Super geometric mean graphs

A. Durai Baskar and S.Arockiaraj

(Received December 26, 2013; Revised October 23, 2016)

Abstract

Let G be a graph and $f: V(G) \rightarrow\{1,2,3, \ldots, p+q\}$ be an injection. For each edge $u v$, the induced edge labeling f^{*} is defined as $f^{*}(u v)=\lceil\sqrt{f(u) f(v)}\rceil$. Then f is called a super geometric mean labeling if $f(V(G)) \cup\left\{f^{*}(u v) ; u v \in E(G)\right\}=\{1,2,3, \ldots, p+q\}$. A graph that admits a super geometric mean labeling is called a super geometric mean graph. In this paper, we discuss the super geometric meanness of union of any paths, union of any cycles of order ≥ 5, the graph $P_{n} \odot S_{m}$ for $m \leq 3$, square graph, total graph, the H-graph, the graph $G \odot S_{1}$ and $G \odot S_{2}$ for any H-graph G, subdivision of $K_{1,3}$ and some chain graphs.

AMS 2010 Mathematics Subject Classification. 05C78.
Key words and phrases. Super geometric mean labeling, super geometric mean graph.

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology, we follow [5]. For a detailed survey on graph labeling, we refer to [4].

A path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by C_{n}. A star graph S_{n} is the complete bipartite graph $K_{1, n} . G \odot S_{m}$ is the graph obtained from G by attaching m pendant vertices to each vertex of G. A square of a graph G, denoted by G^{2}, has the vertex set as in G and two vertices are adjacent in G^{2} if they are at a distance either 1 or 2 apart in G. The total graph $T(G)$ of graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent if and only if either they are adjacent vertices of G or adjacent edges of G or one is a vertex of G and the other one is an edge incident on it. The H-graph is obtained from two paths $u_{1}, u_{2}, \ldots, u_{n}$
and $v_{1}, v_{2}, \ldots, v_{n}$ of equal length by joining an edge $u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}$ when n is odd and $u_{\frac{n+2}{2}} v_{\frac{n}{2}}$ when n is even. A subdivision of a graph ${ }^{2} G$, denoted by $S(G)$, is a graph obtained from G by a sequence of elementary subdivisions forming edges into paths through new vertices of degree 2 .

Barrientos [1] defines a chain graph as one with blocks $B_{1}, B_{2}, B_{3}, \ldots, B_{m}$ such that for every i, B_{i} and B_{i+1} have a common vertex in such a way that the block cut point graph is a path. The chain graph $\widehat{G}\left(p_{1}, k_{1}, p_{2}, k_{2}, \ldots, k_{n-1}, p_{n}\right)$ is obtained from n cycles of length $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ and $(n-1)$ paths on $k_{1}, k_{2}, k_{3}, \ldots, k_{n-1}$ vertices respectively by identifying a cycle and a path at a vertex alternatively as follows. If the $i^{t h}$ cycle is of odd length, then its $\left(\frac{p_{i}+3}{2}\right)^{t h}$ vertex is identified with a pendant vertex of the $i^{t h}$ path and if the $i^{\text {th }}$ cycle is of even length, then its $\left(\frac{p_{i}+2}{2}\right)^{t h}$ vertex is identified with a pendant vertex of the $i^{t h}$ path while the other pendant vertex of the $i^{t h}$ path is identified with the first vertex of the $(i+1)^{t h}$ cycle. The chain graph $G^{*}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is obtained from n cycles of length $p_{1}, p_{2}, \ldots, p_{n}$ by identifying consecutive cycles at a vertex as follows. If the $i^{t h}$ cycle is of odd length, then its $\left(\frac{p_{i}+3}{2}\right)^{t h}$ vertex is identified with the first vertex of $(i+1)^{t h}$ cycle and if the $i^{t h}$ cycle is of even length, then its $\left(\frac{p_{i}+2}{2}\right)^{t h}$ vertex is identified with the first vertex of $(i+1)^{t h}$ cycle.

If every edge of the path P_{n} is replaced by a triangle C_{3}, then the resulting graph is called a triangular snake T_{n}. The graph Tadpoles $T(n, k)$ is obtained by identifying a vertex of the cycle C_{n} to an end vertex of the path P_{k+1}.

The geometric mean labeling was introduced in [2] and the geometric meanness property for some standard graphs was studied in [3].

The concept of super mean labeling was first introduced by R. Ponraj and D. Ramya and studied the super mean labeling of some standard graphs [6]. In $[7,8,9]$, R. Vasuki et al. discussed the super mean labeling of the H-graph, corona of the H-graph and some special classes of graphs.

Motivated by the works on super mean labeling, we introduced a new type of labeling called super geometric mean labeling.

The geometric mean of any two numbers need not be an integer. To assign the edge label as an integer based on the geometric mean, we may use either flooring function or ceiling function. In this paper, we consider the ceiling function of our discussion.

