
SUT Journal of Mathematics
Vol. 53, No. 1 (2017), 59–72

High-dimensional properties of AIC, BIC and Cp for
estimation of dimensionality in canonical

correlation analysis

Yasunori Fujikoshi

(Received November 1, 2016; Revised January 29, 2017 )

Abstract.
This paper is concerned with consistency properties of the dimensionality es-
timation criteria AIC, BIC and Cp in CCA (Canonical Correlation Analy-
sis) between p variables and q (≤ p) variables, based on a sample of size
N = n + 1. The consistency properties of the criteria are studied under a
high-dimensional asymptotic framework such that p and n tend to infinity sat-
isfying p/n → c ∈ [0, 1), and under two types of assumptions on the order of
the population canonical correlations, where q is fixed. We note that there are
cases that the criteria based on AIC and Cp are consistent, but the criterion
based on BIC is not consistent. Through a Monte Carlo simulation experiment,
our results are checked numerically, and the estimation criteria are compared.

AMS 2010 Mathematics Subject Classification. 62H12, 62H30.
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§1. Introduction

In this paper we are concerned with the dimensionality estimation method by
use of the model selection criteria AIC (Akaike (1973)), BIC (Schwarz (1978))
and Cp (Mallows (1973)) in CCA (canonical correlation analysis) with two
random vectors of p and q (q ≤ p) components, based on the sample size
N = n+1. The criteria based on AIC and Cp were proposed by Fujikoshi and
Veitch (1979), and the criterion based on BIC was studied by Gunderson and
Muirhead (1997). It is known in a large-sample asymptotic framework that
AIC and Cp are not consistent, but BIC is consistent. For these results, see
Fujikoshi (1985), Gunderson and Muirhead (1997).
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However, recently it is known that there is a situation such that AIC and
Cp have a consistency property, but BIC is not consistent, when the number p
of response variables and the sample size n are large under a high-dimensional
framework such that p/n → c ∈ [0, 1). These results can be found in Fujikoshi,
Sakurai and Yanagihara (2014) and Yanagihara, Wakaki and Fujikoshi (2015)
for selection of variables in multivariate regression model. Further, such prop-
erties have been shown in Fujikoshi and Sakurai (2016) for model selection
criteria of estimating the dimensionality in multivariate linear model.

In this paper we consider asymptotic properties of AIC, BIC and Cp for
estimation of dimensionality in CCA under a high-dimensional asymptotic
framework such that

(1.1) q is fixed, p → ∞, n → ∞, p/n → c ∈ [0, 1).

It is shown that the AIC and Cp for estimation of dimensionality have con-
sistency properties under two types of assumptions on population canonical
correlations, but BIC is not consistent under one type of assumptions on pop-
ulation canonical correlations. It may be noted that these properties are dif-
ferent from the ones in a large-sample case, since in general AIC and Cp have
a positive probability of selecting each of the overspecified models. Our results
are checked numerically by conducting a Monte Carlo simulation experiment.
Further, we compare with the selection rates of the three criteria.

The present paper is organized as follows. In Section 2, we summarize the
criteria for estimating the dimensionality in CCA. High-dimensional properties
of the criteria are given in Section 3. In Section 4 we check our theoretical
results by conducting a Monte Carlo simulation experiment, and compare with
the selection rates of the three criteria. In Section 5, we discuss our conclusions
and future subjects. The proofs of our results are given in Appendix.

§2. The criteria for estimation of dimensionality

Let

(2.1)
(

x1

y1

)
, . . . ,

(
xN

yN

)
be a sample of size N = n + 1 of (x′, y′)′ from (p + q)-dimensional normal
distribution Nq+p(µ,Σ), with x : p × 1 and y : q × 1. Let S be the sample
covariance matrix formed from the sample. In this paper we assume that q ≤ p
without loss of generality. Corresponding to a partition (x′, y′), we partition
µ, Σ and S as

µ =
(

µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, S =

(
S11 S12

S21 S22

)
.



