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On the exponential Diophantine equation
(3m2 4+ 1) + (gm? — 1)¥ = (rm)*
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Abstract. Let m,q,r be positive integers. Then we show that the equation
(3m?4-1)* 4 (gm?*—1)¥ = (rm)* has only the positive integer solution (z,y, z) =
(1,1,2) under some conditions. The proof is based on elementary methods and
Baker’s method.

AMS 2010 Mathematics Subject Classification. 11D61.

Key words and phrases. Exponential Diophantine equation, Jeémanowicz’ con-
jecture, lower bound for linear forms in two logarithms.

§1. Introduction

Let a,b,c be fixed relatively prime positive integers greater than one. The
exponential Diophantine equation

(1.1) a®* + b’ =c*

in positive integers x, y, z has been actively studied by a number of authors. It
is known that the number of solutions (z,y, z) of equation (1.1) is finite. This
field has a rich history. Using elementary methods such as congruences, the
quadratic reciprocity law and factorizations in number fields, many authors
completely determined equation (1.1) for fixed some triples (a, b, ¢).

In 1956, Jesmanowicz[J] conjectured that if a, b, ¢ are Pythagorean num-
bers, i.e., positive integers satisfying a? + b*> = ¢?, then equation (1.1) has
only the positive integer solution (z,y, z) = (2,2,2). (cf. [Mi3], [MYW], [T4]
and [LS].) As an analogue of JeSmanowicz’ conjecture, the first author pro-
posed that if a, b, ¢, p, q, r are fixed positive integers satisfying a? + b? = ¢"
with a,b,c,p,q,r > 2 and ged(a,b) = 1, then equation (1.1) has only the
trivial solution (x,y,2) = (p,q,r) except for a handful of triples (a,b,c). (cf.
[C],[Le2],[Mil],[Mi2], [T1], [T2] and [LSS].)
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On the other direction, many of the recent works on equation (1.1) concern
the case where two of a,b and ¢ are congruent to £1 modulo a (relatively)
large divisor of the other one. In 2012, the first author[T3] showed that if m is
a positive integer such that 1 < m < 20 or m # 3 (mod 6), then the equation

(1.2) (4m? + 1)* + (5m? — 1)Y = (3m)?

has only the positive integer solution (x,y, z) = (1,1, 2). The proof is based on
elementary methods and Baker’s method. Suy-Li[SL] established the same
in the case m > 90 and 3|m, by means of a deep result of Bilu-Hanrot-
Voutier [BHV] concerning the existence of primitive prime divisors in Lucas-
numbers. Finally, Berték[Ber| has completely solved equation (1.2) for the
remaining cases 20 < m < 90. His proof can be done by the help of exponential
congruences. (cf. [BH].)
Now we propose the following:

Conjecture 1. Le m be a positive integer greater than one. Let p,q,r > 1
be positive integers satisfying p + ¢ = r2. Then the equation

(pm? + 1)* + (gm* — 1)¥ = (rm)?
has only the positive integer solution (z,y,z) = (1,1,2).

The above conjecture has been verified by several authors under some con-
ditions on m, p, ¢, . (cf. [MT], [TH1], [TH2], [T5], [FY], [P], [Mu], [KMS] and
[DWY].)

In this paper, we consider the exponential Diophantine equation

(1.3) (Bm* + 1) + (gm* — 1)¥ = (rm)*  with 34 q =17,

with m positive integer. Applying a lower bound for linear forms in two
logarithms due to Laurent [La], we show that equation (1.3) has only the
positive integer solution (z,y, z) = (1,1,2) under some conditions. Our main
result is the following:

Theorem 1.1. Let m be a positive integer. Let q and r be positive integers

satisfying
qgm= —1

with r odd, where (%) is the Jacobi symbol. Then equation (1.3) has only
the positive integer solution (z,y,z) = (1,1,2).

As a Corollary to Theorem 1.1, we derive the following;:
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Corollary 1.2. Let m and r positive integers satisfying

2:

(i) m=0 mod2, m*=-1 modr, r=5 mod 8,

or
(i) m=1 mod2, m?=1 modr, rm=3 mod 4.

Then equation (1.3) has only the positive integer solution (z,y,z) = (1,1, 2).

§2. Preliminaries

Proposition 2.1 (Bennett[Ben]). Le a and b be integers with a,b > 2. Then

the equation
a* —b =4

has at most one solution in positive integers x and y.

Proposition 2.2 (Cohn[Col, Le[Lel]). All quadruples (S,T, m,n) of positive
integers satisfying

SZ4om=1"  gcd(S,T)=1, n>3
are given by (S,T,m,n) = (5,3,1,3),(7,3,5,4), (11,5, 2, 3).