A vertex labeling of G is an assignment $f: V(G) \rightarrow\{1,2,3, \ldots, p+q\}$ be an injection. For a vertex labeling f, the induced edge labeling f^{*} is defined as $f^{*}(u v)=\lceil\sqrt{f(u) f(v)}\rceil$. Then f is called a super geometric mean labeling if $f(V(G)) \cup\left\{f^{*}(u v) ; u v \in E(G)\right\}=\{1,2,3, \ldots, p+q\}$. A graph that admits
a super geometric mean labeling is called a super geometric mean graph.
The graph shown in Figure 1 is a super geometric mean graph.

Figure 1.
In this paper, we have established the super geometric meanness of union of any paths, union of any cycles of order ≥ 5, the graph $P_{n} \odot S_{m}$ for $m \leq 3$, square graph, total graph, the H-graph, the graph $G \odot S_{1}$ and $G \odot S_{2}$ for any H graph G, subdivision of $K_{1,3}$ and the chain graphs $\widehat{G}\left(p_{1}, k_{1}, p_{2}, k_{2}, \ldots, k_{n-1}, p_{n}\right)$ and $G^{*}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$.

§2. Main Results

Theorem 2.1. Union of any path P_{n} is a super geometric mean graph, for $n \geq 2$.
Proof. Let the graph G be the union of k paths. Let $\left\{v_{j}^{(i)} ; 1 \leq j \leq p_{i}\right\}$ be the vertices of the $i^{\text {th }}$ path $P_{p_{i}}$ with $p_{i} \geq 2$ and $1 \leq i \leq k$.

We define $f: V(G) \rightarrow\left\{1,2,3, \ldots, \sum_{i=1}^{k} 2 p_{i}-k\right\}$ as follows:
$f\left(v_{j}^{(1)}\right)=2 j-1$, for $1 \leq j \leq p_{1}$ and
$f\left(v_{j}^{(i)}\right)=f\left(v_{p_{i-1}}^{(i-1)}\right)+2 j-1$, for $2 \leq i \leq k$ and $1 \leq j \leq p_{i}$.
The induced edge labeling is as follows:
$f^{*}\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)=2 j$, for $1 \leq j \leq p_{1}-1$ and
$f^{*}\left(v_{j}^{(i)} v_{j+1}^{(i)}\right)=f\left(v_{p_{i-1}}^{(i-1)}\right)+2 j$, for $2 \leq i \leq k$ and $1 \leq j \leq p_{i}-1$.
Hence, f is a super geometric mean labeling of G. Thus the graph G is a super geometric mean graph.

A super geometric mean labeling of $P_{5} \cup P_{3} \cup P_{4}$ is shown in Figure 2.

Figure 2.

Corollary 2.2. Every path $P_{n}, n \geq 1$ is a super geometric mean graph.
Theorem 2.3. Union of any cycles C_{n} is a super geometric mean graph, for $n \geq 5$.
Proof. Let the graph G be union of k cycles. Let $\left\{v_{j}^{(i)} ; 1 \leq j \leq p_{i}\right\}$ be the vertices of the $i^{\text {th }}$ cycle $C_{p_{i}}$ with $p_{i} \geq 5$ and $1 \leq i \leq k$.

We define $f: V(G) \rightarrow\left\{1,2,3, \ldots, \sum_{i=1}^{k} 2 p_{i}\right\}$ as follows:
When p_{1} is odd,

$$
f\left(v_{j}^{(1)}\right)= \begin{cases}1 & j=1 \\ 4 j-4 & 2 \leq j \leq\left\lfloor\frac{p_{1}}{2}\right\rfloor \\ 4 j-5 & j=\left\lfloor\frac{p_{1}}{2}\right\rfloor+1 \\ 4 j-6 & j=\left\lfloor\frac{p_{1}}{2}\right\rfloor+2 \\ 4 p_{1}+5-4 j & \left\lfloor\frac{p_{1}}{2}\right\rfloor+3 \leq j \leq p_{1} .\end{cases}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)= \begin{cases}4 j-2 & 1 \leq j \leq\left\lfloor\frac{p_{1}}{2}\right\rfloor \\
4 j-3 & j=\left\lfloor\frac{p_{1}}{2}\right\rfloor+1 \\
4 j-8 & j=\left\lfloor\frac{p_{1}}{2}\right\rfloor+2 \\
4 p_{1}+3-4 j & \left\lfloor\frac{p_{1}}{2}\right\rfloor+3 \leq j \leq p_{1}-1 \text { and }\end{cases} \\
& f^{*}\left(v_{1}^{(1)} v_{p_{1}}^{(1)}\right)=3 .
\end{aligned}
$$

When p_{1} is even,

$$
f\left(v_{j}^{(1)}\right)= \begin{cases}1 & j=1 \\ 4 j-4 & 2 \leq j \leq\left\lfloor\frac{p_{1}}{2}\right\rfloor+1 \\ 4 p_{1}+5-4 j & \left\lfloor\frac{p_{1}}{2}\right\rfloor+2 \leq j \leq p_{1}\end{cases}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)=\left\{\begin{array}{ll}
4 j-2 & 1 \leq j \leq\left\lfloor\frac{p_{1}}{2}\right\rfloor \\
4 p_{1}+3-4 j & \left\lfloor\frac{p_{1}}{2}\right\rfloor+1 \leq j \leq p_{1}-1 \text { and } \\
f^{*}\left(v_{1}^{(1)} v_{p_{1}}^{(1)}\right) & =3 .
\end{array} .\right.
\end{aligned}
$$

