with r = ——
(1.2) R (z)u(z) p—

and

oto) =g {10% (s [, ) (i [, o)}

Here p' = —£= and @ are arbitrary cubes with sides parallel to the coordinates

axes. Conversely in [Ral] (Theorem 2.1, p312), the boundedness I, : L? — L2
is seen to be held provided that for some t1,%5 > 1

(1.3) / @7 4, (r)u(r)dr < oo
xERn ’
where
wente) =10 gy /. ", )}

Obviously, by the Holder inequality, condition (1.3) is stronger than (1.2).
The interest on the implication (1.3) = (1.1) is that the sufficient condition
(1.3) is not expressed in term of I,. However the reader would be aware of
the difficulty in checking (1.3). This problem is studied in the remainder of
results in [Ral].

One of the motivations of our present work is the observation that condition
(1.3) is not always applicable due to the high integrability required for the
weights u(.) and v'72'(.). Indeed taking v!~?'(z) = |z|™" ln_p’(|x|_1) for

|z| < % then f|x|<Rv(1_p')t(x)dx = oo, for all t > 1 and R < 1, though

f|$|<RU1_p’ (z)dz < oco. However for such a weight v(.) (see Corollary 2.4)
the boundedness (1.1) can be held. Our second motivation is that a simple
characterization for the two-weight inequality (1.1) with 1 < ¢ < p < oo can
be derived for a large class of weight functions including those of radial and
monotone ones.
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Necessary conditions for I, : L? — L% with ¢ < p will be stated in Theorem
2.1. These conditions are of two types: the Hardy conditions and the Muck-
enhoupt condition. In general they are not together sufficient to derive the
above boundedness. However in Theorem 2.2, we will see that with a slight
strong version of the Muckenhoupt condition then inequality (1.1) can be de-
rived. Consequently, a characterization for (1.1) for many usual weights will
be found in Proposition 2.3. Concrete and explicit examples, which cannot be
decided from results in [Ral] and [Zh], will be given in Corollary 2.4.

Our results, stated in §2, are based on the ”principle of three parts proof”
already used by the author in [Ra2] to tackle the boundedness problem for the
case p < q. Two useful basic lemmas are given in §3. And the proofs of all
results are performed in the last section.

§2. RESULTS

Throughout this paper it is always assumed that

0<a<mn, 1<g<p<oo, p':L, q':L,
p—1 q—1
Pq 1 1 1
r=—— or -—=—-—=—,
p—q r q p
and u(.), o) are weight functions.

We first give some natural necessary conditions for the boundedness (1.1)
to be satisfied.

Theorem 2.1. Assume the boundedness I, : L — L% does hold. Then
(2.1)

/%Rn [(/|x|<|y| Iyl(“‘")qu(y)dy) : (/| vl—p’(z)dz) %]rvl—p' ()dz < 5

z|<|z|

(2.1%) | 5
. [</|x|<|z| A @) ([ way) | ot < o

and for each integer N > 1

o0

(2.2) > (An(k)" < oo
k=—o00

where

(2.3)

-

Ay (k) = 2Fe=n) (/ u(y)dy) ! (/ T (z)dz) "
2k—N <|y|<2k+N 2k—N <|z|<2k+N
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Conditions (2.1) and (2.2) will be often referred as Hardy and Mucken-
houpt conditions respectively, and (2.1*) is named as the dual condition of
(2.1). Both the Hardy conditions and the Muckenhoupt condition would not
be sufficient in general to imply the boundedness (1.1) as it is the case for
P=gq

Our next main result states that this boundedness can be obtained just by
using a (sligthly) stronger condition than (2.2). Precisely

Theorem 2.2. The boundedness I, : L} — L% does hold provided that the
Hardy conditions (2.1) and (2.1*) are satisfied and

(2.4) > (AR)" <o

where

Q=

(2.5) A(k) = 2’“"[%+5_%]( sup u(m)) ( sup T (z)) #

2k =1 |g|<2k+1 2k =1 |z|<2k+2

Observe that condition (2.4) is stronger than (2.2) with N = 1, since for
some fixed constant ¢ > 0, which only depends on n, a, p and ¢:

A(k) = A (k) < cA(k) for all integers k.

