SUT Journal of Mathematics
Vol. 34, No. 1 (1998), 75-90

THE DEGREE THEORY OF A NEW CLASS OF
OPERATORS AND ITS APPLICATION

Yan Baogiang

(Received July 29, 1996; Revised December 24, 1997)

Abstract. This paper defines a concept of a semi-k-set-contraction operator,
and establishes a degree theory for it. Asits application, we discuss the existence
for the solution of two-point boundary value problems for nonlinear second order
integro-differential equations in Banach spaces.
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§1. INTRODUCTION

It is well known that the degree theory for the strict-set-contraction operator
and the condensing operator has many applications to the existence of the
solutions of some equations(see [1], [2], [3], [4]). However, some important op-
erators are not strict-set-contraction operators or condensing operators. Now
we give an example.

Let E be a Banach space, C([0, 1], E) = {z, z is a mapping from [0, 1]
into E and z(t) is continuous at every ¢ € [0, 1]}. Obviously C([0, 1], E) is a
Banach space with norm ||z|| = max{||z(¢)||, ¢ € [0,1]}. For z € C([0, 1], E),
let

1
(Az)(#) :/0 G1(t, 5)[x(s) + g(x(s))]ds, (*)

where g € C(E, E), g(D) is relatively compact for any bounded D C E and
G1(t, s) = min{t, s}.

It is difficult to prove that A is a strict-set-contraction operator or a con-
densing operator from C([0,1], E) into C(]0,1], E). So it is necessary to es-
tablish degree theory for the operators such as A defined by (*).
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Now we define a new class of operators.

Let I be a bounded, closed interval of real numbers. Assume that C™ (I,
E) = {z, z is a mapping from [ into E and z(t) is m-times continuously norm
differentiable(m > 1).}. Obviously C™(I, E) is a Banach space with norm
lalln = max{lzllo, ['lo, -+, 2™ o}, here ally =max{[=(#)], ¢ € I}.

Assume that A is an operator from a bounded set S C C™(I, E) into C™(I,
E), and a(S) denotes the Kuratowski measure of noncompactness in C™(I,

Now we give a new definition.

Definition 1. A: S — C™(I, E)(S:bounded) is called a semi-k-set-contraction
operator if A is a bounded, continuous operator, (48)(™ is equicontinuous on
I, and
o(A(D)) < ka(D)

for any bounded D C S with equicontinuous D™, where 0 < k < 1 is a
constant, (AS)™ = {y, y(t) = (Az)™(t) for t € I, z € S.}. And A : C™(I,
E) — C™(I, E) is called a semi-k-set-contraction operator if the restriction
A: S — C™(, E) is a semi-k-set-contraction operator for any bounded
SCC™I, E).

It is easy to see that this definition is different from that of the k-set-
contraction operator and that of the condensing operator(see[l], [5]). For
example A defined by (*), A : C(I, E) — C(I, E) and for any bounded set
S CC(I, E), AS is bounded and equicontinuous. Moreover, by the following
lemma 1, for any equicontinuous subset D C S, we have

a(AD())
1
= o] Gilts)lals) +g(a(s))ds,z € DY)

_ / L Gu(t, 9)[a(D(s)) + alg(D(s)))ds
_ /OlGl(t,s)a(D(s))ds

1
< [ Git.s)dsa(D)
0
< Za(D).
By lemma 2, we have
a(AD) < %a(D).

. .3 . . .
So A is a semi-—-set-contraction operator. In section 2, we establish the degree

theory for the semi-k-set-contraction operators and prove some fixed point
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theorems. As their application, in section 3 we discuss the existence of the
solution of two-point boundary value problems for nonlinear integrodifferential
equations in Banach spaces.

The following lemmas are necessary.

Lemma 1 (see[3]). If S C C(I, E) is bounded and equicontinuous, then

a({ / s(t)dt,z € SY) < / a(S(t))dt. (1)
I

I

Lemma 2 (see[2]). If S C C™(I, E) is bounded and S is equicontinuous
on I, then

a(S) = max{sup{a(S(t)),t € I}, sup{a(S'(t)),t € I},
-, sup{a(SM(t)),t € T}}.

