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Abstract. In this paper we study the pseudo-projective curvature tensor on
warped product manifolds. We obtain some significant results of the pseudo-
projective curvature tensor on warped product manifolds in terms of its base
and fiber manifolds. Moreover, we derive some interesting results which describe
the geometry of base and fiber manifolds for a pseudo-projectively flat warped
product manifold. Lastly, we study the pseudo-projective curvature tensor on
generalized Robertson-Walker space-times and standard static space-times.
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§1. Introduction

Bishop and O’Neill [6] had given the idea of warped product in Riemannian
manifolds. They introduced the notion of warped product for making a large
class of complete manifolds having negative curvature. The main idea of this
warped product actually appeared on account of a surface of revolution. Later,
Nölker [13] also developed the concept of multiply warped product as a gen-
eralization of warped product. The warped product plays a very significant
role in differential geometry, especially in mathematical physics and general
relativity. Schwarzschild solution, Robertson-walker model, static model and
Kruscal model etc. are the examples of warped products. There are so many
exact solutions of Einstein field equations and modified field equations. These
solutions can be written in terms of warped products.

The pseudo-projective curvature tensor had been defined by Prasad [15].
The pseudo-projective curvature tensor includes the projective curvature ten-
sor. Many authors [8, 10, 11, 12] studied the pseudo-projective curvature
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tensor in different ways. The pseudo-projective curvature tensor has been
studied in mathematics as well as physics as a research topic. Shenawy and
Ünal [19] studied on the W2-curvature tensor on warped product manifolds.
In view of the above interesting works, we wish to study the pseudo-projective
curvature tensor on warped product manifolds and space-times.

The aim of this paper is to study the geometry of pseudo-projective curva-
ture tensor on warped product manifolds. Besides this we discuss its applica-
tions to Robertson-Walker space-times and standard static space-times. Hence
this paper connects the pseudo-projective curvature tensor to warped product
manifold, Robertson-Walker space-times and standard static space-times.

This paper has been arranged in the following way. In section 2, we state
the concept of pseudo-projective curvature tensor and warped product man-
ifolds. In section 3, we discuss some interesting results of pseudo-projective
curvature tensor on warped product manifolds in terms of its base and fiber
manifolds. In section 4, we study pseudo-projective curvature tensor on gener-
alized Robertson-Walker space-times. The last section is devoted to the study
of standard static space-times admitting the pseudo-projective curvature ten-
sor.

§2. Preliminaries

In this part, we just recall some basic ideas on warped product and pseudo-
projective curvature tensor.

Let (B, gB) and (F, gF ) be two Riemannian manifolds with dim(B) > 0 and
dim(F ) > 0. Let f : B → (0,∞) be a positive smooth function on B. Suppose
the natural projections of the product manifold B×F are π : B×F → B and
η : B × F → F . The warped product M = B ×f F is the product manifold
B × F furnished with the Riemannian structure such that

< X,X >=< π∗(X), π∗(X) > +f2(π(X)) < η∗(X), η∗(X) >,

for each tangent vector X ∈ X(M). Therefore, we obtain the metric relation
gM = gB ⊕ f2gF . B and F are respectively the base and fiber of this warped
product manifold. The function f is known as the warping function of this
warped product.

Proposition 2.1 ([14]). Let M = B ×f F be a warped product with Rieman-
nian curvature tensor R. If X,Y, Z ∈ X(B) and U, V,W ∈ X(F ), then

(1) R(X,Y )Z = RB(X,Y )Z,

(2) R(V,X)Y =
Hf (X,Y )

f
V,

(3) R(X,Y )V = R(V,W )X = 0,
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(4) R(X,V )W =
g(V,W )

f
D1

X(∇f),

(5) R(V,W )U = RF (V,W )U +
∥∇f∥2

f2
[g(W,U)V − g(V,U)W ] .

