VORONOI-ALGORITHM EXPANSION OF A FAMILY WITH PERIOD LENGTH GOING TO INFINITY

Kan Kaneko

(Received February 4, 1998)

Abstract

We consider a family of orders of complex cubic fields which is similar to one introduced by Levesque and Rhim. We find the Voronoi-algorithm expansions and the fundamental units.

AMS 1991 Mathematics Subject Classification. Primary 11R16, 11R27.
Key words and phrases. Complex cubic fields.

§ 1. Introduction

Levesque and Rhin [4] introduced two families of complex cubic fields $\mathbb{Q}(\alpha)$, each of which depends on two parameters. Adam [1] obtained the Voronoialgorithm expansions of the order $\mathbb{Z}[\alpha]$ for these two families, for one of which Kühner [3] also found the Voronoi-algorithm expansions.

In this paper we shall consider a new family of complex cubic fields, similar but different from those families above, i.e. $\mathbb{Q}(\alpha)$, where α is the real root of the irreducible cubic polynomial $f(X)$ in Proposition 1.1.
We obtain the following results :
the Voronoi-algorithm expansions of the order $\mathbb{Z}[\alpha]$,
the period length of these expansions goes to infinty,
the fundamental units of the order $\mathbb{Z}[\alpha]$.
Our method, in which we use an isotropic vector of the quadratic form, is due to Adam [1].
Proposition 1.1. Let $f(X)=X^{3}-c^{m} X^{2}+(c+1) X-c^{m}$, where m, c are intergers such that $m \geqq 1$ and $c \geqq 2$. Then $f(X)$ has only one real root α and $f(X)$ is irreducible except the case $m=1, c=2$.
Moreover if $m \geqq 2$, then α satisfies

$$
\begin{equation*}
c^{m}-\frac{1}{c^{m-1}}-\frac{1}{c^{m+2}}<\alpha<c^{m}-\frac{1}{c^{m-1}} . \tag{1.1}
\end{equation*}
$$

Proof. Since the discriminant of $f(X)$ is

$$
D_{f}=-\left\{4 c^{4 m}-\left(c^{2}+20 c-8\right) c^{2 m}+4(c+1)^{3}\right\}<0
$$

$f(X)$ has only one real root α.
Since

$$
\begin{aligned}
& f\left(c^{m}-\frac{2}{c^{m-1}}\right)=-c^{m+1}+\frac{6}{c^{m-2}}-\frac{2}{c^{m-1}}-\frac{8}{c^{3 m-3}}<0 \quad \text { and } \\
& f\left(c^{m}-\frac{1}{c^{m-1}}\right)=\frac{c-1}{c^{m-1}}-\frac{1}{c^{3 m-3}}>0 \quad((m, c) \neq(1,2)) \\
& c^{m}-\frac{2}{c^{m-1}}<\alpha<c^{m}-\frac{1}{c^{m-1}} \quad((m, c) \neq(1,2))
\end{aligned}
$$

Therefore if $(m, c) \neq(1,2)$, then $f(X)$ is irreducible.
Furthermore we have

$$
\begin{aligned}
f\left(c^{m}-\frac{1}{c^{m-1}}-\frac{1}{c^{m+2}}\right)= & -c^{m-2}+\frac{1}{c^{m-2}}-\frac{1}{c^{m-1}}+\frac{3}{c^{m+1}}-\frac{1}{c^{m+2}}+\frac{2}{c^{m+4}} \\
& -\frac{1}{c^{3 m-3}}-\frac{3}{c^{3 m}}-\frac{3}{c^{3 m+3}}-\frac{1}{c^{3 m+6}}<0 \quad(m \geqq 2)
\end{aligned}
$$

Hence if $m \geqq 2$, then

$$
c^{m}-\frac{1}{c^{m-1}}-\frac{1}{c^{m+2}}<\alpha<c^{m}-\frac{1}{c^{m-1}}
$$

§ 2. Voronoi-algorithm and preliminaries

Let K be a cubic algebraic number field of negative discriminant. Let $1, a_{1}, \alpha_{2} \in K$ be rationally independent. We say that $\mathcal{R}=\left[1, \alpha_{1}, \alpha_{2}\right]=$ $\mathbb{Z}+\mathbb{Z} . \alpha_{1}+\mathbb{Z} . \alpha_{2}$ is a lattice of K with basis $\left\{1, \alpha_{1}, \alpha_{2}\right\}$. For $\omega \in \mathcal{R}$ we define $F(\omega)=\frac{N_{K}(\omega)}{\omega}=\omega^{\prime} \omega^{\prime \prime}$, where N_{K} denotes the norm of K over \mathbb{Q}, and ω^{\prime} and $\omega^{\prime \prime}$ the conjugates of ω.

Definition 2.1. Let \mathcal{R} be a lattice of K, and let $\omega(>0) \in \mathcal{R}$. We say that ω is a minimal point of \mathcal{R} if for all φ in \mathcal{R} so that $0<\varphi<\omega$ we have $F(\varphi)>F(\omega)$. Let $\omega, \varphi \in \mathcal{R}$ such that $0<\omega, \varphi$. We say that ω is a minimal point adjacent on the right (further on, we will not specify "right") to φ in \mathcal{R} if $\omega=\min \{\psi \in \mathcal{R} ; \varphi<\psi, F(\varphi)>F(\psi)\}$. We define the increasing chain of the minimal points of \mathcal{R} by :

$$
\theta_{0}=1, \theta_{k+1}=\min \left\{\psi \in \mathcal{R} ; \theta_{k}<\psi, F\left(\theta_{k}\right)>F(\psi)\right\} \quad \text { if } \quad k \geqq 0
$$

Then θ_{k+1} is the minimal point adjacent (on the right) to θ_{k} in \mathcal{R}. Let \mathcal{O} be any order of K and $\mathcal{R}=\mathcal{O}$. By Voronoi we know that the previous chain is of purely periodic form :

$$
\theta_{0}=1, \theta_{1}, \cdots, \theta_{l-1}, \theta_{l}=\varepsilon, \varepsilon \theta_{1}, \cdots, \varepsilon \theta_{l-1}, \cdots
$$

where l denotes the period length and ε is the fundamental unit of \mathcal{O}. To calculate such a sequence, it is sufficient to know how to find the minimal point adjacent to 1 in a lattice \mathcal{R}. Indeed, let $\theta_{g}{ }^{(1)}$ be the minimal point adjacent to 1 in $\mathcal{R}_{1}=\mathcal{O}=\left[1, \alpha_{1}, \alpha_{2}\right]$ and $\theta_{1}=\theta_{g}{ }^{(1)}$.
(i) We choose an appropriate point $\theta_{h}{ }^{(1)}$ so that $\left\{1, \theta_{g}{ }^{(1)}, \theta_{h}{ }^{(1)}\right\}$ is a basis of \mathcal{R}_{1}
(ii) $\theta_{g}{ }^{(2)}$ is the minimal point adjacent to 1 in $\mathcal{R}_{2}=\frac{1}{\theta_{g}{ }^{(1)}} \mathcal{R}_{1}=$ $\left[1,1 / \theta_{g}{ }^{(1)}, \theta_{h}{ }^{(1)} / \theta_{g}{ }^{(1)}\right]$ is equivalent to $\theta_{2}=\theta_{1} \theta_{g}{ }^{(2)}=\theta_{g}{ }^{(1)} \theta_{g}{ }^{(2)}$ being the minimal point adjacent to θ_{1} in \mathcal{R}_{1}.
This process can be continued by induction.
We quote Adam[1],Lemma 2.2 from which we dropp one condition $F(0,0,1)>1$ as Lemma 2.1 for our convenience.

