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Abstract. Let (X0, X1) be a compatible couple of Banach spaces and Tj

a bounded operator from Xj into itself (j = 0, 1) satisfying T0x = T1x for

all x ∈ X0 ∩ X1. On an additional assumption concerning a boundedness of

T0|X0∩X1 (= T1|X0∩X1), the next relations of spectra are proved:

σ(Tθ) ⊂ σ(T0) ∪ σ(T1) = σ(T∆) ∪ σ(TΣ)
(
θ ∈ (0, 1)

)
,

where Tθ, T∆ and TΣ are the bounded operators induced by T0 and T1 on the

complex interpolation space (X0, X1)[θ], the intersection X0 ∩X1 and the sum

X0 +X1, respectively.
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§1. Introduction and main result

This paper is concerned with the spectrum of a bounded operator on a com-

plex interpolation space. The assumption of boundedness is not an essential

restriction because considerations on the spectra of unbounded operators are

reduced to those on the spectra of resolvents of the operators by the spectral

mapping theorem. The definition of basic notions in the complex interpolation

theory, which includes a compatible couple of Banach spaces, their intersec-

tion (resp. sum) and its norm ∥ · ∥∆ (resp. ∥ · ∥Σ) and a complex interpolation

space, is described in Appendix of this paper.

Let (X0, X1) be a compatible couple of Banach spaces (for definition, see

Definition A.1) and Tj a bounded operator from Xj into itself (j = 0, 1), and
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assume that T0 is consistent with T1, i.e., T0x = T1x for all x ∈ X0∩X1. Then,

by the complex interpolation theory, for each θ ∈ (0, 1), a complex interpola-

tion space (X0, X1)[θ] is defined (for definition, see Definition A.2), and there

exists a unique bounded operator Tθ from (X0, X1)[θ] into itself which is con-

sistent with both T0 and T1, i.e., Tθx = T0x = T1x for all x ∈ X0 ∩X1 (cf. [5,

4.1.2. Theorem and 4.2.2. Theorem (a)]). One of the typical examples of such

a situation is given by an integrable function on RN . Indeed, such a function

defines a convolution operator Sp on Lp(RN ) for each p ∈ [1,∞], and each of

these operators is bounded and consistent with one another. In this example,

L1(RN ), L∞(RN ), S1 and S∞ are regarded as X0, X1, T0 and T1 above, re-

spectively. Under this corresponding relationship, for each θ ∈ (0, 1) and the

exponent p satisfying 1/p = 1−θ, the Lebesgue space Lp(RN ) is isomorphic to

the complex interpolation space (X0, X1)[θ] (cf. [5, 5.1.1. Theorem]), and Sp is

nothing but the interpolation operator Tθ on (X0, X1)[θ] whose existence and

boundedness are guaranteed by applying Riesz–Thorin’s interpolation theo-

rem [5, 1.1.1. Theorem] to T0 and T1. On the spectrum of Sp, a remarkable

result has been obtained, that is, K. Jörgens [8, Theorem 13.3] proved that

the spectrum of Sp is independent of p ∈ [1,∞].

Another example is given by a Schrödinger semigroup or resolvents of its

generator. B. Simon [14, THEOREM 1.1] and J. Voigt [17, 5.3. THEOREM

and 5.8. PROPOSITION] proved that, for a class of potentials, the Schrödinger

semigroup (Tp(t))t≥0 is a C0-semigroup on Lp(RN ) for each p ∈ [1,∞) and each

Tp(t) (t > 0) is consistent with each Tq(t) for all p and q ∈ [1,∞). Based on

this result, Simon [14, THEOREM 5.1] and R. Hempel–Voigt [7, Theorem]

obtained the result that the generator −Hp of (Tp(t))t≥0, i.e., a Shcrödinger

operator acting in Lp(RN ), has a spectrum independent of p ∈ [1,∞). As

is stated in [7, 3.3 Proposition], the nth power (H2 − z)−n of a resolvent of

H2 for a sufficiently large integer n is an integral operator, and its kernel

exponentially decays away from the diagonal set. This fact implies that the

bounded operator Rp,n on Lp(RN ) induced from (H2−z)−n coincides with the

nth power of a resolvent of Hp and the integral operator whose kernel is the

same as that of (H2−z)−n. In addition, for each p ∈ [1,∞), the operator Rp,n

is consistent with both R1,n and the dual operator R∞,n of R1,n, and hence

Rp,n is nothing but the interpolation operator on Lp(RN ) between R1,n and

R∞,n. Thus, this interpolation operator has a p-independent integral kernel.