§2. ESTABLISHMENT OF THE DEGREE THEORY

Before establishing the degree theory for the class of the semi-k-set-contraction
operator A, we give some lemmas. Let Q C C™(I, E) be open and bounded,
and A : Q — C™(I, E) a semi-k-set-contraction, f = id — A, where id denotes
the indentity operator. Then f is called a semi-k-set-contraction field.

Lemma 3. Assume A : Q — C™(I, E) is a semi-k-set-contraction operator,
then
1) f is proper, i.e., f~1(D) is compact for any compact set D C C™(I, E);
2) f is a closed mapping, i.e., f(9) is closed for any closed set S C €.

Proof. 1) Let D; = f~'(D)(D; C Q), then D; C A(D;) + D. Since D™ and
A(D7)™) are equicontinuous on I, Dlm) is equicontinuous on I. Consequently,

a(Dy) < a(A(Dy)) + a(D) = a(AD;) < ka(Dy).

It is easy to see that «(D1) = 0. So D is relatively compact. Consequently,
D1 is compact.

2) Let y, € f(S), yn — yo € C™(I, E). We will prove yy € f(S). Suppose
that y, = f(zn), zn € S. Let So = {vo, Y1, y2, ---.}. Obviously Sy C C™(I,
E) is compact. By the proof of 1), f~1(Sy) € C™(I, E) is compact. So there
exists a subsequence {z,,}, ,, = o € C™(I, E). Since S is closed, zg € S.
By the continuity of f, yn, = f(zn,) = f(x0). Consequently, yo = f(zo). So
f(S) is closed. The proof is complete.O
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Lemma 4. If D C C(I, E) is bounded and equicontinuous on I , then ¢o(D)
is bounded and equicontinuous on 1.
The proof of lemma 4 is routine and may be omitted.

Lemma 5. Let {S;} C E be bounded, closed and S1 2 S D S32---2 5, D

e Sy £ 0n=1,2,3, .. If a(S,) — 0, then S = .OF?ISi is a nonempty
1=

compact set.

This Lemma is the exercise 4, page 53, in [1]. In what follows, we give the
definition of the degree for a semi-k-set-contraction field.

Definition 2. Let Q C C™(I, E) open and bounded, 4 : Q — C™(I, E) be
a semi-k-contraction operator , 0 < k < 1, f =id — A.

(1) Assume that 8 € f(0Q). Let D; = ¢o(A(Q)) and D,, = co(A(D,_1 NQ)),
n=23---.

1) If there exists an ng such that D,, = (), then we define that deg(f, 2,
0) = 0.

2) Now we suppose that D, #0, n=1, 2, ---. So D, NQ is bounded and
closed(n =1, 2, ---.). Let D = .OF?I D,,. Then D is bounded, convex, closed

1=

and nonempty as we show below. Ob_viously Dy D Ds. If D,,_1 D Dy, then
D, =c(A(D,-1NQ)) Deo(A(D,NQ)) = Dypy1. So Dyy—1 D Dy, n =2, 3,
.--. By lemma 4, (D,,)(™ is equicontinuous on I and

a(Dy) = a(A(D, 1 NQ)) < ka(D, 1NQ) < ka(D,_1).

So a(Dy) < k" 'a(Dy). By k < 1 and lemma 5, we know D is a nonempty

compact set. Because of D,, 1NQ D D, NQ, D,NQ# 0 and (D, NQ) — 0,

we know DNQ = ( OF?I D,,) N is nonempty and compact. On the other hand,
n=

from

A(D, NQ) C@(A(Dy_1NQ)) = D,

we have - -
A(DNQ) C mlA(Dnmﬁ) c N D,=D. (2)
n=

n=1
Since D is compact, A : DNQ — D is completely continuous. So by the
extention theorem of completely continuous operator(see[l], page 44), there
exists a completely continuous operator A; : @ — D such that A;z = Az for
every € DN Let fi = id — A;. Tt is easy to see that 0 & f1(9Q). So the
Leray-Schauder degree degyg(fi1, €2, 8) can be defined. Let

deg(f,Q,O) = degLS(flaan)a (3)