Lemma 2.1(Adam[1],Lemma 2.2). Let F be a positive quadratic form in three variables with real coefficients of rank 2 such that $F(1,0,0)=1$. Suppose that F has an isotropic vector $\left(\omega_{2}, 1, \omega_{1}\right)$. Then we can write

$$
\begin{equation*}
F(u, v, w)=a\left(w-\omega_{1} v\right)^{2}+2 b\left(w-\omega_{1} v\right)\left(u-\omega_{2} v\right)+\left(u-\omega_{2} v\right)^{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
F(u, v, w)= & \frac{a}{2}\left\{w-\left(\omega_{1}+2 \frac{b}{a} \omega_{2}\right) v+2 \frac{b}{a} u\right\}^{2}+\frac{a}{2}\left(w-\omega_{1} v\right)^{2} \tag{2.2}\\
& +\left(1-2 \frac{b^{2}}{a}\right)\left(u-\omega_{2} v\right)^{2}
\end{align*}
$$

with $b^{2}<a$.
Let \mathcal{R} be a lattice of K with basis $\left\{1, \alpha_{1}, \alpha_{2}\right\}$ and $F(\omega)=\omega^{\prime} \omega^{\prime \prime}(\omega \in \mathcal{R})$. For $(u, v, w) \in \mathbb{Z}^{3}$ we define $F(u, v, w)=F\left(u+v \alpha_{1}+w \alpha_{2}\right)=$ $\left(u+v \alpha_{1}+w \alpha_{2}\right)^{\prime}\left(u+v \alpha_{1}+w \alpha_{2}\right)^{\prime \prime}$. Further, we can consider F as a quadratic form in three variables with real coefficients. Then, F is positive, the rank of F is 2 and $F(1,0,0)=1$. Hence we can write F in the form (2.1) and (2.2) with $a=\alpha_{2}^{\prime} \alpha_{2}^{\prime \prime}, b=\frac{1}{2}\left(\alpha_{2}^{\prime}+\alpha_{2}^{\prime \prime}\right)$. We find ω_{1} and ω_{2} by the formulas

$$
\omega_{1}=-\frac{\alpha_{1}^{\prime}-\alpha_{1}^{\prime \prime}}{\alpha_{2}^{\prime}-\alpha_{2}^{\prime \prime}}, \omega_{2}=-\frac{1}{2}\left\{\left(\alpha_{1}^{\prime}+\alpha_{1}^{\prime \prime}\right)+\omega_{1}\left(\alpha_{2}^{\prime}+\alpha_{2}^{\prime \prime}\right)\right\} .
$$

§ 3. Main theorem and preliminary results

Let $f(X)=X^{3}-c^{m} X^{2}+(c+1) X-c^{m}$, where m, c are intergers such that $m \geqq 2$ and $c \geqq 2$. By Proposition $1.1 f(X)$ is irreducible and has only one real root.

Theorem 3.1. Let α be the real root of the polynomial $f(X), K=\mathbb{Q}(\alpha)$, and $\mathcal{O}=\mathbb{Z}[\alpha]$. Then
(i) The chain of the minimal points of \mathcal{O} is : for $1 \leqq s \leqq m-1$ $\theta_{0}=1, \theta_{3 s-2}=\left(c^{s}+\alpha-c^{m}\right)\left(\frac{\alpha}{c^{m}-\alpha}\right)^{s}, \theta_{3 s-1}=\left(\frac{c \alpha}{c^{m}-\alpha}\right)^{s}$, $\theta_{3 s}=\alpha\left(\frac{\alpha}{c^{m}-\alpha}\right)^{s}, \theta_{3 m-2}=\alpha\left(1+\alpha-c^{m}\right)\left(\frac{\alpha}{c^{m}-\alpha}\right)^{m}$ and $\theta_{3 m-1}=\alpha\left(\frac{\alpha}{c^{m}-\alpha}\right)^{m}$.
(ii) $\varepsilon=\alpha\left(\frac{\alpha}{c^{m}-\alpha}\right)^{m}$ is the fundamental unit of \mathcal{O} and Voronoi-algorithm expansion period length is $l=3 m-1$.

Remark 3.2. The following relation holds among the minimal points of \mathcal{O} : $\theta_{2}=\alpha \theta_{0}+\theta_{1}, \theta_{3 s-1}=\theta_{3 s-3}+\theta_{3 s-2}$ for $2 \leqq s \leqq m-1, \theta_{3 m-1}=\alpha \theta_{3 m-3}+$ $\theta_{3 m-2}$.

For the proof of Theorem 3.1, we prepare six lemmas .
In the following lemmas we denote θ_{g} the minimal point adjacent to 1 in a lattice \mathcal{R} of K.
Lemma 3.3. For an integer $s, 1 \leqq s \leqq m-2$,

$$
\text { if } \quad \mathcal{R}=\left[1, \alpha-c^{m}+1, \frac{c^{s}}{\alpha}\right], \quad \text { then } \quad \theta_{g}=\frac{c^{s}\left(\alpha^{2}+1\right)-\alpha}{\alpha} .
$$

Proof. We can write F in the form (2.1) and (2.2) with
$a=\frac{c^{2 s}}{c^{m}} \alpha, 2 b=\frac{\alpha\left(c^{m}-\alpha\right)}{c^{m-s}}, \omega_{1}=\frac{c^{m-s}}{\alpha}, \omega_{2}=\alpha-1$.
By (1.1) we have

$$
\begin{gathered}
0<\alpha_{1}<1,0<\alpha_{2}<1,0<\omega_{1}<1, \quad\left[\omega_{2}\right]=c^{m}-2, \\
c^{2 s}-\frac{c^{2 s}}{c^{2 m-1}}-\frac{c^{2 s}}{c^{2 m+2}}<a<c^{2 s}-\frac{c^{2 s}}{c^{2 m-1}}
\end{gathered}
$$

where [...] is the greatest integer function. From the last inequality we have $c^{2}-1<a$, then $a>3$. Since $\frac{4 b^{2}}{a}=\frac{\alpha\left(c^{m}-\alpha\right)^{2}}{c^{m}}<1,4 b^{2}<a$.

Let $\theta_{g}=u+v \alpha_{1}+w \alpha_{2}$.
Claim 1. $v \neq 0$ and $u v \geqq 0$.
Suppose that $v=0$. If $u=0$, then $F\left(\theta_{g}\right)=a w^{2}>1$. If $w=0$, then $F\left(\theta_{g}\right)=u^{2} \geqq 1$. If $u \neq 0$ and $w \neq 0$, then $F\left(\theta_{g}\right)>\frac{a}{2}+\left(1-2 \frac{b^{2}}{a}\right)>1$. Therefore $v \neq 0$. Since $F\left(\theta_{g}\right)<1$ and $4 b^{2}<a$, we have $\left(u-\omega_{2} v\right)^{2}<2$; but $\omega_{2} \geqq \sqrt{2}-1$, then $u v \geqq 0$. (cf. the proof of Adam [1],Proposition 2.3)
Claim 2. $u \geqq 0, v>0, w \geqq 0$
Since $F\left(\theta_{g}\right)<1$ and $a>3$, we have $\left(w-\omega_{1} v\right)^{2}<1$, then $w v \geqq 0$.
If $v<0$, then $u \leqq 0$ and $w \leqq 0$, which is impossible because $\theta_{g}>0$, so we have $v>0, u \geqq 0$ and $w \geqq 0$.

Claim 3. $w>0$.
Since $\left(w-\omega_{1} v\right)^{2}<1, w=\left[\omega_{1} v\right]$ or $\left[\omega_{1} v\right]+1$. Since $F\left(\theta_{g}\right)<1$ and $4 b^{2}<a$, we have $\left(u-\omega_{2} v\right)^{2}<2$, then $u=\left[\omega_{2} v\right]+i$, where $i=-1,0,1$ or 2 .
Suppose that $w=0$. Since in (2.2) $\frac{a}{2}\left(w-\omega_{1} v\right)^{2}=\frac{c^{m}}{2 \alpha} v^{2}, v=1$.
Since $u=\left[\omega_{2}\right]+i=c^{m}-2+i(i=-1,0,1,2)$, we have $\theta_{g}=u+\alpha_{1}$
$=\alpha-1+i(i=-1,0,1,2)$. Since $F\left(\theta_{g}\right)=\frac{c^{m}}{\alpha}+\left(c^{m}-\alpha\right)(i-1)+(i-1)^{2}>1$ $(i=-1,0,1,2), w>0$.
Claim 4. For an integer v if $1 \leqq v<c^{m-1}$, then $[v \alpha]= \begin{cases}v c^{m}-1 & \left(v<\frac{c^{m}+2}{c^{3}+1}\right) \\ v c^{m}-2 & \left(v \geqq \frac{c^{m+2}}{c^{3}+1}\right)\end{cases}$
By (1.1) we have $v c^{m}-\left(\frac{v}{c^{m-1}}+\frac{v}{c^{m+2}}\right)<v \alpha<v c^{m}-\frac{v}{c^{m-1}}$. From this, our claim is deduced because $\frac{v}{c^{m-1}}+\frac{v}{c^{m+2}}<1$ is equivalent to $v<\frac{c^{m+2}}{c^{3}+1}$.
Claim 5. $\theta_{g}=\left[c^{s} \omega_{2}\right]+c^{s} \alpha_{1}+\alpha_{2}$.
We shall show that $v \leqq c^{s}-1$ implies that $F\left(\theta_{g}\right)>1$. Suppose that $v \leqq$ $c^{s}-1$. Since $\left[\omega_{1} v\right]=0, w=\left[\omega_{1} v\right]+1=1$. So $\theta_{g}=u+v \alpha_{1}+\alpha_{2}=$ $\left[\omega_{2} v\right]+i+v \alpha_{1}+\alpha_{2}=i-1+v \alpha+\frac{c^{s}}{\alpha}(i=-1,0,1,2)$. we have

$$
\begin{align*}
F\left(\theta_{g}\right)= & (i-1)^{2}+(i-1)\left(c^{m}-\alpha\right)\left(v+\frac{\alpha}{c^{m-s}}\right) \tag{3.1}\\
& +\frac{v \alpha\left(c^{m}-\alpha\right)^{2}}{c^{m-s}}+\frac{c^{m}}{\alpha}\left(v-\frac{\alpha}{c^{m-s}}\right)^{2} \quad(i=-1,0,1,2) .
\end{align*}
$$