ESTIMATION OF DIMENSIONALITY 61

Let ρ1 ≥ · · · ≥ ρq ≥ 0 and r1 > · · · > rq > 0 be the population and the
sample canonical correlations between x and y. Then ρ2

1 ≥ · · · ≥ ρ2
q ≥ 0

and r2
1 > · · · > r2

q > 0 are the characteristic roots of Σ−1
11 Σ12Σ−1

22 Σ21 and
S−1

11 S12S
−1
22 S21, respectively.

We are interested in the number of nonzero population canonical corre-
lations, which is called the dimensionality in canonical correlation analysis.
Related to the estimation of the dimensionality we consider a dimensionality
model:

Mj : ρj > ρj+1 = · · · = ρq = 0,

⇔ rank(Σ12) = j.(2.2)

If Mj is true, we can explain the correlation structure between x and y by the
first j canonical correlation variables, since the remaining canonical variables
have no power of prediction.

Based on the likelihood of S, it is known (Fujikoshi and Veitch (1979)) that
AIC for Mj is given by

AICj = −
q∑

i=j+1

n log(1 − r2
i ) + n(p + q) + (p + q + 1) log |S| + K

+ 2
{

j(p + q − j) +
1
2
p(p + 1) +

1
2
q(q + 1)

}
,(2.3)

where K = 2 log
{
Γp+q(1

2/(1
2n)(1/2)n(p+q)

}
. Instead of AIC, we may use

Aj =AICj − AICq

= −
q∑

i=j+1

n log(1 − r2
i ) − 2(p − j)(q − j), j = 0, . . . , q.(2.4)

Here Aq = 0. The BIC and Cp,j corresponding to Aj are given by

Bj = −
q∑

i=j+1

n log(1 − r2
i ) − (log n)(p − j)(q − j), j = 0, . . . , q,(2.5)

Cp,j = n

q∑
i=j+1

r2
i

1 − r2
i

− 2(p − j)(q − j), j = 0, . . . , q.(2.6)

Here Bq = 0 and Cp,q = 0. Note that the Aj , Bj and Cp,j based on the
likelihood of X = (x1, . . . , xN )′ and Y = (y1, . . . , yN )′ can be expressed as the
ones in (2.4), (2.5) and (2.6) replaced n by N .

The estimation methods based on Aj , Bj and Cp,j are expressed as

ĵA = arg min
j∈F

Aj , ĵB = arg min
j∈F

Bj , ĵC = arg min
j∈F

Cp,j ,

respectively.
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§3. High-dimensional properties

We denote the model Mj in (2.2) by j simply. Then, the set of all the models
is F = {0, 1, . . . , q}. It is assumed that the true covariance matrix is

Σ∗ =
(

Σ∗
11 Σ∗

12

Σ∗
21 Σ∗

22

)
with rank(Σ∗

12) = j∗. Then, the true dimension is j∗, where 0 ≤ j∗ ≤ q,
and the model Mj∗ means the minimum dimensionality model including M∗.
We separate F into two sets, one is a set of overspecified models, i.e., F+ =
{j∗, j∗ + 1, . . . , q} and the other is a set of underspecified models, i.e., F− =
Fc

+ ∩ F = {0, 1, . . . j∗ − 1}. Further, we denote the set of models deleting the
true model from F+ by F+\{j∗}, i.e., F+\{j∗} = {j∗ + 1, . . . , q}.

When we treat the distributions of the canonical correlations themselves or
their function such as ĵA, ĵB and ĵC, without loss of generality we may assume
that

(3.1) Σ =
(

Ip R′

R Iq

)
,

R = (R1, O), R1 = diag(ρ1, . . . , ρq). The number of possible nonzero canoni-
cal correlations is q. We will consider the transformed population and sample
canonical correlations defined by

(3.2) γj =
ρj

(1 − ρ2
j )1/2

, dj =
rj

(1 − r2
j )1/2

, j = 1, . . . , q.

Depending on our results, the following assumptions are taken up:

B1 (The true model and dimension j∗): The true model is that the samples
in (2.1) are independently and identically distributrd as Nq+p(µ,Σ) with
µ = µ∗ and Σ = Σ∗. The true dimensionality is j∗, and the true
canonical correlations are

ρ∗1 ≥ · · · ≥ ρ∗j∗ > ρ∗j∗+1 = · · · = ρ∗q = 0.

