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Abstract. In this paper, we first introduce the notions of nonlinear mathemat-
ical expectations and nonlinear martingales via backward stochastic differential
equations(BSDEs) introduced by Duffie & Epstein and Skiadas. And then, we
prove a general nonlinear decomposition theorem. Our decomposition theorem
generalizes Doob-Meyer decomposition theorem.
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1. Introduction

The famous Doob-Meyer decomposition theorem is an important theorem
in stochastic calculus. For many years, various versions of decomposition the-
orems and their applications have been discussed by many researchers, such as
optional decomposition theorem ( El.Karoui and Quneez(1995), D. Kramkov
(1994)]); F-S decomposition theorem ( Follmer and Schweizer(1991); Jacka’s
martingale representation theorem (Jacka (1992)) and Ansel and Stricker ’s
theorem ( Ansel and Stricker(1992)) etc.. In this paper, we first introduce the
notions of general expectations (in short g-expectations), (which usually are
non-additive) and the corresponding g-martingales via a class of backward sto-
chastic differential equations (BSDEs) introduced by Duffie and Epstien and
Skiadas, and then, we study a decomposition theorem for g-supermartingales.
This result extends Doob-Meyer Theorem. Since g-supermartingale discussed
in this paper usually is non-linear, thus the classical method is not valid. The
method used in this paper is different from the classical method.

This paper is organized as follows: In Section 2, we present the notions
of g-expectations, conditional g-expectations and g-martingales via a class of
BSDEs introduced by Duffie & Epstein and Skiadas. In Section 3, we study a
decomposition theorem of g-supermartingales.

* This work was partially supported by the National Natural Science Foundation of
China (79790130).
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2. g-expectation and g-martingale introduced via BSDEs

In this section, we first present a BSDE first introduced by Duffie and
Epstein [4], and then, we introduce the notions of g-expectations and g-
martingales.

Let (2,F,P) be probability space endowed with the filtration {F;}:>0
satisfying the “usual hypotheses”. We suppose that Fy is trivial set and

F = Foo = o(JF:). All processes mentioned in this paper are supposed
>0

to be {F;}-adapted. For any given ¢t € [0, 0], let us denote by L*(Q, F;, P)

the set of all R-valued, F;-measurable random variables ¢ such that

El¢| < 4o0.

Let T > 0 be fixed time horizon, we denote by L'(0,T,F, P) the set of all
R-valued, {F;}-adapted processes {¢;} such that

T
E/ |ps|ds < +o0.
0

We identify two processes ¢! and ¢? in L(0,T, F, P), if

T
E/ 1 — 2]ds = 0.
0

Duffie and Epstein [4] introduced the following BSDE:

T
g = E[(€ + / gs(y)ds)|F], 0<t<T (2.1)

Here ¢ € LY(Q,F,P) isgiven and g : [0,T] x Q@ x R — R is B([0,T]) ® F ®
B(R)|B(R) measurable function satisfying the following conditions:

(i) g is uniformly Lipschitz with Lipschitz constant u, i.e. there
exists a constant g > 0, such that Vy' € R, (1=1,2),
l9:(W") — ey < ply™ —y?l, VEE€[0,T] as.
(ii) Forany ye R,{g:(y)} € L'(0,T,F,P).
(H.1)
The following existence and uniqueness theorem is a special case of [2]:
Lemma 2.1. Assume (H.1) holds on g, if £ € L*(Q,F, P), then

(1) BSDE (2.1) has a unique RCLL adapted solution {y;} in L* (0, T, F; P).
(2) Particularly, if we choose g;(y) := awy + Hy, then the solution (y;) of
linear BSDE(2.1) can be given by

T T s
Yr = E[fexp(/ asds) + / Hsexp(/ ardryds/Fi], 0<t<T
t t t
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Where {a:}+>0 is a bounded process and {H;} € L*(0,T,F, P).

The following Lemma is called comparison theorem which plays an impor-
tant role in our main results.