Clearly if $i=2$ and $v \leqq c^{s}-1$, then $F\left(\theta_{g}\right)>1$. We have

$$
1-\left(c^{m}-\alpha\right)\left(c^{s}-1+\frac{\alpha}{c^{m-s}}\right)=\frac{J}{c^{m-s} \alpha}
$$

where $J=c \alpha\left\{c^{m-1-s}-1-\left(c^{m-1}-c^{m-1-s}\right)\left(c^{m}-\alpha\right)\right\}+c^{m}-\alpha$. By (1.1) if $(s, c) \neq(m-2,2)$, then we have $J>0$, so $\left(c^{m}-\alpha\right)\left(c^{s}-1+\frac{\alpha}{c^{m-s}}\right)<1$. Hence if $v \leqq c^{s}-1$ and $(s, c) \neq(m-2,2)$, then we have

$$
\begin{align*}
\left|(i-1)\left(c^{m}-\alpha\right)\left(v+\frac{\alpha}{c^{m-s}}\right)\right| & \leqq|i-1|\left(c^{m}-\alpha\right)\left(c^{s}-1+\frac{\alpha}{c^{m-s}}\right) \tag{3.2a}\\
& <|i-1| \quad(i=-1,0,2)
\end{align*}
$$

If $v \leqq c^{s}-1$, then we have

$$
\begin{align*}
& \left|(i-1)\left(c^{m}-\alpha\right)\left(v+\frac{\alpha}{c^{m-s}}\right)\right| \leqq|i-1|\left(c^{m}-\alpha\right)\left(c^{s}-1+\frac{\alpha}{c^{m-s}}\right) \tag{3.2b}\\
& \quad<|i-1|\left(c^{m}-\alpha\right)\left(2 c^{s}-1\right)<|i-1|\left(c^{m}-\alpha\right) 2 c^{s} \\
& \quad<|i-1| 2 c^{m-2}\left(\frac{1}{c^{m-1}}+\frac{1}{c^{m+2}}\right) \leqq|i-1|\left(1+\frac{1}{2^{3}}\right) \quad(i=-1,0,2)
\end{align*}
$$

From (3.1), (3.2b) if $i=-1$ and $v \leqq c^{s}-1$, then $F\left(\theta_{g}\right)>1$.
If $i=1$, then we have

$$
\begin{equation*}
F\left(\theta_{g}\right)=\frac{v \alpha\left(c^{m}-\alpha\right)^{2}}{c^{m-s}}+\frac{c^{m}}{\alpha}\left(v-\frac{\alpha}{c^{m-s}}\right)^{2} . \tag{3.3}
\end{equation*}
$$

From (1.1) $\frac{c^{m}-\alpha}{c^{m-s}}<\frac{1}{c^{m+1}}+\frac{1}{c^{m+4}}<\frac{1}{2^{3}}+\frac{1}{2^{6}}$, so we have

$$
\begin{align*}
& \frac{c^{m}}{\alpha}\left(v-\frac{\alpha}{c^{m-s}}\right)^{2} \geqq \frac{c^{m}}{\alpha}\left(c^{s}-\frac{\alpha}{c^{m-s}}-2\right)^{2}>\left(\frac{c^{m}-\alpha}{c^{m-s}}-2\right)^{2}>3 \tag{3.4}\\
& \text { if } v \leqq c^{s}-2 \text {. }
\end{align*}
$$

Hence if $i=1$ and $v \leqq c^{s}-2$, then $F\left(\theta_{g}\right)>1$.
From (3.3) if $i=1$ and $v=c^{s}-1$, then we have

$$
F\left(\theta_{g}\right)=\frac{1}{c^{m-s} \alpha}\left\{\left(c^{s}-1\right) \alpha^{2}\left(c^{m}-\alpha\right)^{2}-2 c^{m}\left(c^{m}-\alpha\right)+c^{s}\left(c^{m}-\alpha\right)^{2}\right\}+\frac{c^{m}}{\alpha} .
$$

From this if $i=1$ and $v=c^{s}-1 \geqq 2$, then $F\left(\theta_{g}\right)>1$ because $\left(c^{s}-1\right) \alpha^{2}\left(c^{m}-\alpha\right)^{2}-2 c^{m}\left(c^{m}-\alpha\right) \geqq 2 \alpha^{2}\left(c^{m}-\alpha\right)^{2}-2 c^{m}\left(c^{m}-\alpha\right)$ $=\left(c^{m}-\alpha\right)\left\{2(c+1) \alpha-4 c^{m}\right\}>0$ and $\frac{c^{m}}{\alpha}>1$.
If $i=1$ and $v=c^{s}-1=1$ (i.e. $s=1, c=2$), then we have $F\left(\theta_{g}\right)>1$, because from (3.6) in the proof of Lemma $3.3 \alpha\left(\alpha-c^{m}\right)+c>0$, thus we have $F\left(\theta_{g}\right)=\frac{\alpha\left(c^{m}-\alpha\right)^{2}}{c^{m-1}}+\frac{c^{m}}{\alpha}\left(1-\frac{\alpha}{c^{m-1}}\right)^{2}$
$=\frac{1}{c^{m-1}}\left\{\alpha\left(\alpha-c^{m}\right)+c\right\}\left\{c^{m-1}-\left(c^{m}-\alpha\right)\right\}+1>1$.
Therefore if $i=1$ and $v \leqq c^{s}-1$, then we have $F\left(\theta_{g}\right)>1$.
If $i=0$, then we have

$$
\begin{equation*}
F\left(\theta_{g}\right)=\frac{v \alpha\left(c^{m}-\alpha\right)^{2}}{c^{m-s}}+\frac{c^{m}}{\alpha}\left(v-\frac{\alpha}{c^{m-s}}\right)^{2}+1-\left(c^{m}-\alpha\right)\left(v+\frac{\alpha}{c^{m-s}}\right) . \tag{3.5}
\end{equation*}
$$

From the case $i=1$ and (3.2a) if $i=0, v \leqq c^{s}-1$ and $(s, c) \neq(m-2,2)$, then we have $F\left(\theta_{g}\right)>1$. If $i=0, v=c^{s}-1$ and $(s, c)=(m-2,2)$, then we have

$$
\begin{aligned}
F\left(\theta_{g}\right)= & \frac{\left(c^{m-2}-1\right) \alpha\left(c^{m}-\alpha\right)^{2}}{c^{2}}+\frac{c^{m}}{\alpha}\left(\frac{c^{m}-\alpha-c^{2}}{c^{2}}\right)^{2}+1 \\
& -\frac{\left(c^{m}-\alpha\right)\left(c^{m}+\alpha-c^{2}\right)}{c^{2}} \\
= & \frac{1}{c^{2} \alpha}\left\{\left(c^{m-2}-1\right) \alpha^{2}\left(c^{m}-\alpha\right)^{2}+c^{m-2}\left(c^{m}-\alpha\right)+c\left(c^{m}-\alpha\right)\left(c \alpha-c^{m}\right)\right. \\
& \left.+c^{m+2}-\alpha\left(c^{m}-\alpha\right)\left(c^{m}+\alpha\right)\right\}+1>1 .
\end{aligned}
$$

Therefore $v \leqq c^{s}-1$ implies that $F\left(\theta_{g}\right)>1$.