Case (i) For $2 \leq i \leq k, p_{i}$ is odd and p_{i-1} is odd.

$$
f\left(v_{j}^{(i)}\right)= \begin{cases}f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+1 & j=1 \\ f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 j-5 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \\ f\left(v_{\left\lfloor\frac{p_{p-1}}{2}\right\rfloor+2}^{(i)}\right)+4 p i+6-4 j & \left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \leq j \leq p_{i} .\end{cases}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
f^{*}\left(v_{j}^{(i)} v_{j+1}^{(i)}\right)=\left\{\begin{array}{ll}
f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+2 & j=1 \\
f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 j-3 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \\
f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 p i+4-4 j & \left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \leq j \leq p_{i}-1 \text { and } \\
f^{*}\left(v_{1}^{(i)} v_{p_{i}}^{(i)}\right) & =f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 .
\end{array} .\right.
\end{aligned}
$$

Case (ii) For $2 \leq i \leq k, p_{i}$ is odd and p_{i-1} is even.

$$
f\left(v_{j}^{(i)}\right)= \begin{cases}f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i-1)}\right)+1 & j=1 \\ f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i-1)}\right)+4 j-5 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \\ f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i-1)}\right)+4 p i+6-4 j & \left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \leq j \leq p_{i} .\end{cases}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
f^{*}\left(v_{j}^{(i)} v_{j+1}^{(i)}\right)= \begin{cases}f\left(v_{\left\lfloor\frac{p_{i-1}^{2}}{2}\right\rfloor+1}^{(i-1)}\right)+2 & j=1 \\
f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i-1)}\right)+4 j-3 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \\
f\left(v_{\left\lfloor\frac{p_{i-1}^{2}}{2}\right\rfloor+1}^{(i-1)}\right)+4 p i+4-4 j & \left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \leq j \leq p_{i}-1 \text { and }\end{cases} \\
f^{*}\left(v_{1}^{(i)} v_{p_{i}}^{(i)}\right)=f\left(v_{\left\lfloor\frac{p_{i-1}^{2}}{(i-1)}\right\rfloor+1}^{(i)}\right)+4 .
\end{aligned}
$$

Case (iii) For $2 \leq i \leq k, p_{i}$ is even and p_{i-1} is odd.

$$
f\left(v_{j}^{(i)}\right)= \begin{cases}f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+1 & j=1 \\ f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 j-5 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor \\ f\left(v_{\left\lfloor\frac{p_{i}-1}{2}\right\rfloor+2}^{(i-1)}\right)+4 j-4 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \\ f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 j-11 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \\ f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 p_{i}+6-4 j & \left\lfloor\frac{p_{i}}{2}\right\rfloor+3 \leq j \leq p_{i} .\end{cases}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{j}^{(i)} v_{j+1}^{(i)}\right)= \begin{cases}f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+2 & j=1 \\
f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 j-3 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor-1 \\
\left.f\left(v_{\left\lfloor\frac{p_{i}}{2}\right\rfloor}^{(i-1)}\right\rfloor+2\right)+4 j-2 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor \\
f\left(v_{\left\lfloor\frac{p_{i}}{(i-1)}\right.}^{(i-1)}\right\rfloor+4 j-5 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \\
f\left(v_{\left.\left\lfloor\frac{p_{i}}{2}\right\rfloor \frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 p_{i}+4-4 j & \left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \leq j \leq p_{i}-1 \text { and }\end{cases} \\
& f^{*}\left(v_{1}^{(i)} v_{p_{i}}^{(i)}\right)=f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+2}^{(i-1)}\right)+4 .
\end{aligned}
$$

Case (iv) For $2 \leq i \leq k, p_{i}$ is even and p_{i-1} is even.

$$
f\left(v_{j}^{(i)}\right)= \begin{cases}f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i-1)}\right)+1 & j=1 \\ f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i-1)}\right)+4 j-5 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor \\ f\left(v_{\left\lfloor\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1\right.}^{(i-1)}\right)+4 j-4 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \\ f\left(v_{\left\lfloor\frac{p_{1-1}}{2}\right\rfloor+1}^{(i-1)}\right)+4 j-11 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \\ f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i)}\right)+4 p i+6-4 j & \left\lfloor\frac{p_{i}}{2}\right\rfloor+3 \leq j \leq p_{i} .\end{cases}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{j}^{(i)} v_{j+1}^{(i)}\right)= \begin{cases}f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i-1)}\right)+2 & j=1 \\
f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i-1)}\right)+4 j-3 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor-1 \\
f\left(v_{\left\lfloor\frac{p_{i-1}}{2}\right\rfloor+1}^{(i-1)}\right)+4 j-2 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor \\
f\left(v_{\left\lfloor\frac{p_{i-1}}{(i-1)}\right\rfloor+1}^{(i)}\right)+4 j-5 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \\
f\left(v_{\left\lfloor\frac{p_{i-1}}{(i-1)}\right\rfloor+1}^{2}\right)+4 p i+4-4 j & \left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \leq j \leq p_{i}-1 \text { and } \\
f^{*}\left(v_{1}^{(i)} v_{p_{i}}^{(i)}\right)=f\left(v_{\left\lfloor\frac{p_{i-1}}{(i-1)}\right\rfloor+1}^{2}\right\rfloor+4 .\end{cases}
\end{aligned}
$$

Hence, f is a super geometric mean labeling of G. Thus the graph G is a super geometric mean graph.