Lemma 2.2. Under the assumption of Lemma 2.1, let (y;) be the solution of
BSDE (2.1) and (y;) be the solution of the following BSDE:

T
7= BlE+ [ a9l 0<i<T, (2.2)
t
where ¢ € LY(Q, F, P) and g € L*(0,T,F, P).
(1) If¢€ > €, g:(y,) > g, a.s., Vte€[0,T), then
Yt Z yt’ Vt € [O,T)

(2) (Strict comparison theorem) If ¢ > € (i.e. £ > € a.s. and € # £),
then
Yt > Yt, tE[OaT]'

Proof. Set
U=y =Ty E:=E6—&  Hyi=g(Hy) — s
9s(Ws)=9sWs) = .
as e ys_gs b lf ys # yS 7
0, otherwise.

Obviously, for all ¢ € [0,T], |a;| < p for the reason that g satisfies uniform
Lipschitz condition. With the above notations, (%) can be viewed as the
solution of the following linear BSDE:

N T
5= BE+ / (a5, + H.)ds|F] (2.3)

Solving linear BSDE (2.3), by Lemma 2.1(2), we can obtain

5 = E[(Eexp(/tT asds) + /tT H, exp(/ts a.dr)ds)|F]. (2.4)

It then follows by € > 0 and H, > 0 for all t € [0,T] that the proof of (1) is
complete.
Note that for all ¢ € [0,T], |a| < p, from Eq.(2.4), we can deduce that

U > B_M(T_t)E[a]:t] > 0.

The proof of (2) is complete. O

We now introduce the generalized notions of g-expectation and g-martingale
via BSDE(2.1).
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Definition 2.3. Suppose ¢ € L}(Q,F, P) and (H.1) holds on g. Let {y;} be
the solution of BSDE (2.1), we call E{ (§) denoted by

B{p(€) =y, 0<t<T

the conditional g-expectation of random variable £ on time interval [¢, T] gen-
erated by g, in short conditional g-expectation; if t = 0, we call Ey r(§) theg-
expectation of ¢ on time interval [0, T].

Remark.

(1) The above definition is based on the following observation: For any
¢ € LY(Q,F, P), if we denote the conditional mathematical expecta-
tion of random variable & by y; := E[£|F], then conditional mathe-
matical expectation E[€|F;] is the solution of BSDE(2.1) under g = 0.
Moreover, E£ = yq.

(2) If g is nonlinear, then ( conditional) g-expectation is nonlinear too, for
this reason, we sometimes call g-expectation nonlinear mathematical
expectation.

If we further assume that g satisfies the following condition:
gt(o) =0, Vie [OaT]a (H2)

then,by the above definitions, we have

Lemma 2.4. Assume ¢ € LY(Q,F,P), (H.1) and (H.2) hold on g, then for
any r € [0,T], let n := Eff_,w(f’), then n € L*(Q, F,, P) is the unique random
variable such that

E§ 1(148) = Ef ,(1an), VA€ F; (2.5)

Proof. Let (y:) be the solution of BSDE:

T
" ZE[(£+/t ga()ds)| 7).

For any A € F,, multiplying 14 on both sides of the above equation and
then observing y;14 on [r,T]. From the assumption (H.2), we can deduce the
following relation

9:(1a(W)y) = ge(x)1a(w), VY(t,w,y) €[0,T] x Q2 x R.

Note that Vt € [r, T, y:14 is Fy-adapted and y;1 4 solving the following BSDE
on [r,T]:

T
5o = E[(€14 + / 9s(5)ds)| 7], t€[0,T).
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Let (9¢) be the solution of the above BSDE, immediately, by Lemma 2.1 ( the
unicity of solution), we have

ysla =ys,Vs € [r,T], (2.6)

Set 1 := y,., obviously n € L*(Q, F,, P). According to the definition of
E§ 1(14€), applying equality (2.6), we have

B r(1a8) = 9o = Eq . (4r) = Ej . (yr1a) = Ef . (n14).

