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Abstract. Let m, q, r be positive integers. Then we show that the equation
(3m2+1)x+(qm2−1)y = (rm)z has only the positive integer solution (x, y, z) =
(1, 1, 2) under some conditions. The proof is based on elementary methods and
Baker’s method.
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§1. Introduction

Let a, b, c be fixed relatively prime positive integers greater than one. The
exponential Diophantine equation

(1.1) ax + by = cz

in positive integers x, y, z has been actively studied by a number of authors. It
is known that the number of solutions (x, y, z) of equation (1.1) is finite. This
field has a rich history. Using elementary methods such as congruences, the
quadratic reciprocity law and factorizations in number fields, many authors
completely determined equation (1.1) for fixed some triples (a, b, c).

In 1956, Jeśmanowicz[J] conjectured that if a, b, c are Pythagorean num-
bers, i.e., positive integers satisfying a2 + b2 = c2, then equation (1.1) has
only the positive integer solution (x, y, z) = (2, 2, 2). (cf. [Mi3], [MYW], [T4]
and [LS].) As an analogue of Jeśmanowicz’ conjecture, the first author pro-
posed that if a, b, c, p, q, r are fixed positive integers satisfying ap + bq = cr

with a, b, c, p, q, r ≥ 2 and gcd(a, b) = 1, then equation (1.1) has only the
trivial solution (x, y, z) = (p, q, r) except for a handful of triples (a, b, c). (cf.
[C],[Le2],[Mi1],[Mi2], [T1], [T2] and [LSS].)
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On the other direction, many of the recent works on equation (1.1) concern
the case where two of a, b and c are congruent to ±1 modulo a (relatively)
large divisor of the other one. In 2012, the first author[T3] showed that if m is
a positive integer such that 1 ≤ m ≤ 20 or m ̸≡ 3 (mod 6), then the equation

(1.2) (4m2 + 1)x + (5m2 − 1)y = (3m)z

has only the positive integer solution (x, y, z) = (1, 1, 2). The proof is based on
elementary methods and Baker’s method. Suy-Li[SL] established the same
in the case m ≥ 90 and 3|m, by means of a deep result of Bilu-Hanrot-
Voutier [BHV] concerning the existence of primitive prime divisors in Lucas-
numbers. Finally, Bertók[Ber] has completely solved equation (1.2) for the
remaining cases 20 < m < 90. His proof can be done by the help of exponential
congruences. (cf. [BH].)

Now we propose the following:

Conjecture 1. Le m be a positive integer greater than one. Let p, q, r > 1
be positive integers satisfying p+ q = r2. Then the equation

(pm2 + 1)x + (qm2 − 1)y = (rm)z

has only the positive integer solution (x, y, z) = (1, 1, 2).

The above conjecture has been verified by several authors under some con-
ditions on m, p, q, r. (cf. [MT], [TH1], [TH2], [T5], [FY], [P], [Mu], [KMS] and
[DWY].)

In this paper, we consider the exponential Diophantine equation

(1.3) (3m2 + 1)x + (qm2 − 1)y = (rm)z with 3 + q = r2,

with m positive integer. Applying a lower bound for linear forms in two
logarithms due to Laurent [La], we show that equation (1.3) has only the
positive integer solution (x, y, z) = (1, 1, 2) under some conditions. Our main
result is the following:

Theorem 1.1. Let m be a positive integer. Let q and r be positive integers
satisfying (

rm

qm2 − 1

)
= −1

with r odd, where
( ∗

∗

)
is the Jacobi symbol. Then equation (1.3) has only

the positive integer solution (x, y, z) = (1, 1, 2).

As a Corollary to Theorem 1.1, we derive the following:
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Corollary 1.2. Let m and r positive integers satisfying

(i) m ≡ 0 mod 2, m2 ≡ −1 mod r, r ≡ 5 mod 8,

or

(ii) m ≡ 1 mod 2, m2 ≡ 1 mod r, rm ≡ 3 mod 4.