A super geometric mean labeling of $C_{6} \cup C_{8} \cup C_{5} \cup C_{7}$ is shown in Figure 3.

Figure 3.
Corollary 2.4. Any cycle C_{n} is a super geometric mean graph, for $n \geq 3$.
Proof. By Theorem 2.3, the result holds for $n \geq 5$.
The Super geometric mean labeling of C_{3} and C_{4} are shown in Figure 4.

Figure 4.
Theorem 2.5. The graph $P_{n} \odot S_{m}$ is a super geometric mean graph, for $n \geq 1$ and $m \leq 3$.

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and $v_{1}^{(i)}, v_{2}^{(i)}, \ldots, v_{m}^{(i)}$ be the pendant vertices at each vertex u_{i} of the path P_{n}, for $1 \leq i \leq n$.
Case (i) $m=1$.
We define $f: V\left(P_{n} \odot S_{1}\right) \rightarrow\{1,2,3, \ldots, 4 n-1\}$ as follows:
$f\left(u_{i}\right)=4 i-1$, for $1 \leq i \leq n$ and
$f\left(v_{1}^{(i)}\right)= \begin{cases}1 & i=1 \\ 4 i-4 & 2 \leq i \leq n .\end{cases}$
The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=4 i+1$, for $1 \leq i \leq n-1$ and
$f^{*}\left(v_{1}^{(i)} u_{i}\right)=4 i-2$, for $1 \leq i \leq n$.

Case (ii) $m=2$.
We define $f: V\left(P_{n} \odot S_{2}\right) \rightarrow\{1,2,3, \ldots, 6 n-1\}$ as follows:
$f\left(u_{i}\right)=6 i-3$, for $1 \leq i \leq n$,
$f\left(v_{1}^{(i)}\right)=6 i-5$, for $1 \leq i \leq n$ and
$f\left(v_{2}^{(i)}\right)=6 i-1$, for $1 \leq i \leq n$.
The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=6 i$, for $1 \leq i \leq n-1$,
$f^{*}\left(v_{1}^{(i)} u_{i}\right)=6 i-4$, for $1 \leq i \leq n$ and
$f^{*}\left(v_{2}^{(i)} u_{i}\right)=6 i-2$, for $1 \leq i \leq n$.
Case (iii) $m=3$.
We define $f: V\left(P_{n} \odot S_{3}\right) \rightarrow\{1,2,3, \ldots, 8 n-1\}$ as follows:
$f\left(u_{i}\right)=8 i-3$, for $1 \leq i \leq n$,
$f\left(v_{1}^{(i)}\right)= \begin{cases}1 & i=1 \\ 8 i-8 & 2 \leq i \leq n\end{cases}$
$f\left(v_{2}^{(i)}\right)=8 i-6$, for $1 \leq i \leq n$ and
$f\left(v_{3}^{(i)}\right)=8 i-1$, for $1 \leq i \leq n$.
The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=8 i+1$, for $1 \leq i \leq n-1$,
$f^{*}\left(v_{1}^{(i)} u_{i}\right)=8 i-5$, for $1 \leq i \leq n$,
$f^{*}\left(v_{2}^{(i)} u_{i}\right)=8 i-4$, for $1 \leq i \leq n$ and
$f^{*}\left(v_{3}^{(i)} u_{i}\right)=8 i-2$, for $1 \leq i \leq n$.
Hence, f is a super mean geometric mean labeling of $P_{n} \odot S_{m}$. Thus the graph $P_{n} \odot S_{m}$ is a super geometric mean graph, for $n \geq 1$ and $m \leq 3$.

The Super geometric mean labeling of $P_{6} \odot S_{1}, P_{5} \odot S_{2}$ and $P_{4} \odot S_{3}$ are shown in Figure 5.

Figure 5.
Theorem 2.6. P_{n}^{2} is a super geometric mean graph, for $n \geq 3$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n}.
We define $f: V\left(P_{n}^{2}\right) \rightarrow\{1,2,3, \ldots, 3 n-3\}$ as follows:
$f\left(v_{1}\right)=1$,
$f\left(v_{i}\right)= \begin{cases}3 i-3 & 3 \leq i \leq n-1 \text { and } i \text { is odd } \\ 3 i-2 & 2 \leq i \leq n-1 \text { and } i \text { is even and }\end{cases}$
$f\left(v_{n}\right)=3 n-3$.
The induced edge labeling is as follows:
$f^{*}\left(v_{i} v_{i+1}\right)=3 i-1$, for $1 \leq i \leq n-1$ and
$f^{*}\left(v_{i} v_{i+2}\right)= \begin{cases}3 i & 1 \leq i \leq n-2 \text { and } i \text { is odd } \\ 3 i+1 & 2 \leq i \leq n-2 \text { and } i \text { is even. }\end{cases}$
Hence, f is a super geometric mean labeling of P_{n}^{2}. Thus the graph P_{n}^{2} is a super geometric mean graph, for $n \geq 3$.