But (2.4) is not too far from the necessary condition (2.2) since for a large class
of weights it turns out that A(k) < c;An(k), for some constant ¢; > 0 and
integer N > 1 which only depends on these weights. Precisely, an additional
property required for each weight to realize this last inequality is the condition
H. That is w(.) € H whenever

(2.6) sup w(y) < %/ w(z)dz for all R > 0.
4-1R<|y|<4R R"™ Jo-~pejy<2VR

Here the integer N > 1 and the constant C' > 0 depend only on w(.). For
a radial and monotone weight w(.), property (2.6) is fulfilled with N = 3
and C' > 0 only depending on n but not on w(.). There exists also non-
necessarily monotone weight for which (2.6) is satisfied, as the case of w(z) =
w1 () Mg)<1 (%) +wz(2) Mg)>1 () with wi(.) and ws(.) are radial and monotone
(a proof is given in [Ral]).

Therefore a (simple) characterization for I, : L? — L% for weights having
property (2.6) is now available from our previous results.
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Proposition 2.3. Let u(.), v!™?'(.\) € H. The boundedness I, : I# — L%
does hold if and only if both the Hardy conditions (2.1), (2.1*) and the Muck-
enhoupt condition (2.2) are satisfied.

Note that in this result, the integer N > 1 involved in condition (2.2) would
depend on properties H but not directly on the weights.

We will end with explicit examples showing the gain over results in [Ral]
and [Zh].

Corollary 2.4. Define the weight functions

u(e) =|zP 7" My s () + |27 7" Wy 5 1 (2),
v(z) =|z[®D" P (Ja| "), oo (@) + [’ 5 1 (2).

Suppose 0 < v, (n —a)q <  and 0 < np. Then I, : L — L4 if and only if

6
Dap<8 i)y<(@n-a)g and ii)a+ <2
g p

Also set

u*(z) =|z| 7" I~ |z T o () 4 2] 7O (),

v () =|a|TPETI () + |2 TR0, ().
Suppose 0 < 7, (n—a)p’ < B and @ <ng'. Then I, : LY. — LI, if and only if

gl

iv)ag' <0 v)y<(n-a)p' and vi)a+— <.
p

o
7

As mentioned in the introduction, for these examples the boundedness I, :
LP — L is not obtainable from criterion (1.3) since |x|<Rv(1_p )t (z)dx = oo
and f|l,|<Ru*t($)dm = oo, for all t > 1 and R < %. Also criteria given in [Zh]
seem to be difficult to apply for these concrete and explicit examples.

§3. BASIC LEMMAS

First we state a basic Lemma needed for the proofs of Theorem 2.1 and
Corollary 2.4.

Lemma 3.1. Let 0 < a < b and 0 < y. Then there is a constant ¢ > 0 such
that for all h(.) > 0:

(3.1) (/a<|x|<bh(:1:)d:1:>l+7: c/a<|x|<b[/a<|yl<lxlh(y)dy " h(z)dz.
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Identity (3.1) can be obtained from the corresponding one-dimensional re-
sult after using polar coordinates.
The next result is about the n-dimensional weighted Hardy inequality

(3.2)
(/a:e]R" [/|y|<|$| f(y)dy} qw(x)dx> a < CA(/,EGR" fp(x)v(x)dx> »
for all f(.) > 0.

Lemma 3.2. Suppose that for some constant A > 0

(3.3) /meRn [(/|m|<|y| w(y)dy) i (/W'x| V1 (2)dz) ﬂrvl—p' (z)dz < AT

Then inequality (3.2) is satisfied for a constant ¢ > 0 which only depends on
n, p and q. Conversely the Hardy condition (3.3) is a necessary condition for
inequality (3.2) to hold.

A proof of this result was given by P. Dravel, H. Heinig and A. Kufner
[Dr-He-Ku] (see Theorem 2.2, p7-8).

4. PROOFS OF RESULTS

Proof of Theorem 2.1.
The implication (1.1) = (2.1). Observe that

o /|y|<|ag|f(y)dy§2 . /lx—y|<2|$| o = y|* 7" f(y)dy < 2" (Lo f)(2)

for all f(.) > 0. So the boundedness I, : L? — L2 implies the Hardy inequality
(3.2) with w(z) = |z|9®~™)u(z). Consequently, condition (3.3) arises because
of the second part of Lemma 3.2. The Hardy condition (2.1) is nothing else
than (3.3) due to this choice of w(.).