B2 (The asymptotic framework): q is fixed,
p → ∞, n → ∞, p/n → c ∈ [0, 1).

B3 (The canonical correlations-1): Let γ∗
j = ρ∗j/{1 − (ρ∗j )

2}, j = 1, . . . , q.
For any i (1 ≤ i ≤ j∗),

ρ∗i = O(1), γ∗
i = O(1) and lim

p/n→c
ρ∗i = ρ∗i0.

B4 (The canonical correlations-2): For any i(1 ≤ i < j∗),
γ∗

i =
√

pθ∗i = O(
√

p) and lim
p/n→c

θ∗i = θ∗i0.
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In B3 and B4, it is assumed that the multiplicities of the ρi’s do not depend on
p and q. In this paper, the true dimension j∗ is fixed, though our results shall
be generalized for the case lim j∗ = j∗0. In the following, we give sufficient
conditions for the three criteria to be consistent. Here, the consistency of,
e.g., ĵA means that the probability that ĵA selects the true dimension tends
asymptotically to 1, i.e.,

lim
p/n→c

Pr(ĵA = j∗) = 1.

Here, the notation limp/n→c is used as an abbreviation for the asymptotic
framework (1.1).

Theorem 3.1. Suppose that assumptions B1 and B2 are satisfied. Further,
assume that c ∈ [0, ca), where ca (≈ 0.797) is the constant satisfying log(1 −
ca) + 2ca = 0.

1. ĵA is consistent if B3 and the inequality ”− log(1− (ρ∗j∗)
2) > 2c+log(1−

c)” are satisfied.

2. ĵA is consistent if assumption B4 is satisfied.

Theorem 3.2. Suppose that assumptions B1 and B2 are satisfied.

1. BIC is not consistent if assumptions B2 with c > 0 and B3 are satisfied.

2. BIC is consistent if assumptions B2 and B4 are satisfied.

Theorem 3.3. Suppose that assumptions B1 and B2 are satisfied. Further,
assume that c ∈ [0, 1/2).

1. ĵC is consistent if B3 and the inequality ”(ρ∗j∗0)
2
{

1 − (ρ∗j∗0)
2
}−1

> c(1−
2c)” are satisfied.

2. ĵC is consistent if assumption B4 is satisfied.

From the proofs of Theorems 3.1 and 3.3 we can see that the AIC and
Cp criteria on the dimensionality in canonical correlation analysis satisfy the
followings:

(i) if c ∈ [0, ca), lim
p/n→c

Pr(ĵA ∈ F+\{j∗}) = 0,(3.3)

(ii) if c ∈ [0, 0.5), lim
p/n→c

Pr(ĵC ∈ F+\{j∗}) = 0.(3.4)
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These results hold without the assumptions on the order of population canon-
ical correlations.

Under a large-sample framework; n → ∞ and B3 it is known that

(3.5) lim
n→∞

Pr(ĵA = j) = lim
n→∞

Pr(ĵC = j) = h(j|j∗),

where for j = 0, 1, . . . , j∗ − 1, h(j|j∗) = 0, and for j = j∗, . . . , q, h(j|j∗)’s are
positive and for their explicit expressions, see Fujikoshi (1985). Gunderson and
Muirhead (1997) extended the result to the case of an elliptical distribution.

§4. Numerical study

In this section, we numerically examine the validity of some of our claims, and
point some tendencies for the dimensionalities estimated by AIC, BIC and Cp.
In our simulation setting, q = 5 and the true dimensionality is j∗ = 3. We
consider two types of population canonical correlations. The first type is:

(a); ρ∗1 = 2ρ, ρ∗2 =
3
2
ρ, ρ∗3 = ρ, ρ∗4 = ρ∗5 = 0,

where

ρ =

√
(4p)/(21)

p + 1 + (4p)/(21)
.

Then
ρ∗1 → 0.8, ρ∗2 → 0.6, ρ∗3 → 0.4.