A super geometric mean labeling of P_{7}^{2} is shown in Figure 6.

Figure 6.
Theorem 2.7. The total graph $T\left(P_{n}\right)$ is a super geometric mean graph, for $n \geq 2$.

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\}$ be the vertex set and edge set of the path P_{n}. Then
$V\left(T\left(P_{n}\right)\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ and
$E\left(T\left(P_{n}\right)\right)=\left\{v_{i}, v_{i+1}, e_{i} v_{i}, e_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i} e_{i+1} ; 1 \leq i \leq n-2\right\}$.
We define $f: V\left(T\left(P_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 6 n-6\}$ as follows:
$f\left(v_{i}\right)= \begin{cases}1 & i=1 \\ 6 i-6 & 2 \leq i \leq n \text { and }\end{cases}$
$f\left(e_{i}\right)=6 i-2, \quad$ for $1 \leq i \leq n-1$.
The induced edge labeling is as follows:
$f^{*}\left(v_{i} v_{i+1}\right)=6 i-3$, for $1 \leq i \leq n-1$,
$f^{*}\left(e_{i} v_{i}\right)=6 i-4$, for $1 \leq i \leq n-1$,
$f^{*}\left(e_{i} v_{i+1}\right)=6 i-1$, for $1 \leq i \leq n-1$ and
$f^{*}\left(e_{i} e_{i+1}\right)=6 i+1$, for $1 \leq i \leq n-2$.

Hence, f is a super geometric mean labeling of $T\left(P_{n}\right)$. Thus the graph $T\left(P_{n}\right)$ is a super geometric mean graph, for $n \geq 2$.

A super geometric mean labeling of $T\left(P_{6}\right)$ is shown in Figure 7.

Figure 7.
Theorem 2.8. Any $H-$ graph G is a super geometric mean graph.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the paths of equal length in G.
Case (i) n is odd.
We define $f: V(G) \rightarrow\{1,2,3, \ldots, 4 n-1\}$ as follows:
$f\left(u_{i}\right)=2 i-1$, for $1 \leq i \leq n$ and
$f\left(v_{i}\right)= \begin{cases}2 n-3+4 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \\ 6 n+2-4 i & \left\lfloor\frac{n}{2}\right\rfloor+2 \leq i \leq n .\end{cases}$
The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=2 i$, for $1 \leq i \leq n-1, f^{*}\left(u_{i} v_{i}\right)=2 n$, for $i=\left\lfloor\frac{n}{2}\right\rfloor+1$ and
$f^{*}\left(v_{i} v_{i+1}\right)= \begin{cases}2 n-1+4 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\ 6 n-4 i & \left\lfloor\frac{n}{2}\right\rfloor+1 \leq i \leq n-1 .\end{cases}$
Case (ii) n is even.
We define $f: V(G) \rightarrow\{1,2,3, \ldots, 4 n-1\}$ as follows:
$f\left(u_{i}\right)=2 i-1$, for $1 \leq i \leq n$,
$f\left(v_{i}\right)= \begin{cases}2 n+4 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \\ 6 n-1-4 i & \left\lfloor\frac{n}{2}\right\rfloor \leq i \leq n-1 \text { and }\end{cases}$
$f\left(v_{n}\right)=2 n$.
The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=2 i$, for $1 \leq i \leq n-1, f^{*}\left(u_{i+1} v_{i}\right)=2 n+1$, for $i=\left\lfloor\frac{n}{2}\right\rfloor$,
$f^{*}\left(v_{i} v_{i+1}\right)= \begin{cases}2 n+2+4 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \\ 6 n-3-4 i & \left\lfloor\frac{n}{2}\right\rfloor \leq i \leq n-2 \text { and }\end{cases}$
$f^{*}\left(v_{n-1} v_{n}\right)=2 n+2$.
Hence, f is a super geometric mean labeling of G. Thus the graph the H-graph G is a super geometric mean graph.

The super geometric mean labeling of G_{1} and G_{2} are shown in Figure 8.

