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Decomposition of diamond model for square
contingency tables with ordered categories
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Abstract. For square contingency tables with the same row and column
ordinal classifications, this paper shows that the diamond model holds if and
only if the weighted covariance for the difference between the row and column
classifications and the sum of them equals zero and the uniform association
diamond model holds. An example is given.
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§1. Introduction

Consider an R × R square contingency table with the same row and column
ordinal classifications. Let X and Y denote the row and column variables,
respectively, and let pij denote the probability that an observation will fall in
(i, j)th cell of the table (i = 1, . . . , R; j = 1, . . . , R). The independence model
is defined by

pij = µαiβj for i = 1, . . . , R; j = 1, . . . , R.

Goodman (1979) refereed to this model as the null association model. The
uniform association model is defined by

pij = µαiβjθ
ij for i = 1, . . . , R; j = 1, . . . , R;

see Goodman (1979, 1981) and Agresti (1984, p.78). A special case of this
model with θ = 1 is the independence model. If the independence model
holds, then the covariance between X and Y equals zero; but the converse
does not hold. Tomizawa, Miyamoto and Sakurai (2008) gave the theorem
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that the independence model holds if and only if the covariance between X
and Y equals zero and the uniform association model holds.

The diamond (DD) model (Goodman, 1985) is defined by

pij = µδi−jγi+j for i = 1, . . . , R; j = 1, . . . , R.

As described by Goodman (1985), the DD model states that there is null
association between the difference-diagonal classification (i.e., the difference
between the row and column classification) and the sum-diagonal classification
(i.e., the sum of the row and column classification). Consider the (2R −
1) × (2R − 1) table of the diamond shape formed by rotating to the original
R × R table forty-five degrees so that the 2R − 1 difference-diagonals in the
original table form the entries in the rows of the diamond, and corresponding
2R − 1 sum-diagonals in the original table form the entries in the columns
of the diamond. Let S∗ denote a set of cells of the diamond shape in the
(2R− 1)× (2R− 1) table. Thus,

S∗ = {(s, t)|s = i− j, t = i+ j; i = 1, . . . , R; j = 1, . . . , R}.

Let p∗st denote the corresponding probability for row value s and column value
t for (s, t) ∈ S∗, in the (2R− 1)× (2R− 1) table, i.e.,

p∗st = p s+t
2

, t−s
2

for (s, t) ∈ S∗.

Let θ∗(k<l;s<t) denote the odds ratio for row values k and l and column values

s and t in the (2R− 1)× (2R− 1) table of the diamond shape. Thus,

θ∗(k<l;s<t) =
p∗ksp

∗
lt

p∗ktp
∗
ls

for (k, s), (k, t), (l, s), (l, t) ∈ S∗.

Then, the DD model is also expressed as

θ∗(k<l;s<t) = 1 for (k, s), (k, t), (l, s), (l, t) ∈ S∗.

For the original R×R table, the uniform association diamond (UADD) model
is defined by

pij = µδi−jγi+jϕ
(i−j)(i+j) for i = 1, . . . , R; j = 1, . . . , R;

see Tomizawa (1994). A special case of this model with ϕ = 1 is the DD
model. Using the odds-ratios defined for the (2R− 1)× (2R− 1) table of the
diamond shape, the UADD model is also expressed as

θ∗(s<s+2;t<t+2) = ϕ4 for (s, t), (s, t+ 2), (s+ 2, t), (s+ 2, t+ 2) ∈ S∗.
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Thus, the UADD model is uniform association model in (2R − 1)× (2R − 1)
table of the diamond shape. If the DD model holds, then the UADD model
holds; but the converse does not hold. Therefore, for the (2R− 1)× (2R− 1)
table of the diamond shape, we are interested in what covariance structure
between the difference-diagonal classification and sum-diagonal classification
is necessary for obtaining the DD model, in addition to the UADD model.

The purpose of this paper is to define a covariance structure between the
difference-diagonal classification and sum-diagonal classification, and shows
that the DD model holds if and only if the covariance structure equals zero
and the UADD model holds.

§2. Decomposition

Let the random variables U and V denote U = X − Y and V = X + Y . For
the (2R−1)× (2R−1) table of the diamond shape, we express p∗st as µδsγtψst

for (s, t) ∈ S∗. We note that for the original R×R table, if we express pij as
λαiβjωij (i = 1, . . . , R; j = 1, . . . , R), then we see

µ = λ, δs = α s+t
2
, γt = β t−s

2
, ψst = ω s+t

2
, t−s

2
,

namely,
p∗st = λα s+t

2
β t−s

2
ω s+t

2
, t−s

2
.

We express P(U = s, V = t | |U | = k) as p∗st(k) for (s, t) ∈ S∗ and k =
0, 1, . . . R− 1. Then we have

p∗st(k) =
δsγtψst∑∑

(u,v)∈S∗
k

δuγvψuv
= µkδsγtψst,

where

S∗
k = {(s, t)|s = i− j, t = i+ j; |s| = k; i = 1, . . . , R; j = 1, . . . , R},

µk =
1∑∑

(u,v)∈S∗
k

δuγvψuv
.