Proposition 2.2 ([14]). On the warped product M = B ×f F with dim(F ) =
d > 1, let X,Y ∈ X(B) and V,W ∈ X(F ). Then the Ricci tensor SM of M
are given by

(1) SM (X,Y ) = SB(X,Y )− d

f
Hf (X,Y ),

(2) SM (X,V ) = 0,

(3) SM (V,W ) = SF (V,W )− g(V,W )f#, f# =
∆f

f
+

d− 1

f2
∥∇f∥2,

where ∆f = tr
(
Hf

)
and Hf are respectively the Laplacian and the Hessian

of f on B.

Proposition 2.3 ([7]). Let M = B×fF be a semi-Riemannian warped product
furnished with the metric gM = gB ⊕ f2gF . Then the scalar curvature τ of M
admits the following relation

τ = τB +
τF
f2

− 2s
∆B(f)

f
− s(s− 1)

∥gradBf∥2B
f2

,

where r = dim(B) and s = dim(F ).

The pseudo-projective curvature tensor P̄ ∗ on a pseudo-Riemannian
manifold is defined by

P̄ ∗(X,Y, Z,W ) = a1R̄(X,Y, Z,W ) + a2[S(Y, Z)g(X,W )(2.1)

− S(X,Z)g(Y,W )]− τ

n

(
a1

n− 1
+ a2

)
× [g(Y, Z)g(X,W )− g(X,Z)g(Y,W )],

where a1 and a2 (̸= 0) are two constants, S is the Ricci tensor of (0, 2)-type,
the scalar curvature of the manifold is τ , P̄ ∗(X,Y, Z,W ) = g(P ∗(X,Y )Z,W ),
R̄(X,Y, Z,W ) = g(R(X,Y )Z,W ), where R is the Riemannian curvature ten-
sor.

If a1 = 1 and a2 = − 1
n−1 , then Eq. (2.1) reduces to the projective curvature

tensor. Moreover, if P ∗ = 0 for n > 3, then a pseudo-Riemannian manifold is
called pseudo-projectively flat.

It clearly follows from Eq. (2.1) that

P ∗(X,Y )Z = a1R(X,Y )Z + a2 [S(Y, Z)X − S(X,Z)Y ](2.2)

− τ

n

(
a1

n− 1
+ a2

)
[g(Y, Z)X − g(X,Z)Y ] .
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Remark. Suppose M is a semi-Riemannian manifold. Then

P ∗(X,Y )Z + P ∗(Y, Z)X + P ∗(Z,X)Y = 0,

for X,Y, Z ∈ X(M).

Proposition 2.4. Suppose M is a semi-Riemannian manifold. Then the
pseudo-projective curvature tensor vanishes if and only if the tensor P ∗ van-
ishes.

A Riemannian metric g is said to be of Hessian type metric if Hf1 = f2g
for any two smooth functions f1 and f2, where H

f1 denotes the Hessian of the
function f1.

§3. Pseudo-projective curvature tensor on warped product
manifolds

Here we study the pseudo-projective curvature tensor on warped product man-
ifolds. We consider the warped product M = M1 ×f M2 where dim(M) = n,
dim(M1) = n1 and dim(M2) = n2 such that n = n1 + n2, ni ̸= 1 for i = 1, 2.
We denote R, Ri as the curvature tensor and S, Si as the Ricci tensor on
M, Mi respectively. On the other hand, ∇f , ∆f and Hf are respectively the
gradient, Laplacian and Hessian of f on M1. D, Di indicate the Levi-Civita
connection with respect to the metric g, gi for i = 1, 2 respectively. Through-
out our entire study we use the relation f# = ∆f

f + n2−1
f2 ∥∇f∥2. Last of all, we

denote the pseudo-projective curvature tensor and the tensor P ∗ on M and
Mi by P̄ ∗, P ∗ and P̄ ∗

i , P
∗
i respectively.

Now we obtain the following theorems for the pseudo-projective curvature
tensor on warped product manifolds. These theorems describe the warped
geometry in terms of its base and fiber manifolds.