We now prove 7 is unique. Assume that there exists another 7 € L(Q, F,, P)
such that for any A € F,.,

Eg . (n1a) = Ef . (14) (2.7)

but P(n #7) > 0.
We can choose A := {n # 7}, obviously A € F,, it then follows by Strict
Comparison Theorem (Lemma 2.2(2)) that

Eg,r (nlA) 7& Eg,r (ﬁlA)

which is in contradiction to (2.7). The proof is complete. [

The following counter-example is to show that equation (2.5) does not hold
without the assumption of g(0) = 0.

Example. Suppose ¢ € L}(2, F, P), let g = 1, we choose 7 = % > 0. Then
there is no n € Ll(Q,]-"%,P) satisfying(2.5).
In fact, if there exists such 7 satisfying (2.5),i.e.

Eyr(€1a) = Ey r(n14), VAE Fr.

then by Definition 2.3, Eé,T(flA) = E(£14+T) and Eé r(nla) = E(771A+%)-
Thus T
E(§1a+T) = E(ila+5), VA€ Fy.

In particular, let A := (), then from the above equality, we have T' = %, which
is impossible.

Remark. Similar to the classical mathematical expectation, we can call n de-
fined in (2.5) the condtional g-expectation of ¢ in the interval [r, T|. However,
motivated by Lemma 2.4 (ii), we can define the more general conditional g-
expectation without the assumption (H.2).

201
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Using conditional g-expectation, we can naturally define g-martingale just
as in the classical case. To do this, we first introduce the solution of BSDEs
on a random variable interval.

Assume that 7 is a stopping time with value in [0,7], in this paper, we
denote the solution of the following BSDE on random variable interval [0, 7] :

ye = E[(£+/T 0s(:)ds)| 7], 1€ [0,7]

t
in the sense of

T
yr = E[(¢ +/ 1jo,r1(8)gs (ys)ds) | Fe], ¢ €[0,T]
t
Similar to Definition 2.5, we denote E7 (&) by

Etg,T (5) =Yt
Definition 2.5. A right-continuous adapted process {X;} is called g-martin-
gale on [0,T] ( resp. g-supermartingale, g-submartingale ), if for any t € [0,T],
E|X:| < oo and for any stopping times o and 7 ,if 0 <o <7 < T, then
Eg—,'r(XT) = Xo, ( resp <X,, > Xo‘)'

A g-supermartingale {X;};>o is said to be of class (DL), if {X,} is of class
(DL).
Remark.

(1) For notational simplicity, we adopt the above (strong) definition of

g-martingale, In fact, we can adopt the following ( weak ) definition
similar to the definition of the classical martingale i.e.

EY (Xy) = X,, (resp. <X, >X,); VO<s<t<T.

Chen and Peng have showed that the above definitions are equivalent
under some assumptions on g (see [3]).

(2) Obviously, if g = 0, then a g-martingale is a classical martingale.

(3) g-martingales usually are nonlinear, i.e. g-martingales usually are
non-additive.

3. Nonlinear Decomposition Theorem for g-martingales

In this section, we assume that { X;} is a right continuous g-supermartingale
such that EfOT | X |ds < co. thus, for each n > 1, the following BSDE:

T
W =EBl¥r+ [ () (X =) )as|F) DTl )

has a unique solution (y;'). Moreover, by Comparison Theorem (Lemma 2.2),
for each t € [0,T], {y?} is increasing as n increases. Where X := max{X, 0},
no loss of generacity, in this section we assume g;(0) = 0.

The following Lemma shows that {y}'} is bounded by {X}}.
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Lemma 3.1. Let {X,};>¢ be a right continuous g-supermartingale and {y}'}
be the solution of BSDE (3.1), then for any n > 0, we have

yi < Xy t€0,T]. (3:2)

Moreover,
lyi'| < |Xe| + | B p(X7)]. (3.3)

Proof. Obviously, (3.2) holds when ¢ = T, we now prove (3.2) holds when
€ [0,T). We argue by contradiction. If {X;} is not the case, since {X;}
and y;' are right continuous, thus, there exist » > 1 and 0 > 0, such that the
measure of
{(w,t): yi — Xy =0}

is a non-zero subset of 2 x [0,7], we denote by the following stopping times:

o :=inf{t > 0;y; — Xy > 6} AT}
T:=inf{t > oy < Xi}AT.