where degpg(f1, 2, 0) denotes the degree of completely continuous operator
field f1 = id — Ay. It is easy to find what we defined is independent of
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the choice of fi. In fact, let Ay : Q@ — D be another extension of A, and
fo =id — As. Let H(t, ) = v —tAjz — (1 —t)Agz, 2 € Q, 0 < t < 1.
We will prove H(t, z) # 0 for t € [0, 1] and = € 02. On the contrary,
if there exist ¢y, 0 < to < 1, and 2y € 9 such that H(tg, z9) = 6, i.e.,
xo = toAr1zo + (1 — t9)Azxg. Since Ajzp € D, Asxg € D and D is convex,
we know 29 € D. So xg = tgA1xo + (1 — to) Asxz:p = Axg. This contradicts to
0 & f(02). Hence

degps(f1,2,0) = degps(f2,$2,0). (4)
(2) Suppose p € f(09Q). It is easy to see 0 & (f — p)(092) and set
deg(faQap) = deg(f _paan)' (5)

Now we have successfully defined the degree deg(f, €2, p) for a semi-k-set-
contraction operator A.

Remark 1: If A has a fixed point 2’ € Q, we have ' € D, NQ # ), n =1, 2,
---. So the fixed point set F' is also non-void with F C DN ).

Remark 2: We can notice the method of establishing {Dy,}, in definition 2
is same as that of {Q,}, appearing on page 107 in [5].

Lemma 6. Assume that A is a semi-k-set-contration operator as in definition
2, f=id— A, 0 ¢ f(00), and 2) of Definition 2 is satisfied. If B: Q — S is
continuous with Bz = Az for all z € SNQ, where S O D(D is the same as in
the definition 1) is compact and convex with A(SNQ) C S. Let g = id — B,
then

deg(faﬁag) = degLS(gagao)' (6)

Proof. Assume that Ay and f; are such as those of 2) in definition 2. Let
H(t,z) =x —tAjz — (1 —t)Bzx

forx € Q2 and 0 <t < 1. Then we have H(t,z) # 0 for z € 92 and 0 <
t < 1. In fact, suppose that H (ty,zp) = 6 for zy € 992, 0 < ¢y < 1. Since
S D D is convex, zg = toAi1zo + (1 — tg)Bzy € S. So Bxy = Az, xg =
toA1xg + (1 — to)A(IIO. From Azg € Dy and A1z9 € D C Dy, we have zy =
toAi1zo + (]. — tU)AIL‘U € Di. So Axg € Do, Aixzg € D C Ds. Consequently
xo = toA1xo+(1—1t9) Az € Do. Proceeding as before, we have xg € Dy, (n =1,
2, 3, ---). Therefore zy € D. So we have Ajzy = Axg, o = toAzy + (1 —
to)Axg = Axg. This contradicts 6 & f(99). So

degys(g,9,0) = degs(f1,92,0).

Thus the proof is complete. O
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Theorem 3. The degree of a semi-k-set-contraction field defined in Definition
2 has the following properties:

1) deg(id, 2, p) =1 for p € §;

2) deg(f, Q, p) = deg(f, Q1, p) + deg(f, Q2, p) whenever Q1, Qs C Q are
open with Q1 NQy =0, p & F(Q\(Q1 UNy));

3) deg(id — H(t, -), Q, p) = const for all ¢t € [0, 1] whenever H(¢, -) is a
semi-k-set-contraction operator for all ¢t € [0, 1] and as t — ¢, for any to, H(t,
x) converges to H (ty, ¥) in C™(I, E) uniformly in z € Q, where p € hy(09),
hy =id — H(t, -);

4) if deg(f, ©,p) # 0, then the equation f(x) = p has a solution in €.
Moreover, set g = id— G, where G : Q@ — C™(I, E) is a semi-k-set-contraction
operator. Then

5) deg(f, 2, p) = deg(g, Q, p) whenever G|sq = Alsq;

6) deg(f, 2, p) = deg(f, Q1, p) for every open subset 2y of Q such that
P FE—);

7) deg(f, €2, -) is constant on every connected subset of C™ (I, E) — f(99).

Proof. We might well suppose that p = 6. Since 1) is same as the normality
of strict-set-contraction field in [5], we can omit the proof. First we prove 2).
We discuss three possibilities.