Theorem 3.1. Let M = M1 ×f M2 be a warped product manifold furnished
with the metric g = g1 ⊕ f2g2. If Xi, Yi, Zi ∈ X(Mi) for i = 1, 2, then

P ∗(X1, Y1)Z1 = P ∗
1 (X1, Y1)Z1 + τ

[
n2(n+ n1 − 1)

nn1(n− 1)(n1 − 1)
a1 +

n2

nn1
a2

]
× [g1(Y1, Z1)X1 − g1(X1, Z1)Y1]

+
a2n2

f

[
Hf (X1, Z1)Y1 −Hf (Y1, Z1)X1

]
,

P ∗(X1, Y1)Z2 = P ∗(X2, Y2)Z1 = 0,

P ∗(X1, Y2)Z1 =

(
a2n2 − a1

f

)
Hf (X1, Z1)Y2 − a2S

1(X1, Z1)Y2

+
τ

n

(
a1

n− 1
+ a2

)
g1(X1, Z1)Y2,



PSEUDO-PROJECTIVE CURVATURE TENSOR 97

P ∗(X1, Y2)Z2 = a1fg2(Y2, Z2)D
1
X1

∇f + a2S
2(Y2, Z2)X1

− f2

[
a2f

# +
τ

n

(
a1

n− 1
+ a2

)]
g2(Y2, Z2)X1,

P ∗(X2, Y2)Z2 = P ∗
2 (X2, Y2)Z2 +

[(
n2 − n− n2

2f
2 + n2f

2

nn2(n− 1)(n2 − 1)

)
a1τ

+

(
n− n2f

2

nn2

)
τa2 − a2f

2f# + a1∥∇f∥2
]

× [g2(Y2, Z2)X2 − g2(X2, Z2)Y2] .

Proof. Let M = M1 ×f M2 be a warped product manifold furnished with
the metric g = g1 ⊕ f2g2. Let dim(M) = n, dim(Mi) = ni for i = 1, 2 and
n = n1 + n2. If Xi, Yi, Zi ∈ X(Mi) for i = 1, 2. Then, we obtain

P ∗(X1, Y1)Z1 = a1R(X1, Y1)Z1 + a2 [S(Y1, Z1)X1 − S(X1, Z1)Y1]

− τ

n

(
a1

n− 1
+ a2

)
[g(Y1, Z1)X1 − g(X1, Z1)Y1]

= a1R
1(X1, Y1)Z1 + a2

[{
S1(Y1, Z1)−

n2

f
Hf (Y1, Z1)

}
X1

−
{
S1(X1, Z1)−

n2

f
Hf (X1, Z1)

}
Y1

]
− τ

n

(
a1

n− 1
+ a2

)
[g1(Y1, Z1)X1 − g1(X1, Z1)Y1]

= a1R
1(X1, Y1)Z1 + a2[S

1(Y1, Z1)X1 − S1(X1, Z1)Y1]

− τ

n1

(
a1

n1 − 1
+ a2

)
[g1(Y1, Z1)X1 − g1(X1, Z1)Y1]

+

[
τ

n1

(
a1

n1 − 1
+ a2

)
− τ

n

(
a1

n− 1
+ a2

)]
× [g1(Y1, Z1)X1 − g1(X1, Z1)Y1]

+
a2n2

f

[
Hf (X1, Z1)Y1 −Hf (Y1, Z1)X1

]
= P ∗

1 (X1, Y1)Z1 + τ

[
n2(n+ n1 − 1)

nn1(n− 1)(n1 − 1)
a1 +

n2

nn1
a2

]
× [g1(Y1, Z1)X1 − g1(X1, Z1)Y1]

+
a2n2

f

[
Hf (X1, Z1)Y1 −Hf (Y1, Z1)X1

]
,

P ∗(X1, Y1)Z2 = a1R(X1, Y1)Z2 + a2 [S(Y1, Z2)X1 − S(X1, Z2)Y1]
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− τ

n

(
a1

n− 1
+ a2

)
[g(Y1, Z2)X1 − g(X1, Z2)Y1]