Now we shall consider the case $v=c^{s}$. We have

$$
\begin{aligned}
\theta_{g} & =\left[\omega_{2} c^{s}\right]+i+c^{s} \alpha_{1}+\left(\left[\omega_{1} c^{s}\right]+j\right) \alpha_{2} \\
& =c^{m+s}-c^{s}-1+i+c^{s}\left(\alpha-c^{m}+1\right)+(1+j) \frac{c^{s}}{\alpha} \\
& =-1+i+c^{s} \alpha+(1+j) \frac{c^{s}}{\alpha} \quad(i=-1,0,1,2), \quad(j=0,1) .
\end{aligned}
$$

If $i=-1$ and $j=0$, then we have

$$
F\left(-2+c^{s} \alpha+\frac{c^{s}}{\alpha}\right)=4-2 c^{s}\left(c^{m}-\alpha\right)\left(1+\frac{\alpha}{c^{m}}\right)-\frac{c^{2 s} \alpha\left(c^{m}-\alpha\right)^{2}}{c^{m}}\left(1+\frac{1}{\alpha^{2}}\right) .
$$

Since

$$
2 c^{s}\left(c^{m}-\alpha\right)\left(1+\frac{\alpha}{c^{m}}\right)<4 c^{s}\left(c^{m}-\alpha\right) \leqq 4 c^{m-2}\left(c^{m}-\alpha\right)<4\left(\frac{1}{c}+\frac{1}{c^{4}}\right)<3
$$

we have $F\left(\theta_{g}\right)>1$. If $i=-1$ and $j=1$, then we have

$$
\begin{aligned}
& F\left(-2+c^{s} \alpha+\frac{2 c^{s}}{\alpha}\right)=4-4 c^{s}\left(c^{m}-\alpha\right)+\frac{c^{2 s} \alpha}{c^{m}}-\frac{2 c^{s} \alpha\left(c^{m}-\alpha\right)}{c^{m}} \\
& \quad+\frac{2 c^{2 s} \alpha\left(c^{m}-\alpha\right)}{c^{m}}\left\{\alpha\left(c^{m}-\alpha\right)-1\right\}+c^{2 s}\left(c^{m}-\alpha\right)\left(\frac{1}{\alpha}-\frac{1}{c^{m}}\right)>1 .
\end{aligned}
$$

If $i=0$ and $j=0$, then we have $F\left(-1+c^{s} \alpha+\frac{c^{s}}{\alpha}\right)=1+N$, where

$$
N=-c^{s}\left(c^{m}-\alpha\right)\left(1+\frac{\alpha}{c^{m}}\right)+\frac{c^{2 s} \alpha\left(c^{m}-\alpha\right)^{2}}{c^{m}}\left(1+\frac{1}{\alpha^{2}}\right) .
$$

Since

$$
N=\frac{c^{s}\left(c^{m}-\alpha\right)}{c^{m}}\left\{-c^{m}-\alpha+c^{s}\left(c^{m}-\alpha\right) \alpha+\frac{c^{s}\left(c^{m}-\alpha\right)}{\alpha}\right\}<0,
$$

we have $F\left(\theta_{g}\right)<1$. Therefore $\theta_{g}=\left[c^{s} \omega_{2}\right]+c^{s} \alpha_{1}+\alpha_{2}$.
Lemma 3.4. For an integer $s, 1 \leqq s \leqq m-1$,

$$
\text { if } \mathcal{R}=\left[1, \frac{c^{m}-\alpha}{c^{s}+\alpha-c^{m}}, \frac{c^{s}+\alpha\left(\alpha-c^{m}\right)}{c^{s}+\alpha-c^{m}}\right], \quad \text { then } \quad \theta_{g}=\frac{c^{s}}{c^{s}+\alpha-c^{m}} .
$$

Proof. We can write F in the form (2.1) and (2.2) with
$a=\frac{1}{D}\left\{\left(c^{2 m}+c^{2 s}-c^{s+1}-c^{s}\right) \alpha+\frac{c^{2 m}}{\alpha}-c^{m+s}\right\}, \quad 2 b=-\frac{G}{D}$,
$\omega_{1}=\frac{c^{s}+\alpha-c^{m}}{\left(c^{m}-c^{s}-1\right) \alpha-c^{m-s+1}+c^{m}-c^{s}+c+1}$,
$2 \omega_{2}=\frac{\left(2 c^{m}-c^{s}\right) \alpha^{2}-c^{m+s} \alpha+2 c^{m}}{D}+\omega_{1}(-2 b)$,
where $D=\alpha\left(c^{s}+\alpha-c^{m}\right)^{\prime}\left(c^{s}+\alpha-c^{m}\right)^{\prime \prime}=\left(c^{m}-c^{s}\right) \alpha^{2}-c^{s}\left(c^{m}-c^{s}\right) \alpha+c^{m}$,
and $G=c^{s} \alpha^{2}+\left(c^{m+s}-2 c^{2 s}+c^{s+1}-c^{m+1}+c^{s}\right) \alpha+c^{m+s}$.
By (1.1) we have $0<\alpha_{1}<1,0<\alpha_{2}<1,0<\omega_{1}<1, \omega_{2}>1$, and $a>1$.
We claim that $4 b^{2}<a$.
First we shall show that if $(s, c) \neq(m-1,2),(m-1,3)$, then $|2 b|<1$:
this is equivalent to $D-G>0$. We have

$$
\begin{aligned}
D-G= & \left(c^{m} \alpha-2 c^{s} \alpha-2 c^{m+s}-c^{s+1}-c^{s}+3 c^{2 s}+c^{m+1}\right) \alpha+c^{m}-c^{m+s} \\
= & \left\{c^{m}\left(c^{m}-4 c^{s}\right)+c^{2 s}+\left(c^{m}-2 c^{s}\right)\left(\alpha-c^{m}\right)+c^{m+1}-c^{s+1}+2 c^{2 s}\right. \\
& \left.-2 c^{s}\right\} \alpha+c^{m}+c^{s}\left(\alpha-c^{m}\right)>0
\end{aligned}
$$

if $(s, c) \neq(m-1,2), \quad(m-1,3)$. Since $a>1$, if $|2 b|<1$, then $4 b^{2}<a$. Hence if $(s, c) \neq(m-1,2),(m-1,3)$, then $4 b^{2}<a$. In each case of $(s, c)=(m-1,2),(m-1,3), 4 b^{2}<a$ is easily checked. Hence we have $4 b^{2}<a$.

We claim that if $s=1$, then $\alpha_{1}>\alpha_{2}$ and if $s \geqq 2$, then $\alpha_{1}<\alpha_{2}$. we consider the defining polynomal $g(X)$ of $\alpha\left(c^{m}-\alpha\right)$, i.e.

$$
g(X)=X^{3}-2(c+1) X^{2}+\left\{c^{2 m}+(c+1)^{2}\right\} X-c^{2 m+1}
$$

Since $g\left(c-\frac{1}{c^{2 m-2}}\right)<0$ and $g(c)>0$,

$$
\begin{equation*}
c-\frac{1}{c^{2 m-2}}<\alpha\left(c^{m}-\alpha\right)<c \tag{3.6}
\end{equation*}
$$

If $s \geqq 2$, then $c^{m}-\alpha<c^{s}+\alpha\left(\alpha-c^{m}\right)$. Hence if $s \geqq 2$, then $\alpha_{1}<\alpha_{2}$.
From (3.6) $c+\alpha\left(\alpha-c^{m}\right)<\frac{1}{c^{2 m-2}}$, and from (1.1) $\frac{1}{c^{m-1}}<c^{m}-\alpha$.
Therefore if $s=1$, then $\alpha_{1}>\alpha_{2}$. We have

$$
F\left(1+\alpha_{1}\right)=F\left(\frac{c^{s}}{c^{s}+\alpha-c^{m}}\right)=\frac{c^{2 s} \alpha}{\left(c^{m}-c^{s}\right) \alpha\left(\alpha-c^{s}\right)+c^{m}}=\frac{1}{H},
$$

where $H=\left(c^{m-s}-1\right)\left(\frac{\alpha}{c^{s}}-1\right)+\frac{c^{m}}{c^{2 s} \alpha}$. If $1 \leqq s \leqq m-2$, then $H>1$.
If $s=m-1$, then

$$
\begin{aligned}
H & =(c-1) \frac{\alpha}{c^{m-1}}+\frac{c^{m}}{c^{2(m-1) \alpha}}-c+1 \\
& \geqq \frac{\alpha}{c^{m-1}}+\frac{c}{c^{m-1} \alpha}-c+1=\frac{\alpha^{2}+c}{c^{m-1} \alpha}-c+1 .
\end{aligned}
$$

From (3.6) $\alpha^{2}+c>c^{m} \alpha$, so $\frac{\alpha^{2}+c}{c^{m-1} \alpha}-c+1>1$. Hence if $s=m-1$, then $H>1$. Therefore $F\left(1+\alpha_{1}\right)<1$.

Let $\theta_{g}=u+v \alpha_{1}+w \alpha_{2}$.
(1) By Claim 1 in the proof of lemma 3.3 we have $v \neq 0$ and $u v \geqq 0$.
(2) We claim that $u \geqq 0, v>0, w \geqq 0$.