These results naturally lead to the questions of whether the spectrum of

the general interpolation operator Tθ is independent of θ or not, or what re-

lationships exist among the spectrum of T0, T1 and Tθ. To find directions for
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generalization, it would not be meaningless to have an overview of some re-

lated results, including cases of unbounded operators, before we state the main

result of this paper. W. Arendt [1, Corollary 4.3.] proved the p-independence

of the spectrum of the generator of a C0-semigroup on Lp, but not necessarily

a Schrödinger semigroup, on the assumption of “upper Gaussian estimate”,

which corresponds to domination by the Gauss semigroup. P. C. Kunstmann

[9, THEOREM 1.1] and B. A. Barnes [2, THEOREM 4.8] obtained a result on

the p-independence of the spectrum of an integral operator on Lp by improv-

ing Arendt’s method and using the theory of Banach algebras, respectively.

S. Miyajima and the author replaced the Laplacian of Schrödinger semigroups

or the Gauss semigroup with a fractional Laplacian −(−∆)α (0 < α < 1) and

proved some results analogous to Hempel–Voigt’s or Arendt’s result by apply-

ing Kunstmann’s or Barnes’ result (cf. [11, Theorem 4.2], [10, Theorem 3.19

and Theorem 3.20] and [12, Theorem 3.9 and Theorem 4.2]).

So far we have overviewed the results on the p-independence of spectra, but

in general, it does not hold (cf. [1, Section 3]). However, Barnes proved the

following results which hold in such cases.

Proposition 1.1. Let Ω be a σ-finite measure space, p0 and p1 numbers sat-

isfying 1 ≤ p0 < p1 ≤ ∞, the Banach space X0 the Lebesgue space Lp0(Ω),

and the Banach space X1 the Lebesgue space Lp1(Ω) if p1 ̸= ∞ or L∞
0 (Ω) if

p1 = ∞, where L∞
0 (Ω) is the closure of the subspace consisting of all integrable

simple functions in L∞(Ω).

(i) ([4, THEOREM 5.3]) On this assumption, the inclusion relations

σ(Tθ) ⊂ σ(T0) ∪ σ(T1) ∪ σ(T∆)

and

(1.1) σ(Tθ) ⊂
[
σ(T0) ∪ σ(T1)

]∧
hold for each θ ∈ (0, 1), where T∆ ∈ L(X0 ∩X1) is defined by

(1.2) T∆x := T0x (x ∈ X0 ∩X1)

and the right-hand side of (1.1) denotes the polynomial convex hull of

σ(T0) ∪ σ(T1) (for definition, see Remark 1.2 below). Note that, for all

x ∈ X0∩X1, the image T0x belongs to X0∩X1 because of the consistency

of T0 and T1. The boundedness of T∆ follows from that of T0 and T1

(cf. Definition A.1).
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(ii) ([4, THEOREM 4.3 (1)]) In addition to the assumption of (i), assume

that Ω is either a finite or a special discrete measure space (for definition,

see Remark 1.2 below). On these assumptions, the inclusion relation

σ(Tθ) ⊂ σ(T0) ∪ σ(T1)

holds for each θ ∈ (0, 1).

Remark 1.2. Here, we state the definitions mentioned above.

(i) ([15, p. 23]) For a compact subset K of C, the polynomial convex hull K̂

is defined by

K̂ :=

{
z ∈ C

∣∣∣∣ |f(z)| ≤ sup
ζ∈K

|f(ζ)| for all polynomials f

}
.

(ii) ([4, p. 367]) A measure space Ω with positive measure µ is said to be a

special discrete measure space if Ω = {1, 2, 3, . . .} and µ satisfies µ({k}) <
∞ for each k ∈ Ω and inf

{
µ({k})

∣∣ k ∈ Ω
}
> 0.