The implication (1.1) => (2.1*). By a duality argument, inequality (1.1) is
. — LP . By analogue arguments as used for the
ur—49 pl-p

implication (1.1) = (2.1), this last boundedness implies condition (2.1%),
since p’ < ¢'.

equivalent to I, : s

The implication (1.1) = (2.2). Let us fix nonnegative integers N, M > 1
and define the function

9N, (2)
N T P A

— k(a—n) % Pq 1—p/ od
Z ’ (/2'“N0<|2|<2’“+N0 U(Z)dz) (/2kNo<|2|<|1:|v ’ (Z)dz)

k=—M
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!

x pl=P (.’,E)]I2k—N0 <|e|<2k+No ((I;)
Here Ny > 1 is the integer (N) involved in condition (2.2). Obviously

(4.1)
N 1

B(N,M)= Y [2’““—")(/2 u(z)dz)qx

k1 k=No < |2| <2k +No

1qr
(/ vl_p,(z)dz) g ] < 00
2k—No <|z|<2F+No

and it can be assumed that B(N, M) > 0. The points keys for obtaining (2.2)
are

(4.2) /ER” g (T)v(z)de < coB(N, M)
and
(4.3) / o a0 (@u(a)de > BN, M)

for some constants ¢y, ¢ > 0 which do not depend on the integers N and
M. Indeed with (4.3) and (4.2), the boundedness I, : L — L% yields

1

(B(N,M))E < c1<B(N,M))
% — 1—1) > 0 lead to

10

This last inequality, point (4.1) and % =

B(N,M) < .

The Muckenhoupt condition (2.2) arises from this last estimate by letting
N, M — oco. At this point, the proof of (1.1) = (2.2) is now reduced to that
of (4.2) and (4.3).

Inequality (4.2) follows after using the definition of gy ar(.), the identity
p(1 —p') +1 = (1 —p'), the identity (3.1) (with h(.) = o' () and v =

No—1
%) and the fact that ye—ng | |cortno(.) = Z Wokri o) j<ortit1(.) almost
I=—No
everywhere. Indeed
n [ dheas(o)ola)ds
R
N()—]. N r
< ¢(No) gk(a—n)r (/ u(z)dz) ! x
lzzNo k:Z—M 267 No <z <2k Mo

.
’ ra ’
/ {/ o!™P (z)dz] TP (2)dx
okt < |z| <2kttt L ok—No < |2 <[]
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N

< ¢(Ny) Z gkla—n)r (/ u(z)dz) ; X

k=—M 2k=No < |z|<2k+No

r
! re !
/ {/ v!TP (z)dz] P (z)dx
2k—N0<|$|<2k+NO 2k7N0<|z|<|1‘|

= c1(No) i gk(a—n)r (/

k=—M 2k=No <|z|<2k+No

u(z)dz) s X

AN
7

_m'
(/ v!TP (z)dz)p .
2k*N0<|Z|<2k+NO

Estimate (4.3) is based on

(4.4) / g (y)dy > 2Fem)i
2k_ND<|y|<2k+NO

o , 41
prq —
(/ u(z)dz) (/ p!™P (z)dz) e
2k—Np <|Z|<2k+N0 2k—Np <|Z|<2k+N0

Indeed from this last inequality it follows that
[ Fags 0" (@)u(e)ds

> o) 3 [ (Tagy20) (@) () da
k=—oc0 2

k=No < |z|<2k+No

N
a—n q
> ¢(No) Z / [/ |z — y| gN,M(y)dy} u(z)dz
ke M 2k—Ng <|x|<2k+N0 Qk—No<|y|<2k+N0
- q
> Z 2k(a—n)Q(/ gN,M(y)dy) (/ u(z)dz)
k=—M 2k~ Mo <Jy|<2M+ o 2k—=No <|z|<2k+No
N
>e Y ot /
k=—M 2k—No < |z|<2k+No
’ q(Er+1)
(/ Ul_p (Z)dZ) pq
2k—N0<|Z|<2k+N0

N . .
o Y [Qk(a—n) (/ u(z)dz) : (/ 1D (Z)dz> ; ]
k=—M 2k Mo <[z| <2k + Mo 2k~ No <|z| <2k+No

= 3 B(N, M).

ptl
u(z)dz) X

To derive (4.4), the point is the identity (3.1). Indeed, for each integer k €
{-M,... N},
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/ gn(y)dy > 275 (/ u(z)dz> " x
2k—N0<|y|<2k+N0 2k—N0<|Z|<2k+NO