We define the weighted covariance between U and V as

Cov(U, V | |U |) =
R−2∑
k=1

wkCov(U, V | |U | = k),

where wk > 0 and
∑R−2

k=1 wk = 1. For instance,

wk =

∑∑
(u,v)∈S∗

k

p∗uv∑∑
(u,v)∈S∗−S∗

0−S∗
R−1

p∗uv
(k = 1, . . . , R− 2),
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or {wk = 1/(R − 2)} is considered. Since the DD model is expressed as
p∗st = µδsγt for (s, t) ∈ S∗, under the DD model, we see

Cov(U, V | |U | = k)

= E(UV | |U | = k)− E(U | |U | = k)E(V | |U | = k)

=
∑∑
(s,t)∈S∗

k

stµkδsγt −
(∑∑

(s,t)∈S∗
k

sµkδsγt

)(∑∑
(s,t)∈S∗

k

tµkδsγt

)
= µk

(∑
s

sδs

)(∑
t

tγt

)
− µ2k

(∑
s

sδs

)(∑
t

γt

)(∑
s

δs

)(∑
t

tγt

)
= µk

(∑
s

sδs

)(∑
t

tγt

)
− µk

(∑
s

sδs

)(∑
t

tγt

)
= 0,

for k = 1, . . . , R − 2. Therefore, if the DD model holds, then the weighted
covariance Cov(U, V | |U |) equals zero. We obtain the following lemma.

Lemma 2.1. For k = 1, . . . , R− 2, Cov(U, V | |U | = k) is equivalent to

2k
∑∑

s<t

(t− s)p∗ks(k)p
∗
−k,t(k)(θ

∗
(−k<k;s<t) − 1).
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Proof. We have

Cov(U, V | |U | = k)

=
(∑∑

(j,t)∈S∗
k

jtµkδjγtψjt

)
−
(∑∑

(i,s)∈S∗
k

iµkδiγsψis

)(∑∑
(j,t)∈S∗

k

tµkδjγtψjt

)
=

(∑∑
(i,s)∈S∗

k

µkδiγsψis

)(∑∑
(j,t)∈S∗

k

jtµkδjγtψjt

)
−
(∑∑

(i,s)∈S∗
k

iµkδiγsψis

)(∑∑
(j,t)∈S∗

k

tµkδjγtψjt

)
=

∑∑∑∑
(i,s),(j,t)∈S∗

k

jtµ2kδiδjγsγtψisψjt −
∑∑∑∑

(i,s),(j,t)∈S∗
k

itµ2kδiδjγsγtψisψjt

=
∑∑∑∑

(i,s),(j,t)∈S∗
k

(j − i)tµ2kδiδjγsγtψisψjt

=
∑
s

∑
t

2ktµ2kδ−kδkγsγtψ−k,sψkt +
∑
s

∑
t

(−2k)tµ2kδkδ−kγsγtψksψ−k,t

= 2kµ2kδkδ−k

∑
s

∑
t

tγsγt(ψ−k,sψkt − ψksψ−k,t)

= 2kµ2kδkδ−k

(∑∑
s<t

tγsγt(ψ−k,sψkt − ψksψ−k,t)

+
∑∑

s>t

tγsγt(ψ−k,sψkt − ψksψ−k,t)
)

= 2kµ2kδkδ−k

(∑∑
s<t

tγsγt(ψ−k,sψkt − ψksψ−k,t)

+
∑∑

s<t

sγsγt(ψ−k,tψks − ψktψ−k,s)
)

= 2kµ2kδkδ−k

∑∑
s<t

(t− s)γsγt(ψ−k,sψkt − ψksψ−k,t)

= 2k
∑∑

s<t

(t− s)(µkδkγsψks)(µkδ−kγtψ−k,t)

(
ψ−k,sψkt

ψksψ−k,t
− 1

)
= 2k

∑∑
s<t

(t− s)p∗ks(k)p
∗
−k,t(k)(θ

∗
(−k<k;s<t) − 1).

The proof is completed.

From Lemma 1, if the UADD model holds, then the covariance Cov(U, V |
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|U | = k) is expressed as

Cov(U, V | |U | = k)

= 2k
∑∑

s<t

(t− s)p∗ks(k)p
∗
−k,t(k)

(
ϕ−ksϕkt

ϕksϕ−kt
− 1

)
= 2k

∑∑
s<t

(t− s)p∗ks(k)p
∗
−k,t(k)(ϕ

2k(t−s) − 1),

for k = 1, . . . , R − 2. If ϕ = 1 in the UADD model, we see Cov(U, V |
|U | = k) = 0 for k = 1, . . . , R − 2. If ϕ > 1 in the UADD model, we see
Cov(U, V | |U | = k) > 0 for k = 1, . . . , R − 2. If ϕ < 1 in the UADD
model, we see Cov(U, V | |U | = k) < 0 for k = 1, . . . , R − 2. Therefore, for a
fixed k (k = 1, . . . , R − 2), when the UADD model holds and the covariance
Cov(U, V | |U | = k) equals zero, we obtain ϕ = 1. Namely, the DD model
holds. We obtain the following theorems.