In this paper, we generalize the Lebesgue spaces in Barnes’ results stated

just above Remark 1.2 to general complex interpolation spaces. By this gen-

eralization, Barnes’ results (Proposition 1.1 (ii)) for the case of a finite and

a special discrete measure space are derived from the main result of this pa-

per. However, we do not assume that X0 ∩ X1 is dense in X1, considering

the case where X0 = Lp (p ∈ [1,∞)), X1 = L∞ and bounded operators on

X0 and X1 are given in advance. Hence, X1 is not necessarily L∞
0 mentioned

in Proposition 1.1. On the other hand, we assume that T0 is regarded as a

bounded operator from X0 into X1. This assumption seems to be reasonable

in the view that most of the bounded operators treated in the articles above

are Lp-Lq bounded for appropriate exponents p and q. A precise statement is

given by the following

Theorem 1.3. Let (X0, X1) be a compatible couple (for its definition and the

norm on X0 ∩ X1 or X0 + X1, see Definition A.1), Tj : Xj → Xj a bounded

operator (j = 0, 1) and T0 consistent with T1, i.e., T0x = T1x is satisfied for

all x ∈ X0 ∩ X1. On this assumption, there exists, for each θ ∈ (0, 1), a

unique bounded operator Tθ from the complex interpolation space (X0, X1)[θ]
(for definition, see Definition A.2) into itself, which is consistent with both T0

and T1, i.e., Tθx = T0x = T1x is satisfied for all x ∈ X0 ∩ X1. In addition,

assume that the following conditions (i) and (ii) hold.
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(i) X0 ∩X1 is dense in X0.

(ii) There exists a constant C > 0 such that

∥T0x∥1 ≤ C∥x∥0

for all x ∈ X0 ∩X1.

On these assumptions, the next relations of spectra

(1.3) σ(Tθ) ⊂ σ(T0) ∪ σ(T1) = σ(T∆) ∪ σ(TΣ)

hold for each θ ∈ (0, 1), where T∆ ∈ L(X0 ∩ X1) is defined by Eq. (1.2) and

TΣ ∈ L(X0 +X1) denotes the operator whose image of x ∈ X0 +X1 is defined

by

TΣx := T0u+ T1v (x = u+ v, u ∈ X0, v ∈ X1).

Note that this image is independent of the choice of u and v. The boundedness

of TΣ follows from that of T0 and T1.

Notation. Let X and Y be Banach spaces. The space X ′ denotes the dual

space of X. The set L(X,Y ) consists of all bounded operators from X into Y .

We abbreviate L(X,X) to L(X). For a T ∈ L(X,Y ), the operator T ′ denotes

the dual operator of T . Needless to say, T ′ ∈ L(Y ′, X ′). For a T ∈ L(X),

the set σ(T ) and ρ(T ) denote the spectrum of T and the resolvent set of T ,

respectively. The relation “Y ↪→ X” means that Y is continuously embedded

into X. In the case where Y ↪→ X, the inclusion mapping from Y into X is

written as ι(Y,X).

§2. Proof of the main result

To prove Theorem 1.3, we generalize Barnes’ result (Proposition 1.1 (i)) to

the case of complex interpolation spaces in the following

Proposition 2.1 (cf. [4, THEOREM 5.3]). Let (X0, X1) be a compatible cou-

ple, Tj a bounded operator from Xj into itself (j = 0, 1) and T0 consistent with

T1, i.e., T0x = T1x is satisfied for all x ∈ X0 ∩X1. On this assumption, the

bounded operator Tθ stated in Theorem 1.3 satisfies the inclusion relations of

spectra

(2.1) σ(Tθ) ⊂ σ(T0) ∪ σ(T1) ∪ σ(T∆)
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and

(2.2) σ(Tθ) ⊂
[
σ(T0) ∪ σ(T1)

]∧
for each θ ∈ (0, 1), where T∆ ∈ L(X0 ∩ X1) is defined by Eq. (1.2) and the

right-hand side of (2.2) denotes the polynomial convex hull of σ(T0) ∪ σ(T1)

(for definition, see Remark 1.2 above).

Proof. To prove Eq. (2.1), i.e., ρ(T0) ∩ ρ(T1) ∩ ρ(T∆) ⊂ ρ(Tθ), suppose that

λ ∈ C belongs to ρ(T0)∩ρ(T∆). As is stated in [9, LEMMA 2.3], the resolvent

(λ − T0)
−1 is consistent with (λ − T∆)

−1. Indeed, since T0 is consistent with

T∆, the equality

(λ− T0)(λ− T∆)
−1x = x

holds for all x ∈ X0∩X1. Hence, (λ−T0)
−1x = (λ−T∆)

−1x for all x ∈ X0∩X1.

In the same way, for each λ ∈ ρ(T1)∩ρ(T∆), the resolvent (λ−T1)
−1 is proved

to be consistent with (λ−T∆)
−1. Therefore, for each λ ∈ ρ(T0)∩ρ(T1)∩ρ(T∆),

both (λ−T0)
−1 and (λ−T1)

−1 are consistent with (λ−T∆)
−1. Hence, (λ−T0)

−1

is consistent with (λ− T1)
−1 for each λ ∈ ρ(T0) ∩ ρ(T1) ∩ ρ(T∆).