Since $F\left(\theta_{g}\right)<1$ and $a>1$, we have $\left(w-\omega_{1} v\right)^{2}<2$, then $w v \geqq 0$ or $|w| \leqq 1$. If $w v \geqq 0$, then $v<0$ implies that $u \leqq 0$ and $w \leqq 0$, which is impossible because $\theta_{g}>0$, so we have $v>0, u \geqq 0$ and $w \geqq 0$. If $w v<0$, then $|w|=1$. If $w=1$, then $v<0$ and $u \leqq 0$. If $u=0$, we have $F\left(\theta_{g}\right)>\frac{a}{2}+\left(1-2 \frac{b^{2}}{a}\right)>1$, and if $u<0$, we have $\theta_{g}<0$, which is impossible.
If $w=-1$, then $v>0$ and $u \geqq 0$. We assume now that $w=-1$. Since $a\left(w-\omega_{1} v\right)^{2}>1,2 b<0$, and $w-\omega_{1} v<0$, by (2.1) $u-\omega_{2} v<0$. Hence $u=\left[\omega_{2} v\right]-1$, or $\left[\omega_{2} v\right]$. If $u=\left[\omega_{2} v\right]-1$, then by (2.2) we have $F\left(\theta_{g}\right)>1$. Hence $u=\left[\omega_{2} v\right]$, so $\theta_{g}=\left[\omega_{2} v\right]+v \alpha_{1}-\alpha_{2}$. If $v \geqq 2$, then we have $\theta_{g} \geqq$ $\left[2 \omega_{2}\right]+2 \alpha_{1}-\alpha_{2}>1+\alpha_{1}$. If $v=1$ and $\left[\omega_{2}\right] \geqq 2$, then $\theta_{g}>1+\alpha_{1}$. If $v=1$, $\left[\omega_{2}\right]=1$ and $s \geqq 2$, then $\theta_{g}<1$ because $\alpha_{1}<\alpha_{2}$. If $v=1,\left[\omega_{2}\right]=1$ and $s=1$, then $F\left(\theta_{g}\right)>1$ because

$$
\begin{aligned}
F\left(1+\alpha_{1}-\alpha_{2}\right) & =F\left(\frac{\alpha\left(c^{m}-\alpha\right)}{c^{s}+\alpha-c^{m}}\right) \\
& =\frac{c^{2 m}\left(\alpha^{2}+1\right)}{\left(c^{m}-c\right)^{2} \alpha^{2}+\left(c^{2}+c-c^{m+1}\right) \alpha+c^{m}\left(c^{m}-c\right)}>1
\end{aligned}
$$

Hence the case $w=-1$ is impossible. Therefore $u \geqq 0, v>0, w \geqq 0$.
(3) We claim that $v=1$.

Since $u=\left[\omega_{2} v\right]+i(i=-1,0,1,2)$, if $v \geqq 2$, then $\theta_{g} \geqq 1+2 \alpha_{1}+w \alpha_{2}>1+\alpha_{1}$. (4) We claim that $\theta_{g}=1+\alpha_{1}$.

Since $\left(w-\omega_{1} v\right)^{2}=\left(w-\omega_{1}\right)^{2}<2$, we have $0 \leqq w \leqq 2$. If $u=0$, then $w=1$ or 2 . If $w=1$ or 2 , then $F\left(\theta_{g}\right)>1$ because in (2.1) $2 b<0, w-\omega_{1} v>0$, $u-\omega_{2} v<0$ and $\left(u-\omega_{2} v\right)^{2}>1$. Hence $u \neq 0$. If $u \geqq 2$, then $\theta_{g}>1+\alpha_{1}$. Therefore $\theta_{g}=1+\alpha_{1}$.
Lemma 3.5. For an integer $s, 1 \leqq s \leqq m-1$,

$$
\text { if } \mathcal{R}=\left[1, \frac{c^{s}+\alpha-c^{m}}{c^{s}}, \frac{c^{s}+\alpha\left(\alpha-c^{m}\right)}{c^{s}}\right], \quad \text { then } \quad \theta_{g}=\frac{\alpha}{c^{s}} \text {. }
$$

Proof. we can write F in the form (2.1) and (2.2) with
$a=\frac{1}{c^{2 s} \alpha^{2}}\left(c^{2 s} \alpha^{2}-c^{m+s} \alpha+c^{2 m}\right)+c^{2 m-2 s}-\frac{c+1}{c^{s}}$,
$2 b=\frac{1}{c^{s} \alpha}\left\{\left(2 c^{s}-c-1\right) \alpha-c^{m}\right\}, \omega_{1}=\frac{1}{\alpha}, \omega_{2}=\frac{c^{m-s}\left(\alpha^{2}+1\right)-\alpha^{2}-\alpha}{\alpha^{2}}$.
By (1.1) we have $0<\alpha_{1}<1,0<\alpha_{2}<1,0<\omega_{1}<\frac{1}{3}$, $\left[\omega_{2}\right]=c^{m-s}-2, a>2$ and $4 b^{2}<a$. If $(s, c) \neq(m-1,2)$, then $\omega_{2}>1$. If $(s, c)=(m-1,2)$, then $\frac{\sqrt{2}}{2}<\omega_{2}<1 . F\left(\left[\omega_{2}\right]+1+\alpha_{1}-\alpha_{2}\right)=F\left(\frac{-\alpha^{2}+\left(c^{m}+1\right) \alpha-c^{s}}{c^{s}}\right)$
$=\frac{\alpha}{c^{s}}+\frac{1}{c^{2 s} \alpha}\left\{\left(c^{2 m}-c^{m+s}+c^{m}-c^{s+1}+c^{2 s}-2 c^{2}\right) \alpha+c^{s}\left(\alpha-c^{m}\right)+\frac{c^{2 m}}{\alpha}\right\}>1$.
$F\left(\left[\omega_{2}\right]+1+\alpha_{1}\right)=F\left(\frac{\alpha}{c^{s}}\right)=\frac{c^{m}}{c^{2 s} \alpha}<1$.

Let $\theta_{g}=u+v \alpha_{1}+w \alpha_{2}$.
(1) By Claim 1 in the proof of Lemma 3.4 we have $v \neq 0$ and $u v \geqq 0$.
(2) We claim that $u \geqq 0, v>0, w \geqq 0$.

By (2) in the proof of Lemma 3.4 if $w v \geqq 0$, then $u \geqq 0, v>0, w \geqq 0$, and if $w v<0$, then $w=-1$. Suppose that $w=-1$. Then $\theta_{g}=u+v \alpha_{1}-\alpha_{2}$, $u \geqq 0, v>0$ and $\left(w-\omega_{1} v\right)^{2}>1$. If $u \leqq\left[\omega_{2} v\right]-1$, then $\left(u-\omega_{2} v\right)^{2}>1$ and $F\left(\theta_{g}\right)>1$. If $u=\left[\omega_{2} v\right]$, then $\theta_{g}=\left[\omega_{2} v\right]+v \alpha_{1}-\alpha_{2}$. If $v \geqq 3$, then $\theta_{g} \geqq\left[\omega_{2}+2 \omega_{2}\right]+3 \alpha_{1}-\alpha_{2} \geqq\left[\omega_{2}\right]+1+\alpha_{1}+2 \alpha_{1}-\alpha_{2}>\left[\omega_{2}\right]+1+\alpha_{1}$. If $v=2$ and $\omega_{2}>1$, then $\theta_{g} \geqq\left[\omega_{2}\right]+1+\alpha_{1}+\alpha_{1}-\alpha_{2}>\left[\omega_{2}\right]+1+\alpha_{1}$. If $v=2$ and $\frac{\sqrt{2}}{2}<\omega_{2}<1$, then $\theta_{g}=\left[2 \omega_{2}\right]+2 \alpha_{1}-\alpha_{2}=1+\alpha_{1}+\alpha_{1}-\alpha_{2}>\left[\omega_{2}\right]+1+\alpha_{1}$. If $v=1$, then $F\left(\left[\omega_{2}\right]+\alpha_{1}-\alpha_{2}\right)=\frac{1}{c^{2 s}}\left\{2 c^{2 s}+\frac{c^{2 m}}{\alpha^{2}}+\frac{c^{m}}{\alpha}\left(c^{m}+1-2 c^{s}\right)+\frac{2 c^{s}}{\alpha}\left(c^{s} \alpha-\right.\right.$ $\left.\left.c^{m}\right)+2 c^{s} \alpha\left(\alpha-c^{m}+1\right)+c^{m}\left(c^{m}+1-2 c^{s}\right)\right\}>1$. If $u=\left[\omega_{2} v\right]+1$ and $v \geqq 2$, then $\theta_{g} \geqq\left[2 \omega_{2}\right]+1+2 \alpha_{1}-\alpha_{2}>\left[\omega_{2}\right]+1+\alpha_{1}$. If $u=\left[\omega_{2} v\right]+1$ and $v=1$, then $\theta_{g}=\left[\omega_{2}\right]+1+\alpha_{1}-\alpha_{2}$. If $u \geqq\left[\omega_{2} v\right]+2$, then $\theta_{g}>\left[\omega_{2}\right]+1+\alpha_{1}$.
Therefore the case $w v<0$ is impossible.
Therefore we have $u \geqq 0, v>0, w \geqq 0$.
(3) We claim that $v=1$ or 2 and $w=0$ or 1 .