1’ Suppose 2) of (1) in definition 2 for £2; and €2 is true. Obviously 2) of
(1) in definition 2 for © is true. Now we get

DONQ #0, DONQ#0, DNnQ#0, DV CD, D?CD,
AMDY NG) c bW, ADPNQ,) C DB, ADNQ)C D,

where DY) and D®) are obtained as D in 2) of (1) in definition 2 for Alg, and
Alg, respectivelyt.. And D is the same as in 2) of (1) in definition 2 . Let

A1 : Q — D is the completely continuous operator as in 2) of (1) in definition
2, and f; =id — A;. According to (3), we get

deg(f,2,0) = degis(f1,2,0).
By virtue of lemma 6, we have

deg(f,€21,0) = degys(f1,1,0), (45)
deg(f, 9259) = degLS(fla Q259)'

By virtue of the degree theory of Leray-Schauder, we get

degs(f1,9,0) = degrs(f1,21,0) + degrs(f1,Q2,0).

According to above conclusion, we get

deg(f, Qa 0) = deg(f, Qla 0) + deg(fa Q?a 0)
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2’ Suppose that one of ©; and Q9 satisfies 2) of (1) in definition 2(for
example, 1), one of Q; and 2y satifies 1) of (1) in definition 2(for example,
23). Obviously 2 satisfies (1)2) in definition 2. Therefore

deg(f,€22,6) = 0.
By virtue of lemma 6, we have

deg(fa Qla 9) = degLS (flﬂ Qla 9)3

where f1 is as in 1’. Now we will prove

degLs(fl, QQ, 9) =0.

In fact, if degp g(f1,22,0) # 0, then there exsits an zg € 2 such that fi(zg) =
0, i.e. xp = Aizg € D. So Ayzy = AIEU, 9 = Axp. By the Remark 1, Q5
satifies 2) of (1) in definition 2. This is a contradiction. Now by (**), we have

deg(f,©2,0) = deg(f, 0, 0) + deg(f, 22, 0).
3’ Suppose Q1 and Q, satisfy 1) of (1) in definition 2. Now we have
deg(f,1,0) =0, deg(f,Q9,0) =0.
By the Remark 1, 6 ¢ f(2; UQs). Hence, 8 ¢ f(Q). Then we have
deg(f,€,0) =0.

So
deg(f7 Qa 9) = deg(fla Qla 9) + deg(fla Q?a 9)

And Since the proof of (2) includs that of (4), we can omit the proof of (4).
Next we prove 3). First we need to prove H([0,1] x ) is bounded. In fact,
assume that there exists a sequence {t,} C [0,1] and a {z,} C Q such that

We might as well suppose that ¢, — 5. We have
[H (tny Zn)llm < N H (tn, n) — H(to, Tn)|lm + [|1H (to, Zn) || m- (9)

Since H (o, -) is a semi-k-set-contraction operator, || H (to, )|m is bounded.
And because ||H (t,, ) — H (ty, z)|| = 0(n — +00) uniformly inz € Q , | H (¢,
Zn) — H(to, Zn)||m is bounded. So ||H (ty, )| is bounded. This contradicts
(9). Consequently, H ([0, 1] x Q) is bounded. Let D} =co(H([0,1] x Q)), and
D} =eo(H([0,1]x (2N D 1))),n=2,3,---. Obviously Df D D5. If D¥ | D

n—1 n—1 =
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Dy, then D} = @o(H([0,1] x (D;;,_; NQ)) 2 @(H([0,1] x (D NQ))) = Dy ;.
SoD;_; 2Dy, n=2,3,---. We need to prove D;;( m)
First we will prove that Df(m) is equicontinuous. From lemma 4, we have only
to prove that H ([0, 1] x ©2)(™) is equicontinuous. Assume that H ([0, 1] x £2)(™)
is not equicontinuous. Then there exists an ¢ > 0, a subsequence {z,} C
H([0,1] x Q) with z, = H(tn, yn), and [t1, — ton| <  such that

is equicontinuous on 1.

|25 (t10) = 25 (b2,0)| = e (10)

We might as well suppose t, — tg, then we have

1H (tn yn) ™ (t1,0)) — H (£, y0) ™ (t2,0))]]
“H( nayn) (tl,n)) H(thyn) (tl,n))H
HIH (to, yn) ™ (t2,n)) — H (tn, yn) ™ (t2,0))]]
HIH (t0, yn) ™ (t1,0)) = H(t0, yn) ™ (2,0))
= Lnp+Dy,+I3,.