Since y;* — X} is right continuous, we have

(i) yr>X,+9, on{oc<T}
(i) X, >yr.

Obviously, 0 < o <7 < T and P(r > o) > 0, otherwise, if P(7 = o) = 1,
then () is in contradiction to (7i).
Furthermore, according to Comparison Theorem, from (i7), we can deduce
that
B (X,) > B2 (47).

T

Noting that
yy — X >0 on [o,7).

Thus, from equation (3.1),

Y2 = E[Xr + / (0, (1) + (X, —y™) ) ds| F ]

= B2 + [ (0u(u) + (X — ) ds|
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On the other hand, since {X;} is a g-supermartingale, thus
XO' Z Eg',T(XT)'

Consequently,
Xo > ES (y7) > vy

This is in contrary with (). Hence, we obtain (3.2).
From (3.2) and Lemma 2.2, we have
Xy > yp > Ef 7(X1)

which implies (3.3). The proof is complete. O
Set .
Ay = n/ (Xs —y")Tds, 0<t<T, (3.4)
0

then, BSDE (3.1) can be rewritten as:

T
W= EXr+ Ap+ [ g DdsIF] - AT 01T (39
t

We have the following Lemma:

Lemma 3.2. If{X;};> is a right-continuous g-supermartingale of class (DL),
then {A%},,>¢ defined in (3.4) is uniformly integrable in L*(Q, F, P).

Proof. see Appendix.

Lemma 3.3. For the above (y}') and A7., we have
(1) There exists a constant C, which is independent of n, such that

EAT < C;
(2) For each t € [0,T], lim,—, ) = X;.

Proof. (1) is from Lemma 3.2. Now let us prove (2)
According to (3.2) and (3.4), applying the above result, we can obtain

E/ |X _ys|dS_E/ _ys

EA%
< — —=0 asn— oo.
n n
which implies
lim y" =X
n— oo

in L1(0,T,F, P), it then follows by the fact that (X;), (y?) are right-continu-
ous in [0,T) that we can prove (2). O

The following is adopted from [11].
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Lemma 3.4. Let {X*(:)} be a family of RCLL adapted increasing on [0,T]
(i.e. for any t € [0,T), X*(t) + X(t)) such that X (t) = b(t) — A(t), here b(-) is
a RCLL adapted process and A(-) is a increasing process with A(0) = 0 and
EA(T) < co. then, X(-) and A(-) are also RCLL processes.

Proof. See Appendix.
The following theorem is so-called nonlinear decomposition theorem.

Theorem 3.5. If{X,} is a right continuous g-supermartingale of class (DL),
then there exists a unique RCLL increasing {A;}, such that {X;} satisfies the
following BSDE:

T
X, = E[Xr + Ar +/ 05(X,)ds|F.] — As, t e [0,T].
t

Proof. For each n > 0, let (y*) be the solution of BSDE:
T
= BXr+ A+ [ 0.(u2)ds| 7] - A7
t

Where A} = nfg(XS —y™)*ds.

Obviously, for each n > 0, { A} is a continuous and increasing process. By
Lemma 3.2 and Lemma 3.3(1) and the Dunford-Pettis compactness criterion
( Dunford & Schwartz (1963), P. 294), the set { A%}, >0 is relatively compact
in the weak topology of L'(Q,F, P). Thus, there exists Ar € L'(Q, Fr, P)
such that A% weakly converges to A in L!(Q, F, P). Moreover, it is easy to
check that for each t € [0,T], E[A%|F;] weakly converges to E[Ar|F:], (see
Problem 4.11, P.27 [7]),

Denote A; by

T
A, = E[Xr + Ar + / G (X)ds|F] - X, te0,T]  (36)
t

We only need to check that, for each t > 0, A} also is weakly converges to A;.