Now, suppose λ ∈ ρ(T0) ∩ ρ(T1) ∩ ρ(T∆) and θ ∈ (0, 1). To prove λ ∈
ρ(Tθ), we recall a fundamental theorem [5, 4.1.2. Theorem] in the complex

interpolation theory and apply this theorem to (λ−T0)
−1 and (λ−T1)

−1, that

is, there exists a bounded operator Rθ from the complex interpolation space

(X0, X1)[θ] into itself which is consistent with both (λ−T0)
−1 and (λ−T1)

−1.

As is stated in [9, LEMMA 2.5], this λ belongs to ρ(Tθ) and Rθ = (λ− Tθ)
−1.

Indeed, since Tθ (resp. Rθ) is consistent with T∆ (resp. (λ − T∆)
−1), the

equalities

(λ− Tθ)Rθx = Rθ(λ− Tθ)x = x

hold for all x ∈ X0 ∩ X1. These equalities are valid for all x ∈ (X0, X1)[θ]
because both (λ − Tθ)Rθ and Rθ(λ − Tθ) are continuous on (X0, X1)[θ] and

X0 ∩ X1 is dense in (X0, X1)[θ] by [5, 4.2.2. Theorem]. Thus, λ belongs to

ρ(Tθ), and we conclude ρ(T0) ∩ ρ(T1) ∩ ρ(T∆) ⊂ ρ(Tθ), i.e., σ(Tθ) ⊂ σ(T0) ∪
σ(T1) ∪ σ(T∆).

To prove Eq. (2.2), we first show that the inclusion relation

Aσ(T∆) ⊂ Aσ(T0) ∪Aσ(T1)

holds, where Aσ(T∆), Aσ(T0) and Aσ(T1) denote the set of all approximate

point spectra of T∆, T0 and T1, respectively. This inclusion relation is proved

in the same way as the proof of [4, THEOREM 5.1. (3)]. Indeed, suppose
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that λ is an approximate point spectrum of T∆, and {xn} is a sequence of

unit vectors in X0 ∩ X1 such that ∥(λ − T∆)xn∥∆ → 0 as n → ∞, where

∥ · ∥∆ denotes a norm of X0∩X1 (for definition, see Definition A.1). From the

definition of the norm ∥ · ∥∆, the sequence {xn} does not converge to zero in

at least either X0 or X1 and the sequence {(λ − Tj)xn} converges to zero in

Xj for j = 0 and 1. Hence, λ is an approximate point spectrum of either T0

or T1, i.e., Aσ(T∆) ⊂ Aσ(T0) ∪ Aσ(T1). Since the boundary ∂σ(T∆) of σ(T∆)

is contained in Aσ(T∆), the inclusion relation

∂σ(T∆) ⊂ σ(T0) ∪ σ(T1)

holds.

From this inclusion relation and the definition of the polynomial convex hull

of a compact subset of C, it is easy to prove the following inclusion relations

and equality

σ(T∆) ⊂ [σ(T∆)]
∧ = [∂σ(T∆)]

∧ ⊂ [σ(T0) ∪ σ(T1)]
∧

and

σ(T0) ∪ σ(T1) ⊂ [σ(T0) ∪ σ(T1)]
∧.

Thus, σ(T0) ∪ σ(T1) ∪ σ(T∆) ⊂ [σ(T0) ∪ σ(T1)]
∧. Combining this inclusion

relation with Eq. (2.1) already proved, we have the inclusion relation σ(Tθ) ⊂
[σ(T0) ∪ σ(T1)]

∧ for each θ ∈ (0, 1).

The next lemma states, as a special case, relations between the spectrum

of a bounded linear operator S on a Banach space Y and that of an extension

of S on a Banach space X of which Y is a subspace. To replace X and Y

with various Banach spaces is a key to the proof of Theorem 1.3. Although

this lemma is surely well known, the author could not find an appropriate

literature which includes all the assertions of this lemma. However, since it is

easy to prove this lemma, we give some references instead of a complete proof.

Lemma 2.2. Let X and Y be Banach spaces and T a bounded operator from X

into Y . Assume that Y is continuously embedded into X. On this assumption,

the spectrum of TX and that of TY , where TX := ι(Y,X)T ∈ L(X) and TY :=

Tι(Y,X) ∈ L(Y ), have the next relations

σ(TX) \ {0} = σ(TY ) \ {0}

and

σ(TY ) ⊂ σ(TX).
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In addition, if Y is densely embedded into X, then these spectra are identical

with each other, i.e.,

σ(TX) = σ(TY ).