Then equation (1.3) has only the positive integer solution (x, y, z) = (1, 1, 2).

§2. Preliminaries

Proposition 2.1 (Bennett[Ben]). Le a and b be integers with a, b ≥ 2. Then
the equation

ax − by = 4

has at most one solution in positive integers x and y.

Proposition 2.2 (Cohn[Co], Le[Le1]). All quadruples (S, T,m, n) of positive
integers satisfying

S2 + 2m = Tn, gcd(S, T ) = 1, n ≥ 3

are given by (S, T,m, n) = (5, 3, 1, 3), (7, 3, 5, 4), (11, 5, 2, 3).

In order to obtain an upper bound for a solution of Pillai’s equation, we need
a result on lower bounds for linear forms in the logarithms of two algebraic
numbers. We will introduce here some notations. Let α1 and α2 be real
algebraic numbers with |α1| ≥ 1 and |α2| ≥ 1. We consider the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. As usual, the logarithmic height of an
algebraic number α of degree n is defined as

h(α) =
1

n

log |a0|+
n∑

j=1

logmax
{
1, |α(j)|

} ,

where a0 is the leading coefficient of the minimal polynomial of α (over Z) and
(α(j))1≤j≤n are the conjugates of α. Let A1 and A2 be real numbers greater
than 1 with

logAi ≥ max

{
h(αi),

| logαi|
D

,
1

D

}
,
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for i ∈ {1, 2}, where D is the degree of the number field Q(α1, α2) over Q.
Define

b′ =
b1

D logA2
+

b2
D logA1

.

We choose to use a result due to Laurent [[La], Corollary 2] with m = 10 and
C2 = 25.2.

Proposition 2.3 (Laurent[La]). Let Λ be given as above, with α1 > 1 and
α2 > 1. Suppose that α1 and α2 are multiplicatively independent. Then

log |Λ| ≥ −25.2D4

(
max

{
log b′ + 0.38,

10

D

})2

logA1 logA2.

§3. Proof of Theorem 1.1

3.1. The case m = 1

We first show that when m = 1, equation (1.3) has only the positive integer
solution (x, y, z) = (1, 1, 2).

Lemma 3.1. Let r be an odd integer with r ≥ 3. The the equation

(3.1) 4x + (r2 − 4)y = rz

has only the positive integer solution (x, y, z) = (1, 1, 2).

Proof. If x = 1, then it follows from Proposition 2.1 that (3.1) has only the
positive integer solution (y, z) = (1, 2). Thus we may suppose that x > 1.

If y is even, then it follows from Proposition 2.2 that (3.1) has no positive
integer solutions. Hence y is odd. Taking (3.1) modulo 8 implies that 5 ≡
5y ≡ rz (mod 8), so r ≡ 5 (mod 8) and z is odd. From (3.1), we have

1 =

(
r

r − 2

)z

=

(
r − 2

r

)
=

(
− 2

r

)
= −1,

which is impossible. Therefore we have the desired result.

3.2. The case m ≥ 2

Let (x, y, z) be a solution of (1.3). By Lemma 3.1, we may suppose that m ≥
2. We first examine parities of x, y, z. Using our assumption, we show the
following:
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Lemma 3.2. Let (x, y, z) be a solution of (1.3). Then
(i) y is odd and z is even.
(ii) If m is even, then x is odd.

Proof. (i) Taking (1.3) modulo m2(≥ 4) implies that 1+(−1)y ≡ 0 mod m2,
since z > 1. Hence y is odd.

From 3 + q = r2, it follows that

(
3m2 + 1

pm2 − 1

)
= 1. Indeed,

(
3m2 + 1

qm2 − 1

)
=

(
3m2 + qm2

qm2 − 1

)
=

(
r2m2

qm2 − 1

)
= 1.

By our assumption

(
rm

qm2 − 1

)
= −1, we see that z is even from (1.3).