In order to obtain an upper bound for a solution of Pillai’s equation, we need
a result on lower bounds for linear forms in the logarithms of two algebraic
numbers. We will introduce here some notations. Let «; and as be real
algebraic numbers with |a;| > 1 and |a| > 1. We consider the linear form

A= b2 logag — bl logal,

where by and by are positive integers. As usual, the logarithmic height of an
algebraic number « of degree n is defined as

1 n )
h(a) = o log |ao| + Z 1ogmax{1, ]a(3)|} ,
j=1

where ag is the leading coefficient of the minimal polynomial of « (over Z) and
(a(j))lgjgn are the conjugates of a. Let Ay and As be real numbers greater

than 1 with
|10gozi| 1 }

log Al Z max {h(a,), D ) D
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for i € {1,2}, where D is the degree of the number field Q(ay, ag) over Q.

Define
b1 bo

Dlog A, + Dlog Ay -

We choose to use a result due to Laurent [[La], Corollary 2] with m = 10 and
Co =25.2.

V=

Proposition 2.3 (Laurent|[La]). Let A be given as above, with aq > 1 and
ag > 1. Suppose that a1 and as are multiplicatively independent. Then

10 1\?
log |A| > —25.2 D* (max {log b +0.38, D}) log A1 log As.

§3. Proof of Theorem 1.1
3.1. The case m =1
We first show that when m = 1, equation (1.3) has only the positive integer
solution (x,y,z2) = (1,1,2).

Lemma 3.1. Let r be an odd integer with r > 3. The the equation
(3.1) 4% 4 (r2 —4)Y =7
has only the positive integer solution (x,y,z) = (1,1,2).

Proof. If © = 1, then it follows from Proposition 2.1 that (3.1) has only the
positive integer solution (y, z) = (1,2). Thus we may suppose that x > 1.

If y is even, then it follows from Proposition 2.2 that (3.1) has no positive
integer solutions. Hence y is odd. Taking (3.1) modulo 8 implies that 5 =
5Y =r* (mod 8), so r =5 (mod 8) and z is odd. From (3.1), we have

- () - (5) (3 -

which is impossible. Therefore we have the desired result. O

3.2. The case m > 2

Let (z,y,z) be a solution of (1.3). By Lemma 3.1, we may suppose that m >
2. We first examine parities of x,y, 2. Using our assumption, we show the
following:
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Lemma 3.2. Let (x,y, z) be a solution of (1.3). Then

(i) y is odd and z is even.

(i) If m is even, then x is odd.

Proof. (i) Taking (1.3) modulo m?(> 4) implies that 1+ (—1)Y =0 mod m?,
since z > 1. Hence y is odd.

3m? + 1
pm? —1

3m? 41 _ 3m? 4 gm? _ r2m? _
gn?2—-1) \  gm?2 -1 ) \gm2-1)

By our assumption <7“2ml> = —1, we see that z is even from (1.3).
qm= —

From 3 + ¢ = 72, it follows that ( > = 1. Indeed,

= —1. Put m = 2%my with > 1 and

3m? + 1
(ii) We first show that <m+>

,
my odd. Note that gm? —1 = —1 (mod 8), since ¢ and m are even. Then

m 2 “ mi
gz—1) \gz—1) \gz—1) =171

If r=1 (mod 4), then

() ()= (2224 - (22).

If r =3 (mod 4), then

()~ (22 - (222 (=)

m) = —1, we have
q 1

m2 —

1= rm B T m _ 3m? + 1
S \gm?2—-1) \gm?2-1 gn? -1 ) r ’

as desired.
Taking (1.3) modulo r, together with our assumption 3 +¢ = r
that

By our assumption <

2 implies

(Bm2+1)* = —(gm* - 1)¥ = —(=3m? — 1)V = (-1 (3m? + 1)V mod r.

(4V—<4>H%4W——L

since y is odd. Hence z is odd. O

Then
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Using a congruence method, we can easily show that if m is even, then
equation (1.3) has only the positive integer solution (x,y,z) = (1,1,2).

Lemma 3.3. If m is even, then equation (1.3) has only the positive integer
solution (x,y,z) = (1,1, 2).

Proof. 1f z < 2, then (z,y,z) = (1,1,2) from (1.3). Hence we may suppose
that z > 3. Taking (1.3) modulo m? implies that

1+3m%z—14+¢gm’y=0 mod m?,
SO
3r+qy=0 mod m,

which is impossible, since = is odd, ¢ is even and m is even. We therefore
obtain our assertion. ]

In what follows, we may suppose that m is odd.
Lemma 3.4. If m is odd, then x = 1.

Proof. Now suppose that © > 2. We show that this will lead to a contradiction.
In view of 3 + ¢ = 2 with r odd and m is odd, we see that

3m?4+1=4 mod8, ¢m?’—1=5 modS8.