The second type is defined in terms of γ∗
i = ρ∗i /

√
1 − (ρ∗i )2 as follows:

(b); γ∗
1 =

ρ̃√
1 − (ρ̃)2

, γ∗
2 =

3
4
γ∗

1 , γ∗
3 =

1
2
γ∗

1 , γ∗
4 = γ∗

5 = 0,

where

ρ̃ =
√

p

p + 1
·

√
(4p)/(21)

1 + (4p)/(21)
.

In this case
γ∗

1/
√

p → 0.8, γ∗
2/
√

p → 0.6, γ∗
3/
√

p → 0.4,

and
(b); ρ∗i =

γ∗
i√

1 + (γ∗
i )2

, i = 1, 2, 3, ρ∗4 = ρ∗5 = 0.

The cases (a) and (b) correspond to the canonical correlations under as-
sumptions B3 and B4. Our experiments were done for n = 6p and p =
5, 10, 20, 35, 50, 80, 100. In this case, p/n = 1/6 → c = 1/6. ∈ [0, ca) and
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c ∈ [0, 1/2). Further, the inequalities in Theorem 3.1(1) and Theorem 3.3.(1)
have been satisfied for case (a). Our simulation results are given in Tables 1-6.
We use the selection probabilities as the relative frequencies.

Table 1. Selection rates under AIC for case (a)

n p M0 M1 M2 M3 M4 M5

30 5 0.00 0.14 0.48 0.31 0.05 0.01
60 10 0.00 0.03 0.47 0.45 0.05 0.00

120 20 0.00 0.00 0.43 0.55 0.02 0.00
210 35 0.00 0.00 0.39 0.61 0.00 0.00
300 50 0.00 0.00 0.36 0.64 0.00 0.00
480 80 0.00 0.00 0.31 0.69 0.00 0.00
600 100 0.00 0.00 0.30 0.70 0.00 0.00

Table 2. Selection rates under BIC for case (a)

n p M0 M1 M2 M3 M4 M5

30 5 0.18 0.55 0.24 0.03 0.00 0.00
60 10 0.11 0.74 0.15 0.00 0.00 0.00

120 20 0.06 0.91 0.03 0.00 0.00 0.00
210 35 0.04 0.96 0.00 0.00 0.00 0.00
300 50 0.04 0.96 0.00 0.00 0.00 0.00
480 80 0.06 0.94 0.00 0.00 0.00 0.00
600 100 0.09 0.91 0.00 0.00 0.00 0.00

Table 3. Selection rates under Cp for case (a)

n p M0 M1 M2 M3 M4 M5

30 5 0.00 0.06 0.43 0.41 0.08 0.01
60 10 0.00 0.01 0.31 0.58 0.11 0.00

120 20 0.00 0.00 0.21 0.73 0.07 0.00
210 35 0.00 0.00 0.14 0.83 0.03 0.00
300 50 0.00 0.00 0.11 0.88 0.01 0.00
480 80 0.00 0.00 0.05 0.94 0.00 0.00
600 100 0.00 0.00 0.04 0.96 0.00 0.00
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Table 4. Selection rates under AIC for case (b)

n p M0 M1 M2 M3 M4 M5

30 5 0.02 0.21 0.46 0.26 0.04 0.01
60 10 0.00 0.00 0.15 0.75 0.10 0.00

120 20 0.00 0.00 0.00 0.95 0.05 0.00
210 35 0.00 0.00 0.00 0.99 0.01 0.00
300 50 0.00 0.00 0.00 1.00 0.00 0.00
480 80 0.00 0.00 0.00 1.00 0.00 0.00
600 100 0.00 0.00 0.00 1.00 0.00 0.00

Table 5. Selection rates under BIC for case (b)

n p M0 M1 M2 M3 M4 M5

30 5 0.43 0.42 0.13 0.01 0.00 0.00
60 10 0.05 0.45 0.45 0.05 0.00 0.00

120 20 0.00 0.01 0.69 0.31 0.00 0.00
210 35 0.00 0.00 0.10 0.90 0.00 0.00
300 50 0.00 0.00 0.00 1.00 0.00 0.00
480 80 0.00 0.00 0.00 1.00 0.00 0.00
600 100 0.00 0.00 0.00 1.00 0.00 0.00