Figure 8.
Theorem 2.9. For a H-graph $G, G \odot S_{1}$ is a super geometric mean graph.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G. Then
$V\left(G \odot S_{1}\right)=V(G) \cup\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\} \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ and
$E\left(G \odot S_{1}\right)=E(G) \cup\left\{u_{i} u_{i}^{\prime}, v_{i} v_{i}^{\prime}, ; 1 \leq i \leq n\right\}$.
Case (i) $n \equiv 0(\bmod 4)$.
We define $f: V\left(G \odot S_{1}\right) \rightarrow\{1,2,3, \ldots, 8 n-1\}$ as follows:
$f\left(u_{i}\right)=4 i-1$, for $1 \leq i \leq n, f\left(u_{i}^{\prime}\right)= \begin{cases}1 & i=1 \\ 4 i-4 & 2 \leq i \leq n,\end{cases}$
$f\left(v_{i}\right)= \begin{cases}4 n+2+8 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { and } i \text { is odd } \\ 4 n+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2 \text { and } i \text { is even },\end{cases}$
$f\left(v_{n+1-i}\right)= \begin{cases}4 n+2 & i=1 \\ 4 n-9+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1,\end{cases}$
$f\left(v_{i}^{\prime}\right)= \begin{cases}4 n+8 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { and } i \text { is odd } \\ 4 n+2+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2 \text { and } i \text { is even and }\end{cases}$
$f\left(v_{n+1-i}^{\prime}\right)= \begin{cases}4 n & i=1 \\ 4 n-12+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1\end{cases}$
The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=4 i+1$, for $1 \leq i \leq n-1, f^{*}\left(u_{i} u_{i}^{\prime}\right)=4 i-2$, for $1 \leq i \leq n$,
$f^{*}\left(u_{i+1} v_{i}\right)=4 n+3$, for $i=\left\lfloor\frac{n}{2}\right\rfloor, f^{*}\left(v_{i} v_{i+1}\right)=4 n+5+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$,
$f^{*}\left(v_{n+1-i} v_{n-i}\right)=4 n-5+8 i$, for $2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor, f^{*}\left(v_{n} v_{n-1}\right)=4 n+5$,
$f^{*}\left(v_{i} v_{i}^{\prime}\right)=4 n+1+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$,
$f^{*}\left(v_{n+1-i} v_{n+1-i}^{\prime}\right)=4 n-10+8 i$, for $2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1$ and $f^{*}\left(v_{n} v_{n}^{\prime}\right)=4 n+1$.
Case (ii) $n \equiv 1(\bmod 4)$.
We define $f: V\left(G \odot S_{1}\right) \rightarrow\{1,2,3, \ldots, 8 n-1\}$ as follows:
$f\left(u_{i}\right)=4 i-1$, for $1 \leq i \leq n, f\left(u_{i}^{\prime}\right)= \begin{cases}1 & i=1 \\ 4 i-4 & 2 \leq i \leq n,\end{cases}$
$f\left(v_{i}\right)= \begin{cases}4 n-4+8 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { and } i \text { is odd } \\ 4 n-2+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \text { and } i \text { is even, }\end{cases}$
$f\left(v_{n+1-i}\right)=4 n-5+8 i \quad$ for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1$,
$f\left(v_{i}^{\prime}\right)= \begin{cases}4 n-2+8 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { and } i \text { is odd } \\ 4 n-4+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \text { and } i \text { is even and }\end{cases}$
$f\left(v_{n+1-i}^{\prime}\right)=4 n-8+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1$.
The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=4 i+1$, for $1 \leq i \leq n-1, f^{*}\left(u_{i} u_{i}^{\prime}\right)=4 i-2$, for $1 \leq i \leq n$,
$f^{*}\left(u_{i} v_{i}\right)=4 n+1$, for $i=\left\lfloor\frac{n}{2}\right\rfloor+1, f^{*}\left(v_{i} v_{i+1}\right)=4 n+1+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,
$f^{*}\left(v_{n+1-i} v_{n-i}\right)=4 n-1+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,
$f^{*}\left(v_{i} v_{i}^{\prime}\right)=4 n-3+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$ and
$f^{*}\left(v_{n+1-i} v_{n+1-i}^{\prime}\right)=4 n-6+8 i, \quad$ for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1$.
Case (iii) $n \equiv 2(\bmod 4)$.
We define $f: V\left(G \odot S_{1}\right) \rightarrow\{1,2,3, \ldots, 8 n-1\}$ as follows:
$f\left(u_{i}\right)=4 i-1$, for $1 \leq i \leq n, f\left(u_{i}^{\prime}\right)= \begin{cases}1 & i=1 \\ 4 i-4 & 2 \leq i \leq n,\end{cases}$
$f\left(v_{i}\right)= \begin{cases}4 n+8 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2 \text { and } i \text { is odd } \\ 4 n+2+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { and } i \text { is even, }\end{cases}$
$f\left(v_{n+1-i}\right)= \begin{cases}4 n+2 & i=1 \\ 4 n-9+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1,\end{cases}$
$f\left(v_{i}^{\prime}\right)= \begin{cases}4 n+2+8 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2 \text { and } i \text { is odd } \\ 4 n+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { and } i \text { is even and }\end{cases}$
$f\left(v_{n+1-i}^{\prime}\right)= \begin{cases}4 n & i=1 \\ 4 n-12+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1 .\end{cases}$
The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=4 i+1$, for $1 \leq i \leq n-1, f^{*}\left(u_{i} u_{i}^{\prime}\right)=4 i-2$, for $1 \leq i \leq n$,
$f^{*}\left(u_{i+1} v_{i}\right)=4 n+3$, for $i=\left\lfloor\frac{n}{2}\right\rfloor, f^{*}\left(v_{i} v_{i+1}\right)=4 n+5+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$,
$f^{*}\left(v_{n+1-i} v_{n-i}\right)=4 n-5+8 i$, for $2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor, f^{*}\left(v_{n} v_{n-1}\right)=4 n+5$,
$f^{*}\left(v_{i} v_{i}^{\prime}\right)=4 n+1+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$,
$f^{*}\left(v_{n+1-i} v_{n+1-i}^{\prime}\right)=4 n-10+8 i$, for $2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1$ and $f^{*}\left(v_{n} v_{n}^{\prime}\right)=4 n+1$.
Case (iv) $n \equiv 3(\bmod 4)$.
We define $f: V\left(G \odot S_{1}\right) \rightarrow\{1,2,3, \ldots, 8 n-1\}$ as follows:
$f\left(u_{i}\right)=4 i-1$, for $1 \leq i \leq n, f\left(u_{i}^{\prime}\right)= \begin{cases}1 & i=1 \\ 4 i-4 & 2 \leq i \leq n,\end{cases}$