/ [/ e (z)dz]ﬁvl_” (y)dy
2k—No <|y|<2k+No LIok—No < |2 <|y|

r

> ke / u(z)dz) ™" x
2k~ No < |z|<2k+No

41

’ ’

(/ v!P (z)dz) E
2k—N0<|Z|<2k+N0

Proof of Theorem 2.2.
Since

(Inf)(z) = A1(z) + (Iof)(z) + As(z)  forall f(.) >0
with
Ai(z) = Tz —y|* " d
() /MSM Y7 f () dy
(L.1)(s) = 4a(a) = | & — " f (y)dy
Lzl<ly|<2|z|

As(z) = — | f () d
() /mmy'm Yo" £ (y)dy,

then to get the boundedness I, : LY — L{ it is sufficient to estimate each of
aq

~Al(z)u(z)dz, i € {1,2,3}, by C / fP(z )dw) , with C' a nonnega-

tive and fixed constant.

Observe that A;(z) < c|z|*™" f|y|<|x| f(y)dy, since i|z| < |z — y| when-
ever |y| < 1|z|. By the Hardy condition (2.1) [which is (3.3) with w(z) =
|z|(®=™4y(z)] and by Lemma 3.2, the conclusion arises since

/ Al ()u(z)dz
< / [/ymz'f(y) ] lel @~ ur)
<cC / e )



218 Y. RAKOTONDRATSIMBA

Note that Az(z) < Cf|1:|<|y| ly|*=" f(y)dy, since $|y| < |z — y| whenever
2|z| < |y|. At this stage the conclusion also follows since

/R AY(w)u(z)da
<o [ [/mqm'y'a " f (y)dy] u(a)da
<c/ 2 (z )_

This last Hardy inequality can be also obtained from Lemma 3.2 by using a
duality argument. Indeed the problem is reduced to inequality (3.2) with g,
p, w(.) and v(.) respectively replaced by p/, ¢, .|~ y1=2" () and w!~7 ().
Therefore (2.1*) yields the corresponding condition (3.3).

The real task is now to prove that

[ Gapatais < o[ @)’

for all f(.) > 0. For this purpose, it is convenient to introduce the following
notations:

By ={zeR" 2" <|g| <21}, Fy ={yeR"; 2" <Jy| < 2¢+?},

1 ,
C(z) = {2z € R™; Z|z| <|2| < 2|z|}, U= sup u(z), Wi = sup v' 77 (2).

2 r€EE} 2EFy,
Then

0P (2) < Wh whenever z € C(z) and = € Ej.

By the Holder inequality and this observation, for each = € Fy,

(Inf)(z)
= </zEC(x) o = 2|t (z)dz> : (/yec(x) |z — y|“_"fp(y)v(y)dy) ’

=a (|x|0‘Wk> ” (/EC(w) = = yla_"f”(y)v(y)dy> %

Yy
1

<altw)”([ el )’

Y

Using this last inequality, the Holder inequality, the Fubini theorem, conditions
(2.4) and (2.5) and finally another Holder inequality, the conclusion arises as
follows

/R(Ifqu

Z/x (I, f)Tu(z)dz

k=—o0 /€L
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= ko ﬁ o la—n gp %
<a 3 (@ow) u [ ([ el o]

x

o0
@ _q =3
< s Z okagr +kn(l p)ukwkp’x
k=—o0

[ s romome]

o0
@ _q =3
< s Z okagr +kn(l p)ukwkp’x
k=—o0

[, ([ i)

g
7

cy Z 2ka7+kn(1—;)+ka;ukwkp ( fp(y)v(y)dy>
k=—o0 yEF

aq
P

IN

Tl

e 1 1749
=ci ) [an[ﬁrﬂuﬁwﬁ] </yeFk fp(y)v(y)dy>

k=—o0

o

< Y A ( [ Puy)
<o zﬁm)l_%( > [ rewem)

j=—00 k=—o00 Y YEFk

o0
2Ic—l<|y|<2k 2Ic<|y|<2k+1

k=—o00

/ f”(y)v(y)dy>
2k+1 < |y| <2k +2

= c; A (/]R” f”(y)v(y)dy> %-

Proof of Proposition 2.3.