IN

And because ||H(t,, z) — H(to, 7)]|] — 0(n — +o0) uniformly in z € Q,
we have I}, + Iz, — 0,n — +oo. Since H (tp,-) is a semi-k-set-contraction
operator, we have I3, — 0,n — +oo. Then I, + I, + I3, — 0,n — +o0.
This contradicts (10). By lemma 4, D™ is equicontinuous on I. By the
monotonity of {D;‘L(m)}, D;"L(m) is equicontinuous.

For given t € [0, 1], let D1 (t) = co(H(t,Q)),

Dp(t) =co(H(t,Dp_1(t)NQ)), n=2,3---. (11)

Obviously Dy (t) € D, —1(t),n = 2,3,---. If there exists an ng with Dy, nQ =
() for every, then D, (t)NQ =0, € [0,1]. Then we have

deg(hy,Q,0) =0, t€]0,1].

Now suppose D NQ #O(n=1,2,--+).

Take any € > 0 and ¢y € [0,1]. Then for each n > 2 there exist a finite
covering {S;}_, such that H(ty, D} _,NQ) C igl S; with d(S;) < ka(D}_,) +
g, i=1,2,---,7 since a(H(ty, D;;_, NQ)) < ka(D;_,NQ) < ka(D;_;). On
the other hand, from the assumption, there is a ¢ > 0 such that [|H (¢, z) —
H(to,z)|| < € for all x € Q when |t —ty| < . Let Sf = {z,d(z,S;) <
e}, I(to, 8) = (to — 0,0 + 6) N[0, 1]. So H(I(ty,d) x (Di_,NTQ)) C Z_Ql Se,

d(S7) <d(S;) +2e < ka(D};_) + 3e.
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We have a(H (I(ty,d) x (D;_;NQ)) < ka(D}_,) + 3. By the compactness
of the interval [0, 1], there exist ¢; € [0,1], & > 0, ¢ = 1,2,---,s such that

0,1 = O I(t:,5;), and

a(H(I(t;,6;) x (Di_yNQ))) <ka(D:_;)+3e, i=1,2,-+-,5.
So
a(D;) = a((H(0,1] x (D ,N)
= o U H(I(t:,8) x (D;_1 ND)))

= max{a(H(I(t;,8) x (D;_yNQ))),i=1,2,---,5.}
< ka(D;_;)+ 3e.

By the arbitrariness of ¢, we have a(D;;) < ka(D}_;),n = 2,3,---. Con-
sequently, a(D?) < k" 'a(Dj). This implies a(D}) — 0. By lemma 5,

0 .
D* = ﬂl D;; is nonempty, convex and compact(recall that we are now assum-
n=

ing DXNQ # () for n = 1,2,---). By the same proof, D*NQ also is shown
to be nonempty and compact. Since H([0,1] x (D;NQ)) C eo(H([0,1] x

(D;N®)) = Dy € D So H([0,1] x (D*N) € A H((0,1] x (DN %))
c A D;=D"

By the extention theorem of completely continuous function, there exists a
G :[0,1] x Q — D* such that G(t,z) = H(t,z) when (t,z) € [0,1] x (D*N Q).
Let g = x — G(t,z). We will prove deg(h, 2, 60) = degrq(gt, 2,0). It is easy
to see that 0 & g,(09). In fact, if there exist to with 0 <ty < 1, and zy € 99
such that to (IL‘U) = 0. Then zy = G(to,:l?g) € D*. So G(tU,IEU) = H(to,]?()),
xo = H(to,2p). This contradicts 6 & hy(0Q). So 0 & ¢,(09).

(a) Ifthe condition 1) of definition 2 is satisfied for h;, we have deg(h, 2, 60) =
0. In this case, since H(t,z) has not fixed points in Q, G(¢, ) also has not
fixed points in Q. By the theory of Leray-Schauder degree, we have

degrs(gt,2,0) = 0.
(b) If h; satisfies the condition 2) in definition 2, by lemma 6, we have
deg(hy, 2,0) = degys(gt, 2, 0).
Therefore we have
degrs(gt,Q,0) = const, 0<t<1.

Hence
deg(hy,Q2,0) = const, 0<t<1.
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If p # 0, let hy = id— H(t,-) — p. Then by the result proved above, we have
deg(hy, Q2,0) = const.