Then, taking (1.3) modulo 8, together with the fact that z is even, implies
that
5= (rm)*=1 mod 8.

Hence y is even, which contradicts Lemma 3.2. We therefore conclude that
z = 1. ]

3.3. Pillai’s equation ¢ — bY =a

From Lemma 3.4, it follows that x = 1 in (1.3), provided that m is odd. If
z < 2, then we obtain x = 1 and z = 2 from (1.3). From now on, we may
suppose that z > 4, since z is even. Hence our theorem is reduced to solving
Pillai’s equation

(3.2) - =a

with z > 4, where a =3m? +1, b=¢m?—1and c=rm.
We now want to obtain a lower bound for y.
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2
-3
Lemma 3.5. y > moe

Proof. Taking (3.2) modulo m* implies that
1+3m%+qym?—1=0 mod m?,

so 3+ qy =0 mod m?. Hence we obtain our assertion. O

We next want to obtain an upper bound for y.
Lemma 3.6. y < 2521logec.
Proof. From (3.2), we now consider the following linear form in two logarithms:
A =zloge—ylogb (>0).

Using the inequality log(1 + t) < ¢ for t > 0, we have

Z

c a a
(3.3) 0<A=log (by> = log (1+b—y> <
Hence we obtain
(3.4) log A < loga — ylogb.

On the other hand, we use Proposition 2.3 to obtain a lower bound for A.
It follows from Proposition 2.3 that
(3.5) logA > —25.2 (max {logb' +0.38, 10})2 (logb) (logec),
Yy z
log c + logh’
We note that b¥t! > ¢*. Indeed,

where b’ =

WH — ¢ = (b—1)c" —ab> (gm* — 2)(3 + q)*m* — (3m? + 1)(gm? — 1) > 0.

2 1
Hence b < =2 i .
logc
Put M = . Combining (3.4) and (3.5) leads to
ogc

2
ylogb < log a+25.2 <max {log <2M + ) +0.38, 10}) (logb) (logc),

logc

SO
M < 1+25.2 (max {log (2M + 1) +0.38, 10}).

We therefore obtain M < 2521. This completes the proof of Lemma 3.6. [
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We are now in a position to prove Theorem 1.1. Recall that a = 3m? +
1, b=gm?—1 and ¢ =rm with 3+ ¢ = 2. Since a + b = ¢ and z is even,
equation (3.2) can be written as

(cz)Z—by =c2—b

with z = 2Z. Then y > Z. If y = Z, then we obtain y = Z = 1. Thus we may
suppose that y > Z.
Since ¢?4 > bY, it follows from Lemma 3.6 that

logb  log (c*/b) - 2521

— log(c?/b).
logCQy 2logc 4 2 og(c*/b)

1<y—2Z<y—

By definitions of b and ¢, we see that

c? B r?m? - 1
b (r2—-3m2-1 1_ 3;372;51
3m? + 1
Therefore a := 1 — (e2/%21)~1 < mZit Since m > 2, this yields
r2m
, 1 1 1 1
r?< — (34— ) <— 3+ ) =1098.251.

e} m o 4

Consequently we obtain r < 64.
It follows from Lemmas 3.5, 3.6, together with r < 64, that

m? — 1 < 2521(r? — 3)log(rm) < 10318453 log(64m).

Hence we obtain m < 11818.
From (3.3), we have the inequality

logb =2 a
loge gy ybvloge ’
L logb = : zZ . .
which implies that - — — , since y > 3. Thus — is a convergent in
loge y| 242 Y
. . . . logb
the simple continued fraction expansion to oec’
ogc
On the other hand, if Pi i the j-th such convergent, then
4qj
‘ logb 2 1
loge g (aj41+2)q7’
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b
where a1 is the (j 4+ 1)-st partial quotient to (see e.g. Khinchin [K]).

ogc
Put © = 22, Note that q; < y. It follows, then, that
Y qj
Y1 b% 1
(3.6) aj+1>&_22ﬂ_2'
ay agj

Finally, we checked by Magma [BC] that for each r < 64, inequality (3.6) does
not hold for any j with ¢; < 2521log(rm) in the range 2 < m < 11818. This
completes the proof of Theorem 1.1. O

§4. Proof of Corollary 1.2

Suppose that our assumptions of Corollary 1.2 are all satisfied. We may sup-
pose that m > 2 from Lemma 3.1. By Theorem 1, it suffices to verify that

qm= —

(i)  In view of the proof of Lemma 3.2, we have

(r) = () - () - ()

(ii) In view of gm®? —1=1 mod 4, we have

() = (o) ()
(

B gm? — 1 qm? — 1
- () ()
qg—1 —1
- ()50
-3—-1 —1
- (=)
—1
- (=)
= —1.
This completes the proof of Corollary 1.2. O
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