= 0,

P ∗(X1, Y2)Z1 = a1R(X1, Y2)Z1 + a2 [S(Y2, Z1)X1 − S(X1, Z1)Y2]

− τ

n

(
a1

n− 1
+ a2

)
[g(Y2, Z1)X1 − g(X1, Z1)Y2]

= −
(
a1
f

)
Hf (X1, Z1)Y2 − a2

[
S1(X1, Z1)Y2

− n2

f
Hf (X1, Z1)Y2

]
+

τ

n

(
a1

n− 1
+ a2

)
g1(X1, Z1)Y2

=

(
a2n2 − a1

f

)
Hf (X1, Z1)Y2 − a2S

1(X1, Z1)Y2

+
τ

n

(
a1

n− 1
+ a2

)
g1(X1, Z1)Y2,

P ∗(X1, Y2)Z2 = a1R(X1, Y2)Z2 + a2 [S(Y2, Z2)X1 − S(X1, Z2)Y2]

− τ

n

(
a1

n− 1
+ a2

)
[g(Y2, Z2)X1 − g(X1, Z2)Y2]

=

(
a1
f

)
g(Y2, Z2)D

1
X1

∇f + a2
[
S2(Y2, Z2)X1

− f#g(Y2, Z2)X1

]
− τf2

n

(
a1

n− 1
+ a2

)
g2(Y2, Z2)X1

= a1fg2(Y2, Z2)D
1
X1

∇f + a2S
2(Y2, Z2)X1

− f2

[
a2f

# +
τ

n

(
a1

n− 1
+ a2

)]
g2(Y2, Z2)X1,

P ∗(X2, Y2)Z1 = a1R(X2, Y2)Z1 + a2 [S(Y2, Z1)X2 − S(X2, Z1)Y2]

− τ

n

(
a1

n− 1
+ a2

)
[g(Y2, Z1)X2 − g(X2, Z1)Y2]

= 0,

P ∗(X2, Y2)Z2 = a1R(X2, Y2)Z2 + a2 [S(Y2, Z2)X2 − S(X2, Z2)Y2]

− τ

n

(
a1

n− 1
+ a2

)
[g(Y2, Z2)X2 − g(X2, Z2)Y2]

= a1

[
R2(X2, Y2)Z2 +

∥∇f∥2

f2
{g(Y2, Z2)X2 − g(X2, Z2)Y2}

]
+ a2[{S2(Y2, Z2)X2 − f#g(Y2, Z2)X2}
− {S2(X2, Z2)Y2 − f#g(X2, Z2)Y2}]

− τf2

n

(
a1

n− 1
+ a2

)
[g2(Y2, Z2)X2 − g2(X2, Z2)Y2]

= a1R
2(X2, Y2)Z2 + a2

[
S2(Y2, Z2)X2 − S2(X2, Z2)Y2

]
− τ

n2

(
a1

n2 − 1
+ a2

)
[g2(Y2, Z2)X2 − g2(X2, Z2)Y2]
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+

[
τ

n2

(
a1

n2 − 1
+ a2

)
− τf2

n

(
a1

n− 1
+ a2

)
− a2f

2f# + a1∥∇f∥2
]
[g2(Y2, Z2)X2 − g2(X2, Z2)Y2]

= P ∗
2 (X2, Y2)Z2 +

[(
n2 − n− n2

2f
2 + n2f

2

nn2(n− 1)(n2 − 1)

)
a1τ

+

(
n− n2f

2

nn2

)
τa2 − a2f

2f# + a1∥∇f∥2
]

× [g2(Y2, Z2)X2 − g2(X2, Z2)Y2] .

This completes the proof.