We have $\theta_{g}=\left[\omega_{2} v\right]+i+v \alpha_{1}+w \alpha_{2}(i=-1,0,1,2)$.
If $v \geqq 3$, then $\theta_{g} \geqq\left[3 \omega_{2}\right]+i+3 \alpha_{1}+w \alpha_{2} \geqq\left[\omega_{2}\right]+2 \alpha_{1}+\alpha_{1}+w \alpha_{2}>\left[\omega_{2}\right]+$ $1+\alpha_{1}$. Hence $v=1$ or 2 . Since $a>2$ and $\omega_{1}<\frac{1}{3},\left(w-\omega_{1} v\right)^{2}<1$, so $w=0$ or 1 .
(4) We claim that $v=1$.

Suppose that $v=2$. Then $\theta_{g}=\left[2 \omega_{2}\right]+i+2 \alpha_{1}+w \alpha_{2}$, so $i=-1$ or 0 .
If $w=1$, then $\theta_{g}=i+\frac{\alpha^{2}+\left(2-c^{m}\right) \alpha}{c^{s}}$ and $F\left(\theta_{g}\right)=i^{2}+\frac{1}{c^{s}}\left\{(\alpha-2)\left(\alpha-c^{m}\right)-\right.$ $\left.\frac{2 c^{m}}{\alpha}\right\} i+\frac{c^{m}}{c^{2 s} \alpha}\left\{\left(c^{m}-4\right) \alpha+2\left(\alpha-c^{m}+2\right)+\frac{c^{m}}{\alpha}\right\}>1(i=-1,0)$.
If $w=0$, then $\theta_{g}=-1+i+\frac{2 \alpha}{c^{s}}$ and

$$
F\left(\theta_{g}\right)=\frac{1}{c^{2 s} \alpha}\left\{4 c^{m}+2(i-1) c^{s} \alpha\left(c^{m}-\alpha\right)\right\}+(i-1)^{2}>1 \quad(i=-1,0)
$$

Therefore we have $v=1$.
(5) We claim that $\theta_{g}=\left[\omega_{2}\right]+1+\alpha_{1}$.

We have $\theta_{g}=\left[\omega_{2}\right]+i+\alpha_{1}+w \alpha_{2}(i=-1,0,1)$. If $w=1$, then $i=-1$, or 0 and

$$
\begin{aligned}
F\left(\theta_{g}\right)= & i^{2}+\frac{1}{c^{s}}\left\{(\alpha-1)\left(\alpha-c^{m}\right)-\frac{2 c^{m}}{\alpha}\right\} i \\
& +\frac{c^{m}}{c^{2 s} \alpha}\left\{\left(c^{m}-2\right) \alpha+\alpha-c^{m}+1+\frac{c^{m}}{\alpha}\right\}>1 \quad(i=-1,0) .
\end{aligned}
$$

If $w=0$, then

$$
F\left(\theta_{g}\right)=\frac{1}{c^{2 s} \alpha}\left\{c^{m}+(i-1) c^{s} \alpha\left(c^{m}-\alpha\right)\right\}+(i-1)^{2}>1 \quad(i=-1,0) .
$$

Therefore we conclude that $\theta_{g}=\left[\omega_{2}\right]+1+\alpha_{1}$.

Lemma 3.6. If $\mathcal{R}=\left[1, \alpha-c^{m}+1, \frac{c^{m}}{\alpha}-1\right]$, then $\theta_{g}=1-\alpha+\alpha^{2}$.
Proof. We can write F in the form (2.1) and (2.2) with
$a=\alpha^{2}+1,2 b=\alpha\left(c^{m}-\alpha\right)-2, \omega_{1}=\frac{1}{\alpha}, \omega_{2}=\alpha+\frac{1}{\alpha}-1$.
By (1.1) we have $0<\alpha_{1}<1,0<\alpha_{2}<1,0<\omega_{1}<1, \omega_{2}>1, a>4$ and $4 b^{2}<a$.

Let $\theta_{g}=u+v \alpha_{1}+w \alpha_{2}$.
(1) By Claim 1 in the proof of Lemma 3.3 we have $v \neq 0$ and $u v \geqq 0$.
(2) By Claim 2 in the proof of Lemma 3.3 we have $u \geqq 0, u>0$ and $w \geqq 0$.
(3) We shall show that if $v \leqq c^{m}-1$, then $w=1$.

Suppose that $v \leqq c^{m}-1$. Since $4 b^{2}<a$, we have $\left(u-\omega_{2} v\right)^{2}<2$, so $u=$ $\left[\omega_{2} v\right]+i(i=-1,0,1,2)$. Since $a>4$, we have $\left(w-\omega_{1} v\right)^{2}<1$, so $w=$ $\left[\omega_{1} v\right]+j=j(j=0,1)$. Since $[v \alpha] \leqq\left[v \alpha+\frac{v}{\alpha}\right] \leqq[v \alpha+1]=[v \alpha]+1$,
we have

$$
\left[\omega_{2} v\right]=\left[v\left(\alpha+\frac{1}{\alpha}-1\right)\right]=[v \alpha]+k-v \quad(k=0,1)
$$

Hence we have

$$
\theta_{g}=\left[\omega_{2} v\right]+i+v \alpha_{1}+j \alpha_{2}=[v \alpha]-c^{m} v+i+k+v \alpha+j\left(\frac{c^{m}}{\alpha}-1\right) .
$$

If we put $x=[v \alpha]-c^{m} v+i+k$, since $c^{m}-1<\alpha<c^{m}$, we have $-v+i+k \leqq x \leqq-1+i+k$. Hence

$$
\begin{aligned}
x\left(c^{m}-\alpha\right)+v \frac{c^{m}}{\alpha} & \geqq(-v+i+k)\left(c^{m}-\alpha\right)+v \frac{c^{m}}{\alpha} \\
& =(i+k)\left(c^{m}-\alpha\right)+v\left\{\frac{c^{m}}{\alpha}-\left(c^{m}-\alpha\right)\right\}>0 .
\end{aligned}
$$

Therefore if $j=0$ and $x \neq 0$, then we have $F\left(\theta_{g}\right)=F(x+v \alpha)=x^{2}+v\left\{x\left(c^{m}-\right.\right.$ $\left.\alpha)+v \frac{c^{m}}{\alpha}\right\}>1$. If $j=0$ and $x=0$, then $F\left(\theta_{g}\right)=v^{2} \frac{c^{m}}{\alpha}>1$. Therefore we conclude $j(=w)=1$.
(4) We claim that if $v \leqq c^{m}-2$, then $F\left(\theta_{g}\right)>1$.

If $v \leqq c^{m}-2$, then we have

$$
\begin{aligned}
& \frac{a}{2}\left(w-\omega_{1} v\right)^{2}=\frac{a}{2}\left(1-\omega_{1} v\right)^{2} \geqq \frac{a}{2}\left(1-\frac{c^{m}-2}{\alpha}\right)^{2} \\
& =\frac{1}{2}\left(c^{m}-\alpha\right)^{2}+\frac{1}{2}\left(1-\frac{c^{m}-2}{\alpha}\right)^{2}+2\left(\alpha-c^{m}\right)+2>2-\frac{2}{c^{m-1}}-\frac{2}{c^{m+2}} .
\end{aligned}
$$

Hence if $(m, c) \neq(2,2)$, then $\frac{a}{2}\left(w-\omega_{1} v\right)^{2}>1$, so $F\left(\theta_{g}\right)>1$.
In the case $(m, c)=(2,2), \frac{a}{2}\left(w-\omega_{1} v\right)^{2}>1$ is easily checked. Therefore if $v \leqq c^{m}-2$, then $F\left(\theta_{g}\right)>1$.
(5) We claim that $\theta_{g}=\left[\left(c^{m}-1\right) \omega_{2}\right]+\left(c^{m}-1\right) \alpha_{1}+\alpha_{2}$.