$$
\begin{aligned}
& f\left(v_{i}\right)= \begin{cases}4 n-2+8 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \text { and } i \text { is odd } \\
4 n-4+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { and } i \text { is even, }\end{cases} \\
& f\left(v_{n+1-i}\right)=4 n-5+8 i \\
& \text { for } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1
\end{aligned} \begin{aligned}
& f\left(v_{i}^{\prime}\right)= \begin{cases}4 n-4+8 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \text { and } i \text { is odd } \\
4 n-2+8 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { and } i \text { is even and } \\
f\left(v_{n+1-i}^{\prime}\right)=4 n-8+8 i, & \text { for } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1\end{cases}
\end{aligned}
$$

The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=4 i+1$, for $1 \leq i \leq n-1, f^{*}\left(u_{i} u_{i}^{\prime}\right)=4 i-2$, for $1 \leq i \leq n$,
$f^{*}\left(u_{i} v_{i}\right)=4 n+1$, for $i=\left\lfloor\frac{n}{2}\right\rfloor+1, f^{*}\left(v_{i} v_{i+1}\right)=4 n+1+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,
$f^{*}\left(v_{n+1-i} v_{n-i}\right)=4 n-1+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,
$f^{*}\left(v_{i} v_{i}^{\prime}\right)=4 n-3+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$ and
$f^{*}\left(v_{n+1-i} v_{n+1-i}^{\prime}\right)=4 n-6+8 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1$.
Hence, f is a super geometric mean labeling of $G \odot S_{1}$. Thus the graph the graph $G \odot S_{1}$ is a super geometric mean graph.

The Super geometric mean labeling of $G_{1} \odot S_{1}$ and $G_{2} \odot S_{1}$ are shown in Figure 9.

Figure 9.
$G_{2} \odot S_{1}$
Theorem 2.10. For a H-graph $G, G \odot S_{2}$ is a super geometric mean graph.
Proof. Let $u_{1}, u_{2}, \ldots u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G. Let $V(G)$ together with $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}, u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, \ldots, u_{n}^{\prime \prime}, v_{1}^{\prime}, v_{2}^{\prime} \ldots, v_{n}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}$ form the vertex set of $G \odot S_{2}$ and $E(G)$ together with $\left\{u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}, v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime} ; 1 \leq i \leq n\right\}$ form the edge set of $G \odot S_{2}$.
Case (i) n is odd.
We define $f: V\left(G \odot S_{2}\right) \rightarrow\{1,2,3, \ldots, 12 n-1\}$ as follows:

```
\(f\left(u_{i}\right)=6 i-3\), for \(1 \leq i \leq n, f\left(u_{i}^{\prime}\right)=6 i-5\), for \(1 \leq i \leq n\),
\(f\left(u_{i}^{\prime \prime}\right)=6 i-1\), for \(1 \leq i \leq n, f\left(v_{i}\right)=6 n-6+12 i\) for \(1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\),
\(f\left(v_{n+1-i}\right)=6 n-7+12 i\), for \(1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1\),
\(f\left(v_{i}^{\prime}\right)=6 n-10+12 i\), for \(1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1\),
\(f\left(v_{n+1-i}^{\prime}\right)=6 n-11+12 i\) for \(1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\),
\(f\left(v_{i}^{\prime \prime}\right)= \begin{cases}6 n-2+12 i & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\ 12 n-5 & i=\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and }\end{cases}\)
\(f\left(v_{n+1-i}^{\prime \prime}\right)=6 n-3+12 i\), for \(1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\).
```