Proof. The assertions of this lemma can be considered as a special case of

spectral relationships of the operator products TS and ST , where T ∈ L(X,Y )

and S ∈ L(Y,X) are bounded operators between Banach spacesX and Y . The

equality σ(TS) \ {0} = σ(ST ) \ {0} in the case of X = Y is proved in [16,

Proposition 2.1]. This equality in the general case and the last equality of this

lemma in the case where Y is a proper dense subspace of X are proved in [3,

Lemma 5 (1)] and [3, Theorem 4 (2)], respectively. All the assertions of this

lemma are obtained by replacing T and S in [13, Proposition 2] with T and

ι(Y,X) in this lemma, respectively.

Proof of Theorem 1.3. On the assumptions (i) and (ii), the operator T∆ has

a unique continuous extension T ∈ L(X0, X0 ∩ X1). By this definition, T is

consistent with T∆ and T0, and T∆ and T0 are written as T∆ = Tι(X0∩X1, X0)

and T0 = ι(X0 ∩ X1, X0)T , respectively. On the assumption (i), Lemma 2.2

implies that the spectra of these operators are identical with each other:

(2.3) σ(T∆) = σ(T0).

Hence, combining this equality with the inclusion relation (2.1) which has been

proved, we have the next relation

σ(Tθ) ⊂ σ(T0) ∪ σ(T1)

for each θ ∈ (0, 1).

In addition, we define T̃ : X0 +X1 → X1 by

T̃ x := TΣx (x ∈ X0 +X1).

Note that the range of TΣ is contained in X1 on the assumption (ii). This

operator T̃ is bounded, i.e., T̃ ∈ L(X0+X1, X1), because of the assumption (ii)

and the boundedness of T1. By using this operator, T1 and TΣ are written as

T1 = T̃ ι(X1, X0+X1) and TΣ = ι(X1, X0+X1)T̃ , respectively. By Lemma 2.2,

the set σ(T1) \ {0} is equal to σ(TΣ) \ {0}. Hence, by using this equality and

Eq. (2.3), we have(
σ(T0) ∪ σ(T1)

)
\ {0} =

(
σ(T∆) ∪ σ(TΣ)

)
\ {0}.
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In the case where 0 ∈ σ(T0), it means that 0 ∈ σ(T∆), hence the equality

σ(T0)∪σ(T1) = σ(T∆)∪σ(TΣ) holds. In the case where 0 ̸∈ σ(T0), the Banach

space X0 ∩X1 (resp. X0 +X1) is isomorphic to X0 (resp. X1). Indeed, since

T0 = ι(X0 ∩X1, X0)T and T0 is bijective, so is ι(X0 ∩X1, X0). By the open

mapping theorem, the inverse of ι(X0 ∩X1, X0) is bounded. Thus, X0 ∩X1 is

isomorphic to X0 and hence X0 ↪→ X1.

To prove that X0+X1 is isomorphic to X1, suppose that x ∈ X0+X1 and

x is written as x = u + v (u ∈ X0, v ∈ X1). Since ∥u∥1 ≤ ∥ι(X0, X1)∥∥u∥0,
the estimates

∥x∥1 ≤ ∥u∥1 + ∥v∥1 ≤ max{∥ι(X0, X1)∥, 1}(∥u∥0 + ∥v∥1)

hold. Taking the infimum with respect to such u and v, we have

∥x∥1 ≤ max{∥ι(X0, X1)∥, 1}∥x∥Σ.

By this estimate and the trivial estimate ∥x∥Σ ≤ ∥x∥1, the sum X0+X1 is iso-

morphic to X1. Therefore, σ(T0) (resp. σ(T1)) is equal to σ(T∆) (resp. σ(TΣ))

and hence σ(T0) ∪ σ(T1) = σ(T∆) ∪ σ(TΣ).

§3. Applications

We apply Theorem 1.3 to bounded operators on Lebesgue spaces to obtain a

result of the spectra of integral operators. In what follows, Lp is the Lebesgue

space for an exponent p ∈ [1,∞] and a σ-finite measure space Ω with the

measure µ, and ∥ · ∥p denotes the norm of Lp. We identify the dual space

(Lp)′ with Lp′ provided 1 ≤ p < ∞, where p′ is the conjugate exponent of p.