Now we shall consider the case $v=c^{m}-1$. First we shall show that

$$
\begin{equation*}
c^{2 m}-c^{m}-c+1<A<c^{2 m}-c^{m}-c+2, \quad \text { where } \quad A=\left(c^{m}-1\right)\left(\alpha+\frac{1}{\alpha}\right) \tag{3.7}
\end{equation*}
$$

We observe that $c^{2 m}-c^{m}-c+1<A$ is equivalent to

$$
\begin{equation*}
c \alpha+c^{m} \alpha\left(\alpha-c^{m}\right)+\alpha\left(c^{m}-\alpha\right)-1+c^{m}-\alpha>0 . \tag{3.8}
\end{equation*}
$$

From (3.6) we have $c\left(\alpha-c^{m}\right)<c \alpha+c^{m} \alpha\left(\alpha-c^{m}\right)$, further from (1.1) $-\frac{1}{c^{m-2}}-\frac{1}{c^{m+1}}<c \alpha+c^{m} \alpha\left(\alpha-c^{m}\right)$. From this and (3.6) we have (3.8). Hence we have $c^{2 m}-c^{m}-c+1<A$. In the same way, $A<c^{2 m}-c^{m}-c+2$ is more easily proved. Therefore by (3.7) we have
$[A]=\left[\left(c^{m}-1\right)\left(\alpha+\frac{1}{\alpha}\right)\right]=c^{2 m}-c^{m}-c+1$. So if $v=c^{m}-1$, then $\theta_{g}=\left[\omega_{2} v\right]+$ $i+v \alpha_{1}+\alpha_{2}=\left[\left(c^{m}-1\right)\left(\alpha+\frac{1}{\alpha}\right)-\left(c^{m}-1\right)\right]+i+\left(c^{m}-1\right)\left(\alpha-c^{m}+1\right)+\frac{c^{m}}{\alpha}-1=$ $-c+i+c^{m} \alpha+\frac{c^{m}}{\alpha}-\alpha=\alpha^{2}-\alpha+1+i(i=-1,0,1,2)$. If $i=-1$ and $v=c^{m}-1$, then $F\left(\theta_{g}\right)=F\left(\alpha^{2}-\alpha\right)=\frac{c^{m}}{\alpha}\left(\alpha-c^{m}+1+\frac{c^{m}}{\alpha}\right)>1$. If $i=0$ and $v=c^{m}-1$, then $F\left(\theta_{g}\right)=F\left(\alpha^{2}-\alpha+1\right)=\frac{c^{m}}{\alpha^{2}}\left(\alpha-c^{m}\right)(\alpha-1)+\left(c^{m}-\alpha\right)^{2}-\left(c^{m}-\alpha\right)+1<1$. Therefore we conclude $\theta_{g}=\left[\left(c^{m}-1\right) \omega_{2}\right]+\left(c^{m}-1\right) \alpha_{1}+\alpha_{2}=\alpha^{2}-\alpha+1$.
Lemma 3.7. If $\mathcal{R}=\left[1, \alpha-c^{m}+1, \frac{c^{m}-1}{\alpha}\right]$, then $\theta_{g}=\frac{1-c \alpha+\alpha^{2}}{c}$.
Proof. We can write F in the form (2.1) and (2.2) with
$a=c^{m-2} \alpha, 2 b=\frac{\alpha\left(c^{m}-\alpha\right)}{c}, \omega_{1}=\frac{c}{\alpha}, \omega_{2}=\alpha-1$.
By (1.1) we have $0<\alpha_{1}<1,0<\alpha_{2}<1,0<\omega_{1}<1, \omega_{2}>1$ and $a>3$.
By (3.6) $2 b<1$, so $4 b^{2}<a$.
Let $\theta_{g}=u+v \alpha_{1}+w \alpha_{2}$.
(1) By Claim 1 in the proof of Lemma 3.3 we have $v \neq 0$ and $u v \geqq 0$.
(2) By Claim 2 in the proof of Lemma 3.3 we have $v \geqq 0, v>0$, and $w \geqq 0$.
(3) By Claim 2 in the proof of Lemma 3.3 we have $w>0$.
(4) we claim that $\theta_{g}=-1+\left(c^{m-1}-1\right) \alpha_{1}+\alpha_{2}$.

We shall show that $v \leqq c^{m-1}-2$ implies that $F\left(\theta_{g}\right)>1$. Suppose that $v \leqq c^{m-1}-2$. Since $\left[\omega_{1} v\right]=0, w=\left[\omega_{1} v\right]+1=1$. By Claim 4 in the proof of Lemma 3.3 we have $[v \alpha]=v c^{m}+k(k=-2$ or -1$)$. So we have
$\theta_{g}=u+v \alpha_{1}+\alpha_{2}=\left[\omega_{2} v\right]+i+v \alpha_{1}+\alpha_{2}=x+v \alpha+\frac{c^{m-1}}{\alpha}$,
where $x=k+i(i=-1,0,1,2)$. We have

$$
\begin{align*}
F\left(\theta_{g}\right)= & x^{2}+x\left(c^{m}-\alpha\right)\left(v+\frac{\alpha}{c}\right) \tag{3.9}\\
& +\frac{v \alpha\left(c^{m}-\alpha\right)^{2}}{c}+\frac{c^{m}}{\alpha}\left(v-\frac{\alpha}{c}\right)^{2} \quad(-3 \leqq x \leqq 1) .
\end{align*}
$$

By (1.1) if $v \leqq c^{m-1}$ and $x \neq 0$, then we have

$$
\begin{align*}
& \left|x\left(c^{m}-\alpha\right)\left(v+\frac{\alpha}{c}\right)\right| \leqq|x|\left(c^{m}-\alpha\right)\left(c^{m-1}+\frac{\alpha}{c}\right) \tag{3.10}\\
& \quad<|x|\left(c^{m}-\alpha\right) 2 c^{m-1}<|x| 2 c^{m-1}\left(\frac{1}{c^{m-1}}+\frac{1}{c^{m+2}}\right) \\
& \quad=|x|\left(2+\frac{2}{c^{3}}\right) \leqq|x|\left(2+\frac{1}{2^{2}}\right) \quad(x \neq 0) .
\end{align*}
$$

Also by (1.1), $\frac{c^{m}-\alpha}{c}<\frac{1}{c^{m}}+\frac{1}{c^{m+3}}<\frac{1}{3}$, so if $v \leqq c^{m-1}-2$, then we have

$$
\begin{equation*}
\frac{c^{m}}{\alpha}\left(v-\frac{\alpha}{c}\right)^{2} \geqq \frac{c^{m}}{\alpha}\left(c^{m-1}-\frac{\alpha}{c}-2\right)^{2} \geqq\left(\frac{c^{m}-\alpha}{c}-2\right)^{2} \geqq 2+\frac{2}{3} . \tag{3.11}
\end{equation*}
$$

from (3.9), (3.10), (3.11) if $-3 \leqq x \leqq 1$, then $F\left(\theta_{g}\right)>1$.
Therefore if $v \leqq c^{m-1}-2$, then $F\left(\overline{\theta_{g}}\right)>1$.
Now we shall consider the case $v=c^{m-1}-1$. We have
$\theta_{g}=x+\left(c^{m-1}-1\right) \alpha+\frac{c^{m-1}}{\alpha} \quad(-3 \leqq x \leqq 1)$. From (3.9), (3.10) if $x=-3$, then $F\left(\theta_{g}\right)>1$. By (3.9) if $x=-2$, then we have
$F\left(\theta_{g}\right)=4-2\left(c^{m}-\alpha\right)\left(c^{m-1}-1+\frac{\alpha}{c}\right)+\frac{\left(c^{m-1}-1\right) \alpha\left(c^{m}-\alpha\right)^{2}}{c}+\frac{c^{m}}{\alpha}\left(c^{m-1}-1-\frac{\alpha}{c}\right)^{2}$ $=\frac{1}{c \alpha}\left\{c^{m}\left(c-\alpha\left(c^{m}-\alpha\right)\right)+c \alpha-c^{m}\left(c^{m}-\alpha\right) c^{m-1}+\left(c^{m-1}-c\right) \alpha\left(c^{m}-\alpha\right)+\right.$ $\left.\left(c^{m}-\alpha\right)^{2}\right\}+1>1$. By (3.9) if $x=-1$, then we have

$$
\begin{aligned}
F\left(\theta_{g}\right)= & 1-\left(c^{m}-\alpha\right)\left(c^{m-1}-1+\frac{\alpha}{c}\right) \\
& +\frac{\left(c^{m-1}-1\right) \alpha\left(c^{m}-\alpha\right)^{2}}{c}+\frac{c^{m}}{\alpha}\left(c^{m-1}-1-\frac{\alpha}{c}\right)^{2} \\
= & 1+c^{m-2}\left(c^{m}-\alpha\right)\left\{\alpha\left(c^{m}-\alpha\right)-c\right\}+\frac{1}{c \alpha}\left(c^{m}-\alpha\right)^{2}\left(c^{m-1}-\alpha\right) \\
& +\frac{1}{c \alpha}\left(c^{m}-\alpha\right)\left\{c+1-c^{m}+\alpha\left(c^{m}-\alpha-1\right)\right\}<1 .
\end{aligned}
$$