Tl

aq
P

< C4AT(1_%)<

q

P

For the necessary part, by Theorem 2.1, the Hardy conditions (2.1) and
(2.1*) and also the Muckenhoupt condition (2.2) are implied by the bound-
edness I, : L? — L%. Here, the integer N > 1 involved in condition (2.2)
and (2.3) can be chosen as a common constant resulting from the assumptions
u(.), v'?'(.) € H (see definition and (2.6)).

For the sufficient part, by Theorem 2.2, the boundedness I, : LY — LI will
hold whenever the Hardy conditions (2.1), (2.1*) and the slight reinforcement
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Muckenhoupt condition (2.4) are satisfied. Using u(.), v2~? (.) € H then

A(k) < cAn(k) for all integers k.

Here ¢ > 0 just depends on n, «, ¢, p and on a common constant involved
in assumptions u(.), v*~?'(.) € H. This last inequality means that the Muck-
enhoupt condition (2.2) implies the stronger one (2.4), and consequently the
conclusion arises immediately.

Proof of Corollary 2.4.
Proof for the first example. Necessity of conditions i), i), 111). Suppose that
I, :LP? — L1 Then by Theorem 2.1, the Hardy and Muckenhoupt conditions
(2.1), (2.1%) and (2.2) are satisfied.

If 0 < ap, then the Hardy condition (2.1*) does not hold since:

/ |z|(a_")p’v1_p,(z)dz = / |z|(a_%)p’|z|_"dz = 00.

|z[>100 |z|>100

Similarly the Hardy condition (2.1) is not satisfied if (n — a)q < . And the
fact that o + % — % < 0 is an immediate consequence of the Muckenhoupt

)
condition (2.2) since

o0 o0
o0 > Z (A2(k))" > ¢ Z 2*o+3 =31 for some fixed constant ¢ > 0.
k=—oo k=100

Sufficiency of conditions i), ii) and i1i). In view of Theorem 2.2, to get the
boundedness I, : L? — L2, the task is to check conditions (2.1), (2.1*) and
(2.4).

To deal with the Hardy condition (2.1) the idea is to divide the integral
with respect to z into ones on the regions |z| < 3 and |z| > 3. This division
is required because of the nature of the weights u and v, and actually each
region is associated to two integrals. For example, corresponding to |z| < %
we have to evaluate

m=[ ([ wemmma) ([ o) | eee
lz|<3 LM zl<lyl<3 ENE]
and .
Iy = / [/ Ul(z)dz] ’ o1(z)dz
lz|<3 L/|z]<|x]
where u1(2) = u(z) = |2|°~" and o1(2) = v (2) = |2|™" ln_p,(|z|_1) for
2] < 3.

The integral I1; can be bounded just by using (« —n)g + 8 > 0 since

I; < cl/ ln_%(|$|_1) x o1(z)dz < 02/ o1(z)dz = cs.
lz|<3 le]<3
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And I5 is carried by using (3.1) in Lemma 3.1 as

41
Iis = (/ Ul(z)dz) =c4.
|z|<3

The estimates for the two integrals corresponding to the region |z| > % require
the use of i), iii) and 6 < np.

The dual Hardy condition (2.1*) can be checked by using the same argu-
ments as for (2.1). Here the estimates for the two integrals corresponding to
the region |z| < 4 require the use of (3.1) in Lemma 3.1 and 0 < (n—a)gq < f.
And for the integrals corresponding to the region |z| > 1, assumptions 1), i)
and vy > 0 are needed.

To check the condition (2.4) observe that by the definition of the weights

then for some fixed constant ¢ > 0: A(k) < 0 k3r = bt Tl for all k <-4

and A(k) < 2"+3=3] for all k > 1. Therefore condition (2.4) follows from
assumptions 77) and 7).

Finally we will now end with the
Proof for the second example. By duality the boundedness I, : LY. — LI,
holds if and only if I, : IZ — LI with p = ¢, G = p/, 7 = (u*)'~¢
ly|7=" for Jy| <

and 7(z) =

N o=
<

and T = (v*)'"?. Observe that T(y) = { .
_ _ [y~ for Jy| >

2"~ In7P(|2| 1) for 2] < § .
L So using the first example, when v > 0,

2|~ for |z] > 1.

(n—a)p’ =(n—a)g <pB,0<ng =np then I, : LP, — L. (or equivalently
I, : L2 — L1)if and only if a¢’ = ap < 0, v < (n — a)p’ = (n — a)g and
o A T8 8
a—l—p, —a+a<5—q,.
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