(ii) We first show that

(
3m2 + 1

r

)
= −1. Put m = 2αm1 with α ≥ 1 and

m1 odd. Note that qm2 − 1 ≡ −1 (mod 8), since q and m are even. Then(
m

qm2 − 1

)
=

(
2

qm2 − 1

)α( m1

qm2 − 1

)
= 1 · 1 = 1.

If r ≡ 1 (mod 4), then(
r

qm2 − 1

)
=

(
qm2 − 1

r

)
=

(
− 3m2 − 1

r

)
=

(
3m2 + 1

r

)
.

If r ≡ 3 (mod 4), then(
r

qm2 − 1

)
= −

(
qm2 − 1

r

)
= −

(
− 3m2 − 1

r

)
=

(
3m2 + 1

r

)
.

By our assumption

(
rm

qm2 − 1

)
= −1, we have

−1 =

(
rm

qm2 − 1

)
=

(
r

qm2 − 1

)(
m

qm2 − 1

)
=

(
3m2 + 1

r

)
,

as desired.
Taking (1.3) modulo r, together with our assumption 3 + q = r2, implies

that

(3m2 + 1)x ≡ −(qm2 − 1)y ≡ −(−3m2 − 1)y ≡ (−1)y+1(3m2 + 1)y mod r.

Then

(−1)x =

(
−1

r

)y+1

(−1)y = −1,

since y is odd. Hence x is odd.
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Using a congruence method, we can easily show that if m is even, then
equation (1.3) has only the positive integer solution (x, y, z) = (1, 1, 2).

Lemma 3.3. If m is even, then equation (1.3) has only the positive integer
solution (x, y, z) = (1, 1, 2).

Proof. If z ≤ 2, then (x, y, z) = (1, 1, 2) from (1.3). Hence we may suppose
that z ≥ 3. Taking (1.3) modulo m3 implies that

1 + 3m2x− 1 + qm2y ≡ 0 mod m3,

so
3x+ qy ≡ 0 mod m,

which is impossible, since x is odd, q is even and m is even. We therefore
obtain our assertion.

In what follows, we may suppose that m is odd.

Lemma 3.4. If m is odd, then x = 1.

Proof. Now suppose that x ≥ 2. We show that this will lead to a contradiction.
In view of 3 + q = r2 with r odd and m is odd, we see that

3m2 + 1 ≡ 4 mod 8, qm2 − 1 ≡ 5 mod 8.

Then, taking (1.3) modulo 8, together with the fact that z is even, implies
that

5y ≡ (rm)z ≡ 1 mod 8.

Hence y is even, which contradicts Lemma 3.2. We therefore conclude that
x = 1.

3.3. Pillai’s equation cz − by = a

From Lemma 3.4, it follows that x = 1 in (1.3), provided that m is odd. If
z ≤ 2, then we obtain x = 1 and z = 2 from (1.3). From now on, we may
suppose that z ≥ 4, since z is even. Hence our theorem is reduced to solving
Pillai’s equation

(3.2) cz − by = a

with z ≥ 4, where a = 3m2 + 1, b = qm2 − 1 and c = rm.
We now want to obtain a lower bound for y.
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Lemma 3.5. y ≥ m2 − 3

q
.

Proof. Taking (3.2) modulo m4 implies that

1 + 3m2 + qym2 − 1 ≡ 0 mod m4,

so 3 + qy ≡ 0 mod m2. Hence we obtain our assertion.

We next want to obtain an upper bound for y.

Lemma 3.6. y < 2521 log c.

Proof. From (3.2), we now consider the following linear form in two logarithms:

Λ = z log c− y log b (> 0).

Using the inequality log(1 + t) < t for t > 0, we have

(3.3) 0 < Λ = log

(
cz

by

)
= log

(
1 +

a

by

)
<

a

by
.

Hence we obtain

(3.4) log Λ < log a− y log b.

On the other hand, we use Proposition 2.3 to obtain a lower bound for Λ.
It follows from Proposition 2.3 that

(3.5) log Λ ≥ − 25.2
(
max

{
log b′ + 0.38, 10

})2
(log b) (log c),

where b′ =
y

log c
+

z

log b
.