For a complex-valued function f , the function f has the values which are the

complex conjugate of those of f .

Corollary 3.1. Let p and q be numbers satisfying 1 ≤ p < q ≤ ∞, and Tp

(resp. Tq) a bounded operator from Lp (resp. Lq) into itself which is consistent

with Tq (resp. Tp). Then, for each r ∈ (p, q), there exists a unique bounded

operator Tr ∈ L(Lr) consistent with both Tp and Tq. In addition, assume that

Tp is Lp-Lq bounded, i.e., there exists a constant C > 0 such that

∥Tpf∥q ≤ C∥f∥p

for all f ∈ Lp ∩ Lq. Then, the following assertions hold:
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(i) For each r ∈ (p, q), the operator Tr satisfies the following relations of

spectra

σ(Tr) ⊂ σ(Tp) ∪ σ(Tq) = σ(T∆) ∪ σ(TΣ),

where T∆ and TΣ are defined in the same way in Theorem 1.3 by replacing

T0, T1, X0 and X1 with Tp, Tq, L
p and Lq, respectively.

(ii) In the particular case where 1 ≤ p ≤ 2 and q = p′, on the additional

assumption that (Tp)
∗ = Tp′, where (Tp)

∗ is defined by

(3.1) (Tp)
∗f := (Tp)′f

(
f ∈ Lp′

)
and hence (Tp)

∗ is isomorphic to (Tp)
′, the relations of spectra

σ(T2) ⊂ σ(Tp) = σ(Tp′) = σ(T∆) = σ(TΣ)

hold.

Proof. Suppose 1 ≤ p < q ≤ ∞ and let θ be the number satisfying 1/r =

(1 − θ)/p + θ/q. Then, Lr is the complex interpolation space (Lp, Lq)[θ] by

[5, 5.1.1 Theorem]. In addition, assume that Tp is Lp-Lq bounded. Then, the

conditions (i) and (ii) in Theorem 1.3 are satisfied. Now, we regard Lp, Lq, Tp

and Tq as X0, X1, T0 and T1 in Theorem 1.3, respectively, and apply Eq. (1.3)

in Theorem 1.3 to them. Since Tr is nothing but Tθ in Theorem 1.3, we have

σ(Tr) ⊂ σ(Tp) ∪ σ(Tq) = σ(T∆) ∪ σ(TΣ).

In the particular case where 1 ≤ p ≤ 2, q = p′ and (Tp)
∗ = Tp′ , combining

this inclusion relation with the equalities σ(Tp) = σ
(
(Tp)

∗) = σ(Tp′), we have

σ(T2) ⊂ σ(Tp) = σ(Tp′). Since L
p∩Lp′ is dense in Lp, Lemma 2.2 implies that

σ(T∆) is equal to σ(Tp). Since Lp′ is continuously embedded into Lp + Lp′ ,

Lemma 2.2 implies that σ(Tp′) \ {0} = σ(TΣ) \ {0} and σ(Tp′) ⊂ σ(TΣ). In

the case where 0 ∈ σ(Tp), it means that 0 ∈ σ(Tp′), hence σ(Tp′) = σ(TΣ). In

the case where 0 ̸∈ σ(Tp), for the same reason stated in the last paragraph of

the proof of Theorem 1.3, we conclude that σ(Tp′) = σ(TΣ). Thus, σ(Tp) =

σ(Tp′) = σ(T∆) = σ(TΣ).
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Corollary 3.2. Let K : Ω×Ω → C be a measurable function and assume that

K satisfies the next three estimates:

ess.sup
x∈Ω

∫
Ω
|K(x, y)| dµ(y) < ∞,

ess.sup
y∈Ω

∫
Ω
|K(x, y)| dµ(x) < ∞,

ess.sup
(x,y)∈Ω×Ω

|K(x, y)| < ∞.

On these assumptions, for each p ∈ [1,∞], the integral operator Tp with kernel

K is defined by

(
Tpf

)
(x) :=

∫
Ω
K(x, y)f(y) dµ(y) (f ∈ Lp, a.e. x ∈ Ω).

Then, Tp is a bounded operator from Lp into itself, and Tp is consistent with

Tq for all p, q ∈ [1,∞]. These operators have the relations of spectra

σ(Tr) ⊂ σ(Tp) ∪ σ(Tq) = σ(T∆) ∪ σ(TΣ)

provided 1 ≤ p < r < q ≤ ∞, where T∆ and TΣ are the same operators

appearing in Corollary 3.1. In addition, if K is a Hermitian kernel, i.e.,

K(x, y) = K(y, x) for a.e. (x, y) ∈ Ω× Ω, the relations of spectra

σ(T2) ⊂ σ(Tp) = σ(Tp′) = σ(T∆) = σ(TΣ)

hold for each p ∈ [1, 2].