Finally since the proofs of 5), 6), 7) are similar to the proofs of the relative
properties of degree throry of strict-set-contraction field in [1], we omit the
proofs. Thus proof is complete. O

Theorem 4. Let 2 be a bounded, convex open set in C"(I,E),A : Q —
C™(I, E) be a semi-k-set-contraction operator, 0 < k < 1, A(9Q) C Q without
fixed point in 052, then deg(id — A,Q,0) = 1.

Proof. Choose an xg €  arbitrarily. Let hy = t(x — Az) + (1 — t)(x — xp) =
x—H(t,x), here H(t,z) = tAz+ (1 —t)xo. Obviously | H (tn,x) — H(to, )| —
0(n — +oco) uniformly in z € Q. And H(t,-) is a semi-k-set-contraction
operator for all ¢ € [0,1]. In virtue of the fact: let A be a convex set in a
topological vector space E with a interior point g, then for any =1 € A, the
open segment with end points zy and z; is contained in ,cé)l(cf. N.Bourbaki,
”Espace Vectoriels Topologiques”, Prop.16 in Chap.2, §2, n°6), it is easy to see
that 0 & hy(09Q), 0 <t < 1. By Theorem 3, deg(id — A, 2, 0) = deg(id,,0) =
1. The proof is complete. O

§3. EXISTENCE OF THE SOLUTION FOR TWO-POINT
BOUNDARY VALUE PROBLEMS IN BANACH SPACES

Now we consider the following boundary value problem

—z"(t) = f(t,x(t), = ( ), (T'z)(t), (Sz)(1)),0 <t <1
az(0) — bz'(0) = xo (12)
cx(l) +d2'(1) =z

t 1
- / k(t, )z (s)ds, (Sx)(t) = / h(t, s)z(s)ds. (13)
0 0

Here k € C(D, RT), D = {(t,s) € R?>: 0 < s < t <1} and h € C(Dy,
RT), Dy = {(t, s) € R?: 0 <t,s <1}. E is Banach space. And assume a > 0,
b>0,c>0,d>0and J = ac+ ad + bc > 0 throughout this section.

In order to investigate BVP (12), we first consider the integral operator

where

= /01 G(t,5)f (s, 2(s), (), (Tx)(s), (Sz)(s))ds + y(t), (14)

where f € C(I x Ex ExXx Ex E, P),y € C*(I,E) and y(t) > 6 for t € I
and P C F is a normal solid cone of E' with normal constant N > 1(i.e. if
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we define the relation £ <y by y — 2 € P, then "<’ is an order relation in E.

Moreover, § < z <y implies ||z|| < N||y||). We denote the relation y — z ep
by z < y).
Let
Glt.s) = { J N at +b)(c(l —s) +d), t<s;
’ J Y as +b)(c(1 —t) +d), t>s,

here a > 0,5 >0,¢>0,d >0 and J = ac + ad + bc > 0. Moreover, T" and
S are defined by (13). In the following, let B = {z € E : ||z|| < R} (R > 0)
and

(15)

t 1
ko = max{/ k(t,s)ds,t € I}, ho = max{/ h(t,s)ds,t € T} (16)
0 0

Furthermore, let P(I) = {z € CY(I, E) : z(t) > 6 for t € I}. Then P(I) is
a cone in C1(I, E). Usually, P(I) is not normal in C!(I, E) even if P is a
normal cone in E. Let

1 1
= sw [ Glsds, g = sup [ [Gi(ts)ds,
tefo,1] /0 tefo,1] /0

and
q = max{qi, ¢} (17)

Then we have the following lemma, 7.

Lemma 7. Let f be uniformly continuous on I x B X Br X Bgr X Bg, for any
R > 0. Suppose that there exist constants L; > 0(i = 1, 2, 3, 4) such that

a(f(t, X,Y,Z,W)) < Lia(X) + Lya(Y) + Lya(Z) + Lya(W) (18)
for any bounded X,Y, Z, W C E, t € I and
k =q(Ly + Lo+ koLs + hoLy) < 1. (19)

Then the operator A defined by (14) is a semi-k-set-contraction operator from
CY(I, E) into P(I).