Theorem 3.2. Let M = M1×fM2 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ⊕ f2g2. Then

P̄ ∗
1 (X1, Y1, Z1,W1) = τ

[
n2(n+ n1 − 1)

nn1(n− 1)(n1 − 1)
a1 +

n2

nn1
a2

]
× [g1(X1, Z1)g1(Y1,W1)− g1(Y1, Z1)g1(X1,W1)]

+
a2n2

f

[
Hf (Y1, Z1)g1(X1,W1)−Hf (X1, Z1)g1(Y1,W1)

]
,

for X1, Y1, Z1,W1 ∈ X(M1).

Proof. Let us assume thatM = M1×fM2 be a pseudo-projectively flat warped
product manifold. Therefore, in view of Theorem 3.1, we obtain

P ∗
1 (X1, Y1)Z1 = τ

[
n2(n+ n1 − 1)

nn1(n− 1)(n1 − 1)
a1 +

n2

nn1
a2

]
× [g1(X1, Z1)Y1 − g1(Y1, Z1)X1]

+
a2n2

f

[
Hf (Y1, Z1)X1 −Hf (X1, Z1)Y1

]
.

Therefore, we derive

P̄ ∗
1 (X1, Y1, Z1,W1) = g1 (P

∗
1 (X1, Y1)Z1,W1)

= τ

[
n2(n+ n1 − 1)

nn1(n− 1)(n1 − 1)
a1 +

n2

nn1
a2

]
× [g1(X1, Z1)g1(Y1,W1)− g1(Y1, Z1)g1(X1,W1)]

+
a2n2

f

[
Hf (Y1, Z1)g1(X1,W1)

−Hf (X1, Z1)g1(Y1,W1)
]
.

This completes the proof.
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Theorem 3.3. Let M = M1×fM2 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1⊕ f2g2. Then the base manifold M1

is pseudo-projectively flat if and only if

τ

[
n2(n+ n1 − 1)

nn1(n− 1)(n1 − 1)
a1 +

n2

nn1
a2

]
× [g1(X1, Z1)g1(Y1,W1)− g1(Y1, Z1)g1(X1,W1)]

+
a2n2

f

[
Hf (Y1, Z1)g1(X1,W1)−Hf (X1, Z1)g1(Y1,W1)

]
= 0,

for X1, Y1, Z1,W1 ∈ X(M1).

Proof. Let the base manifold M1 be pseudo-projectively flat. Then

P̄ ∗
1 (X1, Y1, Z1,W1) = 0.

Clearly, the proof follows from Theorem 3.2.

Theorem 3.4. Let M = M1×fM2 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ⊕ f2g2. Then the scalar curvature
τ1 of M1 is given by

τ1 =
1

a2

[(
a2n2 − a1

f

)
∆f +

τn1

n

(
a1

n− 1
+ a2

)]
.

Proof. Let us assume thatM = M1×fM2 be a pseudo-projectively flat warped
product manifold. Then Theorem 3.1 implies that

S1(X1, Z1) =
1

a2

[(
a2n2 − a1

f

)
Hf (X1, Z1) +

τ

n

(
a1

n− 1
+ a2

)
g1(X1, Z1)

]
.

Taking contraction over X1 and Z1, we gain

τ1 =
1

a2

[(
a2n2 − a1

f

)
∆f +

τn1

n

(
a1

n− 1
+ a2

)]
.

This completes the proof.

Remark. Proposition 2.3 [7] and Theorem 3.4 jointly imply that the scalar
curvature τ2 of (M2, g2) is a constant since the left hand side of the equation
in Theorem 3.4 depends only on the base manifold (M1, g1).

Theorem 3.5. Let M = M1×fM2 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ⊕ f2g2. Then the pseudo-projective
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curvature tensor of M2 is given by

P̄ ∗
2 (X2, Y2, Z2,W2) =

[(
n2 − n− n2

2f
2 + n2f

2

nn2(n− 1)(n2 − 1)

)
a1τ +

(
n− n2f

2

nn2

)
τa2

− a2f
2f# + a1∥∇f∥2

]
[g2(X2, Z2)g2(Y2,W2)

− g2(Y2, Z2)g2(X2,W2)],

for X2, Y2, Z2,W2 ∈ X(M2).