Proof. Suppose 1 ≤ p < r < q ≤ ∞. By the estimates for K, the operator

Tp is Lp-Lq bounded. Since Tr is unique as a bounded operator which is

consistent with both Tp and Tq, the spectrum σ(Tr) has the same relation

stated in Corollary 3.1 (i):

σ(Tr) ⊂ σ(Tp) ∪ σ(Tq) = σ(T∆) ∪ σ(TΣ).

In addition, if K is a Hermitian kernel, the operator Tp′ coincides with (Tp)
∗

defined by Eq. (3.1). By Corollary 3.1 (ii), the relations of spectra

σ(T2) ⊂ σ(Tp) = σ(Tp′) = σ(T∆) = σ(TΣ)

hold for each p ∈ [1, 2].
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Example 3.3. Let N be a natural number, α a real number satisfying 1 <

α < 2, (−∆)α/2 the fractional Laplacian of order α/2, where ∆ is the usual

Laplacian in L2(RN ) with domain H2(RN ), and b : RN → RN a measurable

function belonging to the Kato class K α−1
N , i.e., b satisfies

lim
ε↓0

ess.sup
x∈RN

∫
|y−x|<ε

|b(y)||y − x|α−1−N dy = 0.

K. Bogdan and T. Jakubowski [6, Theorem 1] proved that there exists a con-

tinuous transition density K : (0,∞)× RN × RN → R such that

lim
t↓0

∫
RN

(
T (t)f

)
(x)− f(x)

t
g(x) dx(3.2)

=

∫
RN

{
−
(
(−∆)α/2f

)
(x) + b(x) · (∇f)(x)

}
g(x) dx,

where f , g ∈ C∞
c (RN ) and(

T (t)f
)
(x) :=

∫
RN

K(t, x, y)f(y) dy (t > 0, a.e. x ∈ RN ).

Eq. (3.2) and the estimate stated in [6, Lemma 3] for K mean that, for each

p ∈ [1,∞], the transition density K defines a semigroup on Lp(RN ) with

generator −(−∆)α/2 + b · ∇ in a weak sense. By [6, Lemma 3], it is proved

that, for each t > 0 and p ∈ [1,∞], an integral operator Tp(t) with the kernel

K(t, ·, ·) exists as a bounded operator from Lp(RN ) into itself, and each Tp(t)

is Lp-Lq bounded provided 1 ≤ p < q ≤ ∞. Needless to say, for each t > 0

and p, q ∈ [1,∞], the operator Tp(t) is consistent with Tq(t). Hence, by

Corollary 3.1 (i), the relations of spectra

σ
(
Tr(t)

)
⊂ σ

(
Tp(t)

)
∪ σ

(
Tq(t)

)
= σ

(
T∆(t)

)
∪ σ

(
TΣ(t)

)
hold for each t > 0 and p, q, r satisfying 1 ≤ p < r < q ≤ ∞, where

T∆(t) ∈ L
(
Lp(RN ) ∩ Lq(RN )

)
and TΣ(t) ∈ L

(
Lp(RN ) + Lq(RN )

)
are defined

by

T∆(t)f := Tp(t)f
(
f ∈ Lp(RN ) ∩ Lq(RN )

)
and

TΣ(t)f := Tp(t)u+ Tq(t)v
(
f = u+ v, u ∈ Lp(RN ), v ∈ Lq(RN )

)
.

In the particular case where 1 ≤ p ≤ 2, q = p′ and b is a constant func-

tion, the operator
(
Tp(t)

)∗
coincides with Tp′(t) for each t > 0, and hence

Corollary 3.1 (ii) implies that the relations of spectra

σ
(
T2(t)

)
⊂ σ

(
Tp(t)

)
= σ

(
Tp′(t)

)
= σ

(
T∆(t)

)
= σ

(
TΣ(t)

)
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hold for each t > 0 and p ∈ [1, 2].

Remark 3.4. The author proved that in some special cases, (Tp(t))t≥0 is a

C0-semigroup on Lp(RN ) generated by the operator sum Ap of the fractional

Laplacian −(−∆)α/2 and the advection operator b ·∇, and the spectrum of Ap

is independent of p ∈ [1,∞). For this result, another paper is in preparation.