Proof. By direct differention of (14), we have for z € C'(I, E),

(Az(t)" = /01 Gi(t, 8)f (s, 2(s),2'(s), (Tw)(s), (Sz)(s))ds +y'(t),  (20)

where
J7ta(e(l —s) +d), t<s;

Gilt,s) = { J Y =c)(as+b), t>s, (21)
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and
((Az)(8)" = = f(t,2(t),2" (1), (Tz)(2), (S=)(t)) +y" (2). (22)
It is easy to see that the uniform continuity of f on I x Br x Br x Br X Bg
implies the boundedness of f on I x Bgr x Bgr X Bg X Bg. So A is bounded and
continuous from C'(I, E) into P(I). Now, let Q C C'(I, E) be bounded. By
virtue of (22), {||(Az(t))"|| : z € Q, t € I} is a bounded set of E. So (A(Q))’

is equicontinuous, and hence lemma 2 implies that

a(A(Q)) = max{sup{a(AQ(t)),t € I},sup{a((AQ)'()),t € I}}.  (23)

On the other hand, it is easy to see that for any bounded Q C C'(I,
E) with equicontinuous @', {f(s, z(s), z'(s), (Tx)(s), (Sz)(s)), x € Q} is
equicontinuous because of the uniform continuity of f. By lemma 1, lamma 2
and (18) we have

a(4Q(1)
1
= o (1] Glt.s) (55051, (5) (T2) ). (Sx)(3))ds +y(t), € Q})

< [ Gt s)a ({76,206, '), (T2)(0), (S2)(0)), 7 € Q) s
< [ 6005) [11alQ(s) + Laa@ () + Laal(TQ)(s)) + Lual(SQ) ()] ds

IN

/01 G(t, s)[L1a(Q(s)) + Loa(Q'(s)) + L3 /Os k(s,m)a(Q(r))dr
1
+ L4/0 h(s,r)(Q(r))dr]ds

1
/ G(t,5)ds [L1 + Lo + Lako + Laho) (Q)
0

q1[L1 + La + Lzko + Laho]a(Q)
q[L1 + Lo + L3ky + L4h0]Oz(Q). (24)

VAN VAN VAN

Similarly, we have
a((AQ)'(1))
1
— o (1 Gut.)7(5,(5),2'(5), (T)(5), (S2)(s))ds +/ (8. € Q)

IN

/01 |Gt s)ler ({ (5, 2(5), 2" (5), (T2)(s), (S)(5)), 7 € Q}) ds

IN

[ 1616 ) (@) + 2@/ () + Lkual@) + Lihon(@)] ds

IN

1
/ G, $)|ds[L1 + Lo + Lako + Lahola(Q)
0
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qg[Ll + L2 + L3I€0 + L4h0]a(Q)

<
< g[L1 + Ly + L3k + Lyhola(Q). (25)

From (23), we have

a(A(Q)) = max{sup{a(A(Q(t)),t €T}, sup{a((AQ)'(t)),t € I}}
< ka(Q) (26)

So A is a semi-k-set-contraction operator. The proof is complete.O

Let us list some conditions for convenience:

(Hy) 2o > 0,21 >0, f € C(I x Ex E x E x E,P) is uniformly continuous
on I x B X B X Bg X Bg, for any R > 0 and there exists L; > 0(i = 1,2, 3,4)
such that (18) and (19) hold;

(Hs) mR*)*»OO@ < - where M(R) = sup{||f(t,z,y, z,w)|| : (t,z,y, 2 w) €

qm?

I X Bp X Bp x Br x Br},m = max{1, ko, ho} and q is defined by (17);

Theorem 5. Let (H,),(H2),(Hs) be satisfied. Then BVP (12) has at least
one nonnegative solution in C2(I, E).

Proof. Tt is well known that the C?(I, E) solution of (12) is equivalent to
C(I, E) solution of the following integral equation

o) = [ Glt5) 55,2051,/ (5), (T)(6), (S9)()s + (),

where G(t, s) is the Green function given by (15) and y(¢) denotes the unique
solution of BVP

2" =0, 0<t<1;
az(0) — bz’ (0) = zp, cxz(1l) +dz'(1) = =z,

which is given by
y(t) = T H(c(1 —t) + d)zo + (at + b)z1 }.