Proof. Let M = M1 ×f M2 be a pseudo-projectively flat warped product
manifold. From Theorem 3.1, it follows that

0 = P ∗
2 (X2, Y2)Z2 +

[(
n2 − n− n2

2f
2 + n2f

2

nn2(n− 1)(n2 − 1)

)
a1τ +

(
n− n2f

2

nn2

)
τa2

− a2f
2f# + a1∥∇f∥2

]
[g2(Y2, Z2)X2 − g2(X2, Z2)Y2] .

Therefore,

P̄ ∗
2 (X2, Y2, Z2,W2) = g2 (P

∗
2 (X2, Y2)Z2,W2)

=

[(
n2 − n− n2

2f
2 + n2f

2

nn2(n− 1)(n2 − 1)

)
a1τ +

(
n− n2f

2

nn2

)
τa2

− a2f
2f# + a1∥∇f∥2

]
[g2(X2, Z2)g2(Y2,W2)

− g2(Y2, Z2)g2(X2,W2)].

This completes the proof.

Theorem 3.6. Let M = M1×fM2 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ⊕ f2g2. If the fiber manifold M2 is
Ricci flat, then the base manifold M1 is of Hessian type.

Proof. Let M = M1 ×f M2 be a pseudo-projectively flat warped product
manifold. Then from Theorem 3.1, we derive

0 = a1fg2(Y2, Z2)D
1
X1

∇f + a2S
2(Y2, Z2)X1

− f2

[
a2f

# +
τ

n

(
a1

n− 1
+ a2

)]
g2(Y2, Z2)X1.

Suppose that M2 is Ricci flat. Then S2(X2, Y2) = 0 for any X2, Y2 ∈ X(M2).
Hence, we obtain from the above relation

D1
X1

∇f =
f

a1

[
a2f

# +
τ

n

(
a1

n− 1
+ a2

)]
X1.
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This implies that

Hf =
f

a1

[
a2f

# +
τ

n

(
a1

n− 1
+ a2

)]
g1.

Hence, M1 is of Hessian type. This completes the proof.

Theorem 3.7. Let M = M1×fM2 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ⊕ f2g2. If the fiber manifold M2 is
Ricci flat, then the pointwise constant sectional curvature τ2 of M2 is given by

τ2 =
1

a1

[
−
(
n2 − n− n2

2f
2 + n2f

2

nn2(n− 1)(n2 − 1)

)
a1τ −

(
n− n2f

2

nn2

)
τa2 + a2f

2f#

− a1∥∇f∥2 + τ

n

(
a1

n− 1
+ a2

)]
.

Proof. Let M2 be Ricci flat. Therefore, from Eq. (2.1), we have

R̄2(X2, Y2, Z2,W2) =
1

a1

[
P̄ ∗
2 (X2, Y2, Z2,W2) +

τ

n

(
a1

n− 1
+ a2

)
× {g2(Y2, Z2)g2(X2,W2)− g2(X2, Z2)g2(Y2,W2)}

]
.

In view of Theorem 3.1, we derive from the above relation that

R̄2(X2, Y2, Z2,W2) =
1

a1

[
−
(
n2 − n− n2

2f
2 + n2f

2

nn2(n− 1)(n2 − 1)

)
a1τ −

(
n− n2f

2

nn2

)
τa2

+ a2f
2f# − a1∥∇f∥2 + τ

n

(
a1

n− 1
+ a2

)]
× {g2(Y2, Z2)g2(X2,W2)− g2(X2, Z2)g2(Y2,W2)}.

This implies that M2 has a pointwise constant sectional curvature and this
curvature is given by

τ2 =
1

a1

[
−
(
n2 − n− n2

2f
2 + n2f

2

nn2(n− 1)(n2 − 1)

)
a1τ −

(
n− n2f

2

nn2

)
τa2 + a2f

2f#

− a1∥∇f∥2 + τ

n

(
a1

n− 1
+ a2

)]
.

This completes the proof.