Finally, we verify that Barnes’ result (Proposition 1.1 (ii)) is derived from

Theorem 1.3.

Proof of Proposition 1.1 (ii). Suppose 1 ≤ p0 < p1 ≤ ∞. In the case where

Ω is a finite measure space, Lp1 is continuously embedded into Lp0 . Hence,

Lp0 ∩Lp1 is isomorphic to Lp1 , and T1 is Lp1-Lp0 bounded. By regarding Lp1 ,

Lp0 , T1 and T0 as X0, X1, T0 and T1 in Theorem 1.3, respectively, we can

apply Theorem 1.3 to them. Since Tθ induced from Lp1 , Lp0 , T1 and T0 is

equal to T1−θ in the assertion of Theorem 1.3 by the equality (Lp1 , Lp0)[θ] =

(Lp0 , Lp1)[1−θ] proved in [5, 4.2.1. Theorem], we have σ(T1−θ) ⊂ σ(T1)∪σ(T0)

for each θ ∈ (0, 1). Thus, σ(Tθ) ⊂ σ(T0) ∪ σ(T1) for each θ ∈ (0, 1).

Next, suppose that Ω is a special discrete measure space. In the case where

numbers p0 and p1 satisfy 1 ≤ p0 < p1 < ∞, the Lebesgue space Lp0 is

continuously embedded into Lp1 . As was already stated, (Lp0 , Lp1)[θ] = Lpθ

for each θ ∈ (0, 1), where 1/pθ = (1−θ)/p0+θ/p1. In the case where numbers

p0 and p1 satisfy 1 ≤ p0 < p1 = ∞, the Lebesgue space Lp0 is continuously

embedded into L∞
0 . By [5, 4.2.2. Theorem (b)], the complex interpolation

space (Lp0 , L∞
0 )[θ] is isomorphic to (Lp0 , L∞)[θ], i.e., L

pθ for each θ ∈ (0, 1),

where 1/pθ = (1 − θ)/p0. Thus, in both cases, by a similar argument used

above, we have the asserted inclusion relation of spectra.

§A. Definitions related to complex interpolation spaces

Here, we state definitions related to complex interpolation spaces.

Definition A.1. Let Xj be a Banach space with norm ∥ · ∥j (j = 0, 1) and

assume that there exists a Hausdorff topological vector space Z such that both

X0 and X1 are continuously embedded into Z. We say that such a couple of

X0 and X1 is compatible. For a compatible couple of X0 and X1, we define

the norms on X0 ∩X1 and X0 +X1 by

∥x∥∆ := ∥x∥0 + ∥x∥1 (x ∈ X0 ∩X1),

∥x∥Σ := inf
{
∥u∥0 + ∥v∥1

∣∣ u ∈ X0, v ∈ X1, u+ v = x
}

(x ∈ X0 +X1),
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respectively. Both (X0 ∩X1, ∥ · ∥∆) and (X0 +X1, ∥ · ∥Σ) are Banach spaces.

The complex interpolation spaces in this paper are defined as follows.

Definition A.2 (cf. [5, 4.1.2. Theorem]). Let (X0, X1) be a compatible couple.

The vector space F consists of all functions f from S := {z ∈ C | 0 ≤ Rez ≤ 1}
into X0 +X1 which satisfy the following conditions (i) through (iv). In what

follows, the number i denotes the imaginary unit: i =
√
−1.

(i) f is bounded and continuous on S.

(ii) f is analytic on the interior S◦ = {z ∈ C | 0 < Rez < 1}.

(iii) The functions t 7→ f(j+it) from R intoXj are continuous on R (j = 0, 1).

(iv) lim
|t|→∞

f(j + it) = 0 in Xj (j = 0, 1).

We provide F with the norm

∥f∥F := max

{
sup
t∈R

∥f(it)∥0, sup
t∈R

∥f(1 + it)∥1
}
,

where ∥·∥j is the norm of Xj (j = 0, 1). This normed space is a Banach space.

For each θ ∈ (0, 1), we define the following normed space (X0, X1)[θ]:

(X0, X1)[θ] := {f(θ) ∈ X0 +X1 | f ∈ F},
∥x∥[θ] := inf{∥f∥F | x = f(θ), f ∈ F}

(
x ∈ (X0, X1)[θ]

)
.

This normed space is a Banach space. We say that this Banach space is a

complex interpolation space of index θ generated from the couple (X0, X1).
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