Theorem 2.2. The DD model holds if and only if the weighted covariance
Cov(U, V | |U |) = 0 and the UADD model holds.

Theorem 2.3. For a fixed k (k = 1, . . . , R − 2), the DD model holds if and
only if the covariance Cov(U, V | |U | = k) = 0 and the UADD model holds.

§3. Goodness-of-fit test

Let nij denote the observed frequency in the (i, j)th cell of the original table
for i = 1, . . . , R; j = 1, . . . , R with n =

∑∑
nij . Assume that a multinomial

distribution is applied to the original R × R table. The maximum likelihood
estimates of expected frequencies {mij} under the DD and UADD models
and the structure of Cov(U, V | |U |) = 0 could be obtained using the Newton-
Raphson method in the log-likelihood equation. Each model and structure
can be tested for goodness-of-fit by the likelihood ratio chi-squared statistic
(defined by G2) with the corresponding degrees of freedom. The test statistic
G2 is given by

G2 = 2

R∑
i=1

R∑
j=1

nij log

(
nij
m̂ij

)
,

where m̂ij is the maximum likelihood estimate of expected frequencymij under
the given model. The numbers of degrees of freedom for testing the goodness-
of-fit of the DD and UADD models and the structure of Cov(U, V | |U |) = 0
are (R− 2)2, (R− 3)(R− 1) and 1, respectively.
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§4. An Example

The data in Table 1, taken from Stuart (1953), are constructed from unaided
distance vision of 3242 men in Britain. Table 2 gives the 7 × 7 table of the
diamond shape formed by rotating the data in Table 1 forty-five degrees.

The DD model fits the data poorly yielding G2 = 53.69 with 4 degrees
of freedom. Also, the UADD model fits poorly yielding G2 = 51.61 with
3 degrees of freedom. However, the structure of Cov(U, V | |U |) = 0 using
equally scores (i.e., w1 = w2 = 1/2) fits very well yielding G2 = 2.33 with 1
degrees of freedom. From Theorem 2.2, we see that the poor fit of the DD
model is caused by the influence of lack of structure of the UADD model (not
the lack of the structure of Cov(U, V | |U |) = 0).

Table 1. Unaided distance vision of 3242 men in Britain; from Stuart (1953).
The parentheses values are maximum likelihood estimates of expected

frequencies under the hypothesis that Cov(U, V | |U |) = 0.

Right eye Left eye grade
grade Best (1) Second (2) Third (3) Worst (4) Total

Best (1) 821 112 85 35 1053
(821.00) (108.61) (80.40) (35.00)

Second (2) 116 494 145 27 782
(119.47) (494.00) (145.26) (31.60)

Third (3) 72 151 583 87 893
(76.56) (150.80) (583.00) (90.13)

Worst (4) 43 34 106 331 514
(43.00) (29.44) (102.73) (331.00)

Total 1052 791 919 480 3242

Table 2. The 7× 7 table of the diamond shape formed by rotating the data
in Table 1 forty-five degrees.

Right eye grade minus Right eye grade plus left eye grade
left eye grade 2 3 4 5 6 7 8

−3 * * * 35 * * *
−2 * * 85 * 27 * *
−1 * 112 * 145 * 87 *
0 821 * 494 * 583 * 331
1 * 116 * 151 * 106 *
2 * * 72 * 34 * *
3 * * * 43 * * *
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§5. Conclusion

When the DD model fits the data poorly, Theorem 2.2 may be useful for
seeing the reason for the poor fit, namely, which of the lack of structure that
the weighted covariance Cov(U, V | |U |) equals zero and lack of the UADD
model influences strongly.

§6. Discussion

Many readers may think that the decomposition of the DD model using the
structure of Cov(U, V ) equals zero, where

Cov(U, V ) = E(UV )− E(U)E(V )

=
∑∑
(s,t)∈S∗

stp∗st −
(∑∑

(s,t)∈S∗

sp∗st

)(∑∑
(s,t)∈S∗

tp∗st

)
.

However, when the DD model holds, the structure of Cov(U, V ) = 0 does not
always hold. Under the DD model, the probabilities p11, p1R, pR1 and pRR are
unrestricted. On the other hand, under the structure of Cov(U, V ) = 0, these
probabilities are restricted. Thus, it is difficult to consider the decomposition
of the DD model using the the structure of Cov(U, V ) = 0. Therefore, in this
paper, we consider the decomposition of the DD model using the weighted
covariance Cov(U, V | |U |) and covariance Cov(U, V | |U | = k) in Section 2.

When we express P(U = s, V = t | {V = R + 1 − k} ∪ {V = R + 1 +
k}) as p∗∗st(k) for (s, t) ∈ S∗ and k = 1, . . . , R − 1, we can consider another
weighted covariance and similar decomposition of the DD model using another
conditional probabilities {p∗∗st(k)}, although the detail is omitted.
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