We note that by+1 > cz. Indeed,

by+1 − cz = (b− 1)cz − ab ≥ (qm2 − 2)(3 + q)2m4 − (3m2 + 1)(qm2 − 1) > 0.

Hence b′ <
2y + 1

log c
.

Put M =
y

log c
. Combining (3.4) and (3.5) leads to

y log b < log a+25.2

(
max

{
log

(
2M +

1

log c

)
+ 0.38, 10

})2

(log b) (log c),

so
M < 1 + 25.2 (max {log (2M + 1) + 0.38, 10})2 .

We therefore obtain M < 2521. This completes the proof of Lemma 3.6.
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We are now in a position to prove Theorem 1.1. Recall that a = 3m2 +
1, b = qm2 − 1 and c = rm with 3 + q = r2. Since a+ b = c2 and z is even,
equation (3.2) can be written as

(c2)Z − by = c2 − b

with z = 2Z. Then y ≥ Z. If y = Z, then we obtain y = Z = 1. Thus we may
suppose that y > Z.

Since c2Z > by, it follows from Lemma 3.6 that

1 ≤ y − Z < y − log b

log c2
y =

log
(
c2/b

)
2 log c

y <
2521

2
log(c2/b).

By definitions of b and c, we see that

c2

b
=

r2m2

(r2 − 3)m2 − 1
=

1

1− 3m2+1
r2m2

.

Therefore α := 1− (e2/2521)−1 <
3m2 + 1

r2m2
. Since m ≥ 2, this yields

r2 <
1

α

(
3 +

1

m2

)
≤ 1

α

(
3 +

1

4

)
= 4098.251.

Consequently we obtain r ≤ 64.
It follows from Lemmas 3.5, 3.6, together with r ≤ 64, that

m2 − 1 < 2521(r2 − 3) log(rm) ≤ 10318453 log(64m).

Hence we obtain m ≤ 11818.
From (3.3), we have the inequality∣∣∣∣ log blog c

− z

y

∣∣∣∣ < a

yby log c
,

which implies that

∣∣∣∣ log blog c
− z

y

∣∣∣∣ < 1

2y2
, since y ≥ 3. Thus

z

y
is a convergent in

the simple continued fraction expansion to
log b

log c
.

On the other hand, if
pj
qj

is the j-th such convergent, then

∣∣∣∣ log b

log c
− pj

qj

∣∣∣∣ > 1

(aj+1 + 2)q2j
,
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where aj+1 is the (j+1)-st partial quotient to
log b

log c
(see e.g. Khinchin [K]).

Put
z

y
=

pj
qj
. Note that qj ≤ y. It follows, then, that

(3.6) aj+1 >
by log c

ay
− 2 ≥ bqj log c

aqj
− 2.

Finally, we checked by Magma [BC] that for each r ≤ 64, inequality (3.6) does
not hold for any j with qj < 2521 log(rm) in the range 2 ≤ m ≤ 11818. This
completes the proof of Theorem 1.1. □

§4. Proof of Corollary 1.2

Suppose that our assumptions of Corollary 1.2 are all satisfied. We may sup-
pose that m ≥ 2 from Lemma 3.1. By Theorem 1, it suffices to verify that(

rm

qm2 − 1

)
= −1 holds.

(i) In view of the proof of Lemma 3.2, we have(
rm

qm2 − 1

)
=

(
3m2 + 1

r

)
=

(
3(−1) + 1

r

)
=

(
− 2

r

)
= −1.

(ii) In view of qm2 − 1 ≡ 1 mod 4, we have

(
rm

qm2 − 1

)
=

(
r

qm2 − 1

)(
m

qm2 − 1

)
=

(
qm2 − 1

r

)(
qm2 − 1

m

)
=

(
q − 1

r

)(
− 1

m

)
=

(
− 3− 1

r

)(
− 1

m

)
=

(
− 1

rm

)
= −1.

This completes the proof of Corollary 1.2. □
Acknowledgments The first author is supported by JSPS KAKENHI Grant
(No.18K03247).
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