Evidently, y € C?(I, E)N P(I). Let A be defined by (14). Then condition
(H;) and lemma 7 imply that A is a semi-k-set-contraction operator from
CY(I,E) to P(I). By (Hz), there exist § > 0 and R > 2||ug|| such that for any
R' >R

M(R') 1

B~ qm+0)

(27)

and

m_ Iyl

—_— 1 2
m—+ 4 R < (28)
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Let U = {z € CY(I, E), ||z|| < R}. So U is bounded convex open set. For
x € U, we have ||zl < R and

IN

IN

IN

IN

IN

IN

<

<

[ Azlo

max{|| /01 G(t,5)f(s,2(s), 7' (s), (Tx)(s), (Sz)(s))ds + y(t)||,t € T}
maX{/Ol G(t,3)|1f(s,2(s), 2" (s), (Tx)(s), (Sz)(s))ds + ly(®)[l,t € I}
M(mR) max{/o1 G(t,s)ds,t € I} + ||yl

1
R————q +
mR_ sy + Iyl

m yll1
R(m+(5 + R )
R (29)

1(Az)'llo
1
maJX{II/O Gy(t,5)f (s,2(s),2'(s), (Tz)(s), (Sz)(s))ds +y'(£), € I}

max{/o1 |Gyt )1 f (s,2(s),2'(s), (Tx)(s), (Sz)(s))llds + ||y (t)||.t € I}
M(mR) max{/ol G (¢, 5)|ds, ¢ € T} + |yl

1
R—qo +
m q(m+5)q2 [l

m yll1
R(m+5+ R )

R (30)

hence ||Az||; < R.
In virtue of (29), (30), AU C U. Then by theorem 4 we get

deg(id — A,U,0) =1,

i.e., there is a fixed point z € U. The proof is complete.O

Example 1.
We consider following system of scalar valued differential equations

l 1
In2—|—1) ﬁ| f[f ﬁxgn(s)dsb
+ 17, (31)
’2’

—z" = 3(|zn| + 1)7 + -

(
+ 35 (Jo cos(t — 8)$3n( )ds)
zn(0) = 2, (1) =0, =1

x
2
3
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Conclusion: equation (31) has at least one positive solution.

Proof. Let E = {x = (z1,Z2," ", T, ), sup |z, | < +00.} with norm ||z|| =
sup |z,|, and P = {z = (x1,x9, ") EE :L“n>0 n =1,2,---}. Then P
neN

is a normal solid cone of E and (31) can be regarded as a BVP of the form
12), wh =c=1b=d=0 =z =6, k(t,s) = ——, h(t,s) =
( ),Werea c ) » Lo ‘a1 ’ (73) l+t+s (73)

COS(t— S)a r = ((II1,(II2, e ')a Y= (ylayQa' : ')a Z = (ZlaZQa e ')a w = (wlawZa e ')a
and f =g+ h = (917927' ) ')+(h17h27' ) ) in which

gn(t, 3,1y, 2,w) = 3(|zn| + 1)% +17, (32)
and . - .
l = =S
hn(y, z,w) = n—+1(y’2l+1)3 + 5, %o T 5 W (33)
Then ) .
1 2
171 < 3zl + 1) + 5 (lyll)s + §|Iz||3 + —||w||3 +17. (34)
which implies
1 2 1 1 1 2
and consequently
. M(R)
1 —=0.
Rﬁlr}rloo R 0

This shows that condition (Hs) is satisfied.

Obviously, f € C(I x E x E x E x E,P) and f is uniformly continuous
on I x Bp x Br X Bg x Bg for any R > 0. Now for any bounded D C FE, it
is easy to see that a(g(D)) < 3a(D). And for any bounded Y C E, Z C P,
W C P, we have a(h(Y,Z,W)) = 0. In fact, let {y(™} C Y, {z(™} C Z,
{w(™} C W, and o™ = B (y(™), 2™ (™). By (33), we get

1 2 1 1 1 1
(M| <« = JlyM15 & —|lzM |15 = _||ow™ |3
] < I 4 o 2 4 ),

n

Now by the diagonal method, we can select a subsequence {v(™)} C {v(™}
such that
v™mi) 0 e P,

So a(h(Y,Z,W)) = 0. On the other hand, it is easy to see that in this case
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So the condition (H;) is satisfied. Consequently, our conclusion follows from
theroem 5. O

The operator A defined by (31) is not a strict-set-contraction operator or a
condensing operator. So the degree theory of the condensing operator or the
strict-set-contraction operator is not suitable.
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