Table 6. Selection rates under Cp for case (b)

n p M0 M1 M2 M3 M4 M5

30 5 0.00 0.10 0.45 0.37 0.07 0.01
60 10 0.00 0.00 0.07 0.74 0.18 0.01

120 20 0.00 0.00 0.00 0.86 0.14 0.00
210 35 0.00 0.00 0.00 0.94 0.06 0.00
300 50 0.00 0.00 0.00 0.98 0.02 0.00
480 80 0.00 0.00 0.00 1.00 0.00 0.00
600 100 0.00 0.00 0.00 1.00 0.00 0.00

From Tables 1, 3, 4 and 6 we can see that AIC and Cp are consistent for
the estimation of dimensionality in the high-dimensional settings considered.
On the speed of convergence to the true dimension, the case of canonical
correlations-2 is faster than the one of canonical correlations-1. Further, in
the case of canonical correlations-1 Cp is faster than AIC. These criteria have
a tendency of underestimating the dimensionality when (n, p) is not so large.
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From Tables 2 and 5 we can see that BIC is not consistent in the case of
canonical correlations-1, but is consistent in the case of canonical correlations-
2.

§5. Concluding remarks

In general, it is known that under a large sample asymptotic framework; n →
∞ and p and q are fixed, AIC and Cp have no consistency property, in the
sense that the probabilities of selecting the true model do not approach to
one, but BIC is consistent. However, in this paper, we demonstrated that the
AIC and Cp for estimating the dimensionality in canonical correlation analysis
have a consistency property, under a high-dimensional framework (1.1). For
the consistency, it is required to satisfy some additional assumptions. For AIC,
it needs that c ∈ [0, ca), where ca ≈ 0.797. For Cp, it needs that c ∈ [0, 1/2).
Further, the consistency was considered under two types of assumptions on the
population canonical correlations. On the other hand, in a high-dimensional
case, we note that BIC is not always consistent.

In this paper we assume that our sample of size N = n + 1 comes from
(p + q)-dimensional normal distribution Nq+p(µ,Σ). Further, we assume that
for the random vectors of p and q (≤ p), q is finite, and p tends to infinity,
satisfying p/n → c ∈ [0, 1). It is expected to remove the normality assumption,
and to consider consistency properties of AIC, BIC and Cp under a general
high-dimensional asymptotic framework such that p/n → c ∈ [0, 1) and q/n →
d ∈ [0, 1).

§6. Appendix: The proofs of Theorems 3.1, 3.2 and 3.3

For the proofs of Theorems 3.1, 3.2 and 3.3, it is basic to establish the limiting
behavior of the squares r2

1 > · · · > r2
q of the canonical correlations under a

high-dimensional framework. The following results follows from the limiting
distributions of r2

1 > · · · > r2
q given by Fujikoshi (2017) (For some special

cases, see Fujikoshi and Sakurai (2008)).

Lemma 6.1. Let r2
1 > · · · > r2

q and ρ2
1 ≥ · · · ≥ ρ2

q be the squares of the
sample and the population canonical correlations between x; p× 1 and y; q × 1
with p ≥ q, based on a sample of size N = n + 1 from Np+q(µ,Σ). Let
d2

j = r2
j /(1− r2

j ), γ2
j = ρ2

j/(1−ρ2
j ), j = 1, . . . , q. We assume that the number

of nonzero population canonical correlations is a, and hence ρ1 ≥ · · · ≥ ρa >
ρa+1 = · · · = ρq = 0, and the multiplicities of ρi’s do not depend on p and
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q. Suppose that for the limiting behaviors of r2
1 > · · · > r2

q and d2
1 > · · · > d2

q

under a high-dimensional asymptotic framework

p → ∞, n → ∞, p/n → c ∈ [0, 1),

we have the following results:

1. Suppose that for any i (1 ≤ i ≤ a), ρ2
i = O(1) and

lim
p/n→c

ρ2
i = ρ2

i0 > 0. Let γi0 = ρi0/{1 − (ρi0)2}1/2, i = 1, . . . , a. Then

r2
i

p→ ρ2
i0 + c(1 − ρ2

i0), d2
i

p→ c

1 − c
+

1
1 − c

γ2
i0; i = 1, . . . , a,

r2
i

p→ c, d2
i

p→ c

1 − c
; i = a + 1, . . . , q.