Theorem 3.8. Let M = M1 ×f M2 be a warped product manifold furnished
with the metric g = g1⊕f2g2. If H

f = 0, ∆f = 0 and M is pseudo-projectively
flat, then M2 is an Einstein manifold.
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Proof. Let M be pseudo-projectively flat. Therefore, M1 is flat in view of
Theorem 3.2. Furthermore, from Theorem 3.1, we obtain

0 = a1fg2(Y2, Z2)D
1
X1

∇f + a2S
2(Y2, Z2)X1(3.1)

− f2

[
a2f

# +
τ

n

(
a1

n− 1
+ a2

)]
g2(Y2, Z2)X1.

Since Hf (X1, Y1) = 0 and ∆f = 0. Therefore, we derive from Eq. (3.1) that

S2(Y2, Z2) =

[
(n2 − 1)∥∇f∥2 + τf2

a2n

(
a1

n− 1
+ a2

)]
g2(Y2, Z2).

This implies that M2 is an Einstein manifold. This completes the proof.

§4. Pseudo-projective curvature tensor on generalized
Robertson-Walker space-times

Let (M, g) be a Riemannian manifold of dimension n. The function f : I →
(0,∞) is a smooth function where I is a connected and open subinterval of
R. Then the warped product manifold M̆ = I ×f M of dimension (n + 1)
equipped with the metric ğ = −dt2 ⊕ f2g is known as generalized Robertson-
Walker space-time. Here dt2 is the Euclidean metric on I. This structure is
the generalization of Robertson-Walker space-times [9, 16, 17, 18]. We use ∂t
instead of ∂

∂t ∈ X(I) for simplicity in the following results.
With the help of Proposition 2.1, Proposition 2.2 and Eq. (2.2), we obtain

the following theorem after some elementary calculations.

Theorem 4.1. Let M̆ = I×fM be a generalized Robertson-Walker space-time

furnished with the metric ğ = −dt2 ⊕ f2g. Then the curvature tensor P̆ ∗ on
M̆ is given by

P̆ ∗(∂t, ∂t)∂t = P̆ ∗(∂t, ∂t)X = P̆ ∗(X,Y )∂t = 0,

P̆ ∗(∂t, X)∂t =

[(
na2 − a1

f

)
f̈ − τ

n+ 1

(a1
n

+ a2

)]
X,

P̆ ∗(X, ∂t)Y =

[{
− (a1 + a2)ff̈ − (n− 1)a2ḟ

2

+
τf2

n+ 1

(a1
n

+ a2

)}
g(X,Y )− a2S(X,Y )

]
∂t,

P̆ ∗(X,Y )Z = a1R(X,Y )Z + a2 [S(Y, Z)X − S(X,Z)Y ]

+

[
− a1ḟ

2 + a2ff̈ + a2(n− 1)ḟ2 − τf2

n+ 1

(a1
n

+ a2

)]
× [g(Y, Z)X − g(X,Z)Y ] ,
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for X,Y, Z ∈ X(M) and ∂t ∈ X(I).

Theorem 4.2. Let M̆ = I ×f M be a generalized Robertson-Walker space-

time furnished with the metric ğ = −dt2 ⊕ f2g. If M̆ is pseudo-projectively
flat, then the warping function f is given by

f =


c1e

µt + c2e
−µt, if µ2 is positive

c1 + c2t, if µ2=0

c1 cosµt+ c2 sinµt, if µ2 is negative

where µ2 = τ(a1+na2)
n(n+1)(na2−a1)

and c1, c2 are two arbitrary constants.

Proof. Let M̆ be pseudo-projectively flat. Then from the second relation of
Theorem 4.1, we have

f̈ − µ2f = 0.

Hence, by solving the above differential equation the warping function f is
obtained and it is given by

f =


c1e

µt + c2e
−µt, if µ2 is positive

c1 + c2t, if µ2=0

c1 cosµt+ c2 sinµt, if µ2 is negative

where c1, c2 are two arbitrary constants. This completes the proof.