In fact, since EfOT ly" — X4|ds — 0 as n — oo, thus

T T
E[/ g9s (Y2 )ds|F] — E[/ 9s(Xs)ds|F;], weakly in L'.
t t

Applying Lemma 3.3(2), we have

T
AP = B[Xr + A% + / 9,5 ds|Fe] — i
t
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weakly converges to

T
E[X7 +AT+/ 9s(Xs)ds|F] — Xp = Ay
t

That is .
X =E[Xr+ Ar + / 9s(Xs)ds|F;] — As.
t
Obviously (A;) is an increasing process with Ag = 0 such that EAr < oo.
From Lemma 3.4, (A;) is RCLL process. The proof is complete. [
Remark. Obviously, if g = 0, let M, := E[(X1 + Ar)|F], then Xy = My + A,

which is Doob-Meyer decomposition theorem.

4. Appendix
The proof of Lemma 3.2 is similar to the classical case:
The proof of Lemma 3.2.
Let ¢ > 0 be fixed, and set

=inf{t > 0; A} > c} AT

Tg:inf{tZO;A?> g}/\T.

then 0 < A%, < ¢ {70 <T} C{rg <T} and (A} — AT )1(7pcry 2 5-
Applying the classical optional stopping theorem to ]§SDE (3.5),

T
iy = BXr + A7+ [ gu(u)ds| ] - A% (A1)
Noting that {A}. > ¢} = {77 < T}, applying inequality (3.2) and (3.3), we
can obtain, from (A.1)

T

EATlansg < B (yfcn — X1 — / gs(y?)ds> Lrner) +cP(ry <T)

T
<B(Xy ~Xr— [ )i s er) + cP(T < T)

Te

T
<E (XTg — X7 +u/ Iy?|d8> Yrr<q) +cP(1! <T)

n
Te

<FE

T
X’rgl - XT + ,U/ (|Xs| + |Eg,T(XT)|)dS] 1[7'?<T]
0

+eP(r" < T) (A.2)
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On the other hand, from (A.2),
T
Elyn — X — / 95y )ds]Lirn <y = E(AT — A%n)1(rn <1}
T 2 2 2

> E (A?ﬂ - A?g) Lrr <t

> —P(t} <T).

N O

Applying (3.2) and (3.3),
T
cP(rE < T) < 2B Xy — Xr ot p [ (.| + | B (Xr))dsly <)
2 0 2
Consequently, from (A.2)
T
AL ag50 < BXop = Xr 1 | (X + B2 (Xr) sl Lisp e
0

T
L 2E[X,y — Xr 4 g / (X, | + | (X7) s g <13
: 0 P (A3)

Note that {X;} is a g-supermartingale of class(DL), and {X;} and Ef ,(Xr)
belong to L(0,T, F, P).
Thus, from BSDE (3.5), we have

EA™
P(th < T) = P(A% > ¢) = L

C

1 T
— B~ Xr— [ 0.
0

1 T
< LBIXy— Xrtu / (1X,| + | B 3(Xr))ds]
0

c
— 0 as c¢?T +oo (A.4)

Similarly,
P(Tg <T)—0 as c7Too.
Combining (A.3) with (A.4), we can now conclude that {A%.},5¢ is uni-
formly integrable. [
The proof of Lemma 3.4.

Since the processes b(-) and A(-) have paths with left limits, so is X (-), thus
we only need to prove that X (-) is right-continuous.
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Since for any t € [0,T), A(t+) > A(t), thus

X(t+) =b(t) — A(t+) < X(b). (A.5)

On the other hand, for any ¢ > 0, there exists a positive integer j = j(0, 1)
such that X (t) < X7(t) + 4. but X7(-) is RCLL, therefore, there exists a
positive integer ey = €o(j,t,0) such that X7(t) < X7(t + €) + d, Ve € (0, ]
thus, for any € € (0, €],

X(t) < XI(t4€) +20 < X(t+¢€) + 20.

in particular, X (t) < X (t4) + 20 and X (¢) < X (t+). It then follows by (A.5)
that we can obtain that X (-) is right-continuous. O
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