2. Suppose that for any i (1 ≤ i ≤ a), γ2
i = pθ2

i = O(p) and
lim

p/n→c
θi = θi0 > 0. Then

1
p
d2

i
p→ 1

1 − c
θ2
i0; i = 1, . . . , a,

r2
i

p→ c, d2
i

p→ c

1 − c
; i = a + 1, . . . , q.

The proofs of Theorems 3.1 and 3.2
We consider a general criterion including Aj and Bj defined by

(6.1) Gνn,j = −
q∑

i=j+1

n log(1 − r2
i ) − νn(p − j)(q − j), j = 0, . . . , q,

with νn > 0. Note that G2,j = Aj and Glog n,j = Bj . Let d2
j = r2

j /(1 − r2
j ).

Using 1 − r2
j = (1 + d2

j )
−1, the difference between Gj and Gj∗ is expressed in

terms of d2
1, . . . , d

2
q as follows. For j > j∗,

Gνn,j−Gνn,j∗−(j−j∗)νn = −n log{(1+d2
j∗+1) · · · (1+d2

j )}+νn(j−j∗)(p+q−j−j∗),

and for j < j∗,

Gνn,j − Gνn,j∗ = n log{(1 + d2
j+1) · · · (1 + d2

j∗)} + νn(j − j∗)(p + q − j − j∗).

From Lemma 6.1 we have that for j∗ < i ≤ q, d2
i → c/(1− c) in both cases B3

and B4. Therefore we have that for j > j∗,

1
p

(Gνn,j − Gνn,j∗) − (j − j∗)νn
p→ (j − j∗)c−1 log(1 − c).
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Noting that limc→0+ c−1 log(1 − c) = −1, we have that in both cases B3 and
B4, for any j > j∗,

(6.2)
1
p

(Aj − Aj∗)
p→ (j − j∗)

{
1
c

log(1 − c) + 2
}

> 0,

if c ∈ [0, ca), and for any j > j∗,

(6.3)
1

p log n
(Bj − Bj∗)

p→ (j − j∗) > 0.

Next consider the case j < j∗. Noting that under B3

(6.4) 1 + d2
i

p→ 1
1 − c

{
1 − (ρ∗i0)

2
}−1

, for i < j∗,

we have

1
p

(Gνn,j − Gνn,j∗) + (j∗ − j)νn
p→

− (j∗ − j)c−1 log(1 − c) − c−1
j∗∑

i=j+1

log
{
1 − (ρ∗i0)

2
}2

≥ (j∗ − j)
{
−1

c
log(1 − c) − 1

c
log

{
1 − (ρ∗j∗)

2
}}

.

Combining (6.2), (6.3) and the above results, we can get Therem 3.1 (1) and
Therem 3.2 (1). Next we assume B4 and j < j∗. For j < j∗, we have

1
n

(Gνn,j − Gνn,j∗)

≥ (j∗ − j)
{
log(1 + d2

j∗) − νn(p + q − j − j∗)/n
}
≡ Dνn,j

Further, for i < j∗, (1/p)d2
i

p→ (1 − c)−1(θ∗i )
2, and hence

log(1 + d2
i ) − log p

p→ log(1 − c)−1(θ∗i )
2.

Therefor, we have

1
log p

D2,j
p→ j − j∗, and

1
log p

Dlog n,j
p→ (j − j∗)(1 − c),

which implies Theorems 3.1 and 3.2. Here, for the last result, we use

p

n

(
log n

log p

)
=

p

n

(
log n

log n + log(p/n)

)
→ c.



70 Y. FUJIKOSHI

The proof of Theorem 3.3
Theorem 3.3 is proved by a similar line as in the proof of Theorem 3.1 as

follows. Note that

Cp,j − Cp,j∗ = −n

j∑
i=j∗+1

d2
i + 2(j − j∗)(p + q − j − j∗), for j > j∗,

Cp,j − Cp,j∗ = n

j∗∑
i=j+1

d2
i − 2(j∗ − j)(p + q − j − j∗), for j < j∗,

where d2
i = r2

i /(1−r2
i ). Under both cases B3 and B4, we can see that by using

d2
i

p→ c(1 − c)−1 for i > j∗,

(6.5)
1
p

(Cp,j − Cp,j∗)
p→ (j − j∗)

(
− 1

1 − c
+ 2

)
, for j > j∗.