Theorem 4.3. Let M̆ = I ×f M be a generalized Robertson-Walker space-

time furnished with the metric ğ = −dt2 ⊕ f2g. If M̆ is pseudo-projectively
flat, then M is an Einstein manifold.

Proof. Let M̆ be pseudo-projectively flat. Then from the third relation of
Theorem 4.1, we have

S(X,Y ) =
1

a2

[
−(a1 + a2)ff̈ − (n− 1)a2ḟ

2 +
τf2

n+ 1

(a1
n

+ a2

)]
g(X,Y ).

Hence, M is an Einstein manifold. This completes the proof.

§5. Pseudo-projective curvature tensor on standard static
space-times

Let (M, g) be a Riemannian manifold of dimension n. The function f : M →
(0,∞) is a smooth function. Then the warped product manifold M̆ = I ×f M
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of dimension (n + 1) equipped with the metric ğ = −f2dt2 ⊕ g is known as
standard static space-time. Here I is the connected, open subinterval of R
and dt2 is the Euclidean metric on I. This structure is the generalization of
Einstein static universe [1, 2, 3, 4, 5]. We write ∂t instead of ∂

∂t ∈ X(I) for
expressing the following results in simpler way.

In view of Proposition 2.1, Proposition 2.2 and Eq. (2.2), we obtain the
following theorem after some elementary calculations.

Theorem 5.1. Let M̆ = I ×f M be a standard static space-time furnished

with the metric ğ = −f2dt2 ⊕ g. Then the curvature tensor P̆ ∗ on M̆ is given
by

P̆ ∗(∂t, ∂t)∂t = P̆ ∗(∂t, ∂t)X = P̆ ∗(X,Y )∂t = 0,

P̆ ∗(∂t, X)∂t = f

[
a1D

1
X∇f − a2∆fX − τf

n+ 1

(a1
n

+ a2

)
X

]
,

P̆ ∗(∂t, X)Y =

[(
a1 − a2

f

)
Hf (X,Y ) + a2S(X,Y )

− τ

n+ 1

(a1
n

+ a2

)
g(X,Y )

]
∂t,

P̆ ∗(X,Y )Z = a1R(X,Y )Z + a2 [S(Y, Z)X − S(X,Z)Y ]

− a2
f

[
Hf (Y, Z)X −Hf (X,Z)Y

]
− τ

n+ 1

(a1
n

+ a2

)
[g(Y, Z)X − g(X,Z)Y ] ,

for X,Y, Z ∈ X(M) and ∂t ∈ X(I).

Theorem 5.2. Let M̆ = I×fM be a standard static space-time furnished with

the metric ğ = −f2dt2 ⊕ g. If M̆ is pseudo-projectively flat, then Hf = ∆f
n g.

Proof. Let M̆ = I ×f M be pseudo-projectively flat. Then from the second
relation of Theorem 5.1, we have

D1
X∇f =

1

a1

[
a2∆f +

τf

n+ 1

(a1
n

+ a2

)]
X

i.e., Hf =
1

a1

[
a2∆f +

τf

n+ 1

(a1
n

+ a2

)]
g.(5.1)

Taking trace on both sides, we obtain

∆f =
nfτ

(n+ 1)(a1 − na2)

(a1
n

+ a2

)
.(5.2)

Using Eq. (5.2) in Eq. (5.1), we derive Hf = ∆f
n g. This completes the

proof.
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Theorem 5.3. Let M̆ = I ×f M be a standard static space-time furnished

with the metric ğ = −f2dt2 ⊕ g. If M̆ is pseudo-projectively flat, then M is
an Einstein manifold.

Proof. Let M̆ = I×f M be pseudo-projectively flat. We derive from the third
relation of Theorem 5.1 by using Theorem 5.2 and Eq. (5.2) that

S(X,Y ) =
(1− n)∆f

nf
g(X,Y ).

This implies that M is an Einstein manifold. This completes the proof.
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