Therefore we conclude $\theta_{g}=-1+\left(c^{m-1}-1\right) \alpha+\frac{c^{m-1}}{\alpha}$.
Lemma 3.8. If $\mathcal{R}=\left[1, \frac{c^{m}-\alpha}{\alpha-c^{m}+1}, \frac{c^{m}-\alpha}{\alpha\left(\alpha-c^{m}+1\right)}\right]$, then $\theta_{g}=\frac{1}{\alpha-c^{m}+1}$.
Proof. We can write F in the form (2.1) and (2.2) with
$a=\frac{c^{m} \alpha^{2}-c \alpha+c^{m}}{\left(c^{m}-1\right) \alpha^{2}-\left(c^{m}-1\right) \alpha+c^{m}}, 2 b=-\frac{c \alpha^{2}-(c-1) \alpha+c^{m}}{\left(c^{m}-1\right) \alpha^{2}-\left(c^{m}-1\right) \alpha+c^{m}}$,
$\omega_{1}=\frac{1}{\alpha^{2}-\alpha+1}, 2 \omega_{2}=2+\frac{\alpha^{2}+\left(c^{m}-2\right) \alpha}{\left(c^{m}-1\right) \alpha^{2}-\left(c^{m}-1\right) \alpha+c^{m}}-\omega_{1}(2 b)$.
By (1.1) we have $0<\alpha_{1}<1,0<\alpha_{2}<1,0<\omega_{1}<1, a>1$ and $|2 b|<1$, so $4 b^{2}<a$. Since $2<2 \omega_{2}<4,1<\omega_{2}<2$. We have

$$
\begin{aligned}
F\left(\left[\omega_{2}\right]+\alpha_{1}\right) & =F\left(1+\alpha_{1}\right)=F\left(\frac{1}{\alpha-c^{m}+1}\right) \\
& =\frac{\alpha}{\left(c^{m}-1\right) \alpha^{2}-\left(c^{m}-1\right) \alpha+c^{m}}<1 .
\end{aligned}
$$

So by Adam [1], Proposition $2.3 \quad \theta_{g}=\left[\omega_{2}\right]+\alpha_{1},\left[\omega_{2}\right]+\alpha_{1}-\alpha_{2}$ or $\left[\omega_{2}\right]-1+\alpha_{1}$. Since $F\left(\left[\omega_{2}\right]+\alpha_{1}-\alpha_{2}\right)=F\left(\frac{2 \alpha-c^{m}}{\alpha\left(\alpha-c^{m}+1\right)}\right)=\frac{c^{m} \alpha^{2}-2(c-2) \alpha+2 c^{m}}{\left(c^{m}-1\right) \alpha^{2}-\left(c^{m}-1\right) \alpha+c^{m}}>1$ and $\left[\omega_{2}\right]-1+\alpha_{1}=\alpha_{1}<1, \theta_{g}=\left[\omega_{2}\right]+\alpha_{1}=\frac{1}{\alpha-c^{m}+1}$.

§ 4. Proof of the main theorem

Proof of Theorem 3.1. First we define
$\theta_{g}{ }^{(1)}=1-\alpha+\alpha^{2}=\alpha \frac{c+\alpha-c^{m}}{c^{m}-\alpha} \quad$ and $\quad \theta_{h}^{(1)}=\alpha$,
$\theta_{g}{ }^{(3 s-2)}=\frac{c^{s-1}\left(\alpha^{2}+1\right)-\alpha}{\alpha}=\frac{c^{s}+\alpha-c^{m}}{c^{m}-\alpha} \quad$ and $\quad \theta_{h}^{(3 s-2)}=\alpha \quad$ for $\quad 2 \leqq s \leqq m-1$,
$\theta_{g}{ }^{(3 s-1)}=\frac{c^{s}}{c^{s}+\alpha-c^{m}} \quad$ and $\quad \theta_{h}^{(3 s-1)}=\frac{c^{s}+\alpha\left(\alpha-c^{m}\right)}{c^{s}+\alpha-c^{m}} \quad$ for $\quad 1 \leqq s \leqq m-1$,
$\theta_{g}{ }^{(3 s)}=\frac{\alpha}{c^{s}} \quad$ and $\quad \theta_{h}{ }^{(3 s)}=\frac{\alpha\left(\alpha-c^{m}\right)+\alpha}{c^{s}} \quad$ for $\quad 1 \leqq s \leqq m-1$,
$\theta_{g}{ }^{(3 m-2)}=\frac{1-c \alpha+\alpha^{2}}{c}=\alpha \frac{1+\alpha-c^{m}}{c^{m}-\alpha} \quad$ and $\quad \theta_{h}{ }^{(3 m-2)}=\alpha$,
$\theta_{g}{ }^{(3 m-1)}=\frac{1}{1+\alpha-c^{m}}$.
Next we define
$\mathcal{R}_{1}=\left[1, \alpha, \alpha^{2}\right], \quad \mathcal{R}_{n}=\left[1,1 / \theta_{g}{ }^{(n-1)}, \theta_{h}^{(n-1)} / \theta_{g}^{(n-1)}\right] \quad$ for $2 \leqq n \leqq 3 m-1$.
It is easily seen that $\mathcal{R}_{n}=\left[1, \theta_{g}{ }^{(n)}, \theta_{h}^{(n)}\right]$ for $1 \leqq n \leqq 3 m-2$.
By Lemma $3.6 \theta_{g}{ }^{(1)} \quad$ is the minimal point adjacent to 1 in \mathcal{R}_{1}.
By Lemma $3.3 \quad \theta_{g}{ }^{(3 s-2)}$ is the minimal point adjacent to 1 in $\mathcal{R}_{3 s-2}$.
By Lemma $3.4 \theta_{g}{ }^{(3 s-1)}$ is the minimal point adjacent to 1 in $\mathcal{R}_{3 s-1}$.
By Lemma $3.5 \theta_{g}{ }^{(3 s)} \quad$ is the minimal point adjacent to 1 in $\mathcal{R}_{3 s}$.
By Lemma $3.7 \quad \theta_{g}{ }^{(3 m-2)}$ is the minimal point adjacent to 1 in $\mathcal{R}_{3 m-2}$.
By Lemma $3.8 \quad \theta_{g}{ }^{(3 m-1)}$ is the minimal point adjacent to 1 in $\mathcal{R}_{3 m-1}$.
We define $\theta_{n}=\prod_{i=1}^{n} \theta_{g}{ }^{(i)}$. Then we have $N_{K}\left(\theta_{3 m-1}\right)=1$ and $N_{K}\left(\theta_{i}\right) \neq 1$ if $1 \leqq i \leqq 3 m-2$. Therefore, $\theta_{3 m-1}$ is the fundamental unit ε of \mathcal{O}, and the Voronoi-algorithm expansion period length is $l=3 m-1$.
Remark 4.1. In fact (ii) in Theorem 3.1 is valid for $m=1$ provided $c \geqq 4$.

References

[1] B. Adams, Voronoi-algorithm expansion of two families with period length going to infinity, Math. Comp. 64 (1995), 1687-1704.
[2] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Transl.Math.Monographs, vol.10, Amer. Math. Soc., Providence, RI, 1964.
[3] J. Kühner, On a family of generalized continued fraction expansions with period length going to infinity, J. Number Theory 53 (1995), 1-12.
[4] C. Levesque and G. Rhin, Two families of periodic Jacobi algorithms with period lengths going to infinity, J. Number Theory 37 (1991), 173-180.
[5] H. C. Williams, G. Cormack and E. Seah, Calculation of the regulator of a pure cubic field, Math. Comp. 34 (1980), 567-611.
[6] H. C. Williams, G. W. Dueck and B. K. Schmid, A rapid method of evaluating the regulator and class number of a pure cubic field, Math. Comp. 41 (1983), 235-286.
[7] H. C. Williams, Continued fractions and number-theoretic computations, Rocky Mountain J. Math 15 (1985), 621-655.
[8] H. C. Williams, The period length of Voronoi's algorithm for certain cubic orders, Publ, Math. Debrecen 37 (1990), 245-265.

Kan Kaneko
Tokyo Metropolitan Yashio High School
3-27-22, Higashi-shinagawa, Shinagawa-ku, Tokyo 140, Japan