Next consider the case j < j∗. Using (6.4), under B3 we have

1
n

(Cp,j − Cp,j∗)
p→

j∗∑
i=j+1

(1 − c)−1
{
c + (γ∗

i0)
2
}
− 2c(j∗ − j)

≥ (j − j∗)
[
(1 − c)−1

{
c + (γ∗

j∗0)
2
}
− 2c

]
.

Combining this result with (6.5), we get Theorem 3.3(1). Under B4, (1/p)d2
i

p→
(1 − c)−1(θ∗i )

2 for i < j∗, and it is easy to see

1
np

(Cp,j − Cp,j∗)
p→ 1

1 − c

j∗∑
i=j+1

(θ∗i0)
2.

Combining this result with (6.5), we get Theorem 3.3(2).
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(eds. B. N. Petrov and F. Csáki), 267–281, Akadémiai Kiadó, Budapest.

[2] Anderson, T.W. (2003). Introduction to Multivariate Statistical Analysis,
3rd ed. Wiley, Hoboken, N. J.

[3] Bunea, F., She, Y. and Wegkamp, M. H. (2011). Optimal selection of re-
duced rank estimators of high-dimensional matrices. Ann. Statist., 39, 1282–
1309.

[4] Bunea, F., She, Y. and Wegkamp, M. H. (2012). Joint variable and
rank selection for parsimonious estimation of high-dimensional matrices. Ann.
Statist., 40, 2359–2388.

[5] Chen, L. and Huang, J. Z. (2012). Sparse reduced-rank regression for si-
multaneous and dimension reduction and variable selection. J. Amer. Statist.
Assoc., 107, 1533–1545.

[6] Fujikoshi, Y. and Veitch, L. G. (1979). Estimation of dimensionality in
canonical correlation analysis. Biometrika, 66, 345–351.

[7] Fujikoshi, Y. (1985). Two methods for estimation of dimensionality in
canonical correlation analysis and the multivariate linear model. In Statistical
Theory and Data Analysis (K. Matsushita, Ed.), 233–240. Elsevier Science,
Amsterdam.

[8] Fujikoshi, Y. and Sakurai, T. (2008). High-dimensional asymptotic ex-
pansions for the distributions of canonical correlations. J. Multivariate Anal.,
100, 231–241.

[9] Fujikoshi, Y., Ulyanov, V. V. and Shimizu, R. (2010). Multivariate Statis-
tics: High-Dimensional and Large-Sample Approximations. Wiley, Hobeken,
N.J.

[10] Fujikoshi, Y., Sakurai, T. and Yanagihara, H. (2013). Consistency of
high-dimensional AIC-type and Cp-type criteria in multivariate linear regres-
sion. J. Multivariate Anal., 149, 199–212.

[11] Fujikoshi, Y. and Sakurai, T. (2016). High-dimensional consistency of
rank estimation criteria in multivariate linear Model. J. Multivariate Anal.,
149, 199-212.

[12] Fujikoshi, Y. (2017). High-dimensional asymptotic distributions of charac-
teristic roots in multivariate linear model and canonical correlation analysis.
To appear in Hirosihma Math. J.

[13] Gunderson, B. K. and Muirhead, R. J. (1997). On estimating the dimen-
sionality in canonical correlation analysis. J. Multivariate Anal., 62, 121–136.



72 Y. FUJIKOSHI

[14] Izenman, A. J. (2008). Modern Multivariate Statistical Techniques. Springer,
New York.

[15] Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 661–675.

[16] Yanagihara, H., Wakaki, H. and Fujikoshi, Y. (2015). A consistency
property of the AIC for multivariate linear models when the dimension and
the sample size are large. Electron. J. Stat., 9, 869-897.

Yasunori Fujikoshi
Department of Mathematics, Graduate School of Science, Hiroshima University
1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8626, Japan