The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=6 i$, for $1 \leq i \leq n-1, f^{*}\left(u_{i} u_{i}^{\prime}\right)=6 i-4$, for $1 \leq i \leq n$,
$f^{*}\left(u_{i} u_{i}^{\prime \prime}\right)=6 i-2$, for $1 \leq i \leq n, f^{*}\left(u_{i} v_{i}\right)=6 n$, for $i=\left\lfloor\frac{n}{2}\right\rfloor+1$,
$f^{*}\left(v_{i} v_{i+1}\right)=6 n+12 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,
$f^{*}\left(v_{n+1-i} v_{n-i}\right)=6 n-1+12 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,
$f^{*}\left(v_{i} v_{i}^{\prime}\right)=f\left(v_{i}^{\prime}\right)+2$, for $1 \leq i \leq n$ and
$f^{*}\left(v_{i} v_{i}^{\prime \prime}\right)= \begin{cases}f\left(v_{i}^{\prime \prime}\right)-2, & \text { for } 1 \leq i \leq n \text { and } i \neq\left\lfloor\frac{n}{2}\right\rfloor+1 \\ f\left(v_{i}^{\prime \prime}\right)+2, & i=\left\lfloor\frac{n}{2}\right\rfloor+1 .\end{cases}$
Case (ii) n is even.
We define $f: V\left(G \odot S_{2}\right) \rightarrow\{1,2,3, \ldots, 12 n-1\}$ as follows:
$f\left(u_{i}\right)=6 i-3$, for $1 \leq i \leq n, f\left(u_{i}^{\prime}\right)=6 i-5$, for $1 \leq i \leq n$,
$f\left(u_{i}^{\prime \prime}\right)=6 i-1$, for $1 \leq i \leq n, f\left(v_{i}\right)=6 n+12 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$,
$f\left(v_{n+1-i}\right)= \begin{cases}6 n+2 & i=1 \\ 6 n-13+12 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1,\end{cases}$
$f\left(v_{i}^{\prime}\right)=6 n-4+12 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$,
$f\left(v_{n+1-i}^{\prime}\right)= \begin{cases}6 n-6+6 i & 1 \leq i \leq 2 \\ 6 n-17+12 i & 3 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1,\end{cases}$
$f\left(v_{i}^{\prime \prime}\right)=6 n+4+12 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$ and
$f\left(v_{n+1-i}^{\prime \prime}\right)= \begin{cases}6 n+5 & i=1 \\ 6 n-9+12 i & 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\ 12 n-4 & i=\left\lfloor\frac{n}{2}\right\rfloor+1 .\end{cases}$
The induced edge labeling is as follows:
$f^{*}\left(u_{i} u_{i+1}\right)=6 i$, for $1 \leq i \leq n-1, f^{*}\left(u_{i} u_{i}^{\prime}\right)=6 i-4$, for $1 \leq i \leq n$, $f^{*}\left(u_{i} u_{i}^{\prime \prime}\right)=6 i-2$, for $1 \leq i \leq n, f^{*}\left(u_{i+1} v_{i}\right)=6 n+3$, for $i=\left\lfloor\frac{n}{2}\right\rfloor$,
$f^{*}\left(v_{i} v_{i+1}\right)=6 n+6+12 i$, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$,
$f^{*}\left(v_{n+1-i} v_{n-i}\right)=6 n-7+12 i$, for $2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,
$f^{*}\left(v_{n} v_{n-1}\right)=6 n+7, f^{*}\left(v_{i} v_{i}^{\prime}\right)= \begin{cases}f\left(v_{i}\right)-2, & 1 \leq i \leq n-1 \\ f\left(v_{i}\right)-1 & i=n \text { and }\end{cases}$
$f^{*}\left(v_{i} v_{i}^{\prime \prime}\right)= \begin{cases}f\left(v_{i}\right)+2, & i \neq\left\lfloor\begin{array}{l}\frac{n}{2} \\ f\left(v_{i}\right)-1\end{array}\right. \\ i=\left\lfloor\frac{n}{2}\right\rfloor .\end{cases}$
Hence, f is a super geometric mean labeling of $G \odot S_{2}$. Thus the graph the graph $G \odot S_{2}$ is a super geometric mean graph.

The super geometric mean labeling of $G_{1} \odot S_{2}$ and $G_{2} \odot S_{2}$ are shown in Figure 10.

$G_{1} \odot S_{2}$
Figure 10.
$G_{2} \odot S_{2}$
Theorem 2.11. $S\left(K_{1,3}\right)$ is a super geometric mean graph.
Proof. Let v_{0}, v_{1}, v_{2} and v_{3} be the vertices of $S\left(K_{1,3}\right)$ in which v_{0} is the central vertex and v_{1}, v_{2} and v_{3} are the pendant vertices of $K_{1,3}$.

Let the edges $v_{0} v_{1}, v_{0} v_{2}$ and $v_{0} v_{3}$ of $K_{1,3}$ be subdivided by p_{1}, p_{2} and p_{3} number of vertices respectively.

Let $v_{0}, v_{1}^{(1)}, v_{2}^{(1)}, v_{3}^{(1)}, \ldots, v_{p_{1}+1}^{(1)}\left(=v_{1}\right), v_{0}, v_{1}^{(2)}, v_{2}^{(2)}, v_{3}^{(2)}, \ldots, v_{p_{2}+1}^{(2)}\left(=v_{2}\right)$ and $v_{0}, v_{1}^{(3)}, v_{2}^{(3)}, v_{3}^{(3)}, \ldots, v_{p_{3}+1}^{(3)}\left(=v_{3}\right)$ be the vertices of $S\left(K_{1,3}\right)$ and $v_{0}=v_{0}^{(i)}$, for $1 \leq i \leq 3$. Let $e_{j}^{(i)}=v_{j-1}^{(i)} v_{j}^{(i)}, 1 \leq j \leq p_{i}+1$ and $1 \leq i \leq 3$ be the edges of $S\left(K_{1,3}\right)$ and it has $p_{1}+p_{2}+p_{3}+4$ vertices and $p_{1}+p_{2}+p_{3}+3$ edges with $p_{1} \leq p_{2} \leq p_{3}$.
Case (i) $p_{1}=p_{2}$.
We define $f: V\left(S\left(K_{1,3}\right)\right) \rightarrow\left\{1,2,3, \ldots, 2\left(p_{1}+p_{2}+p_{3}\right)+7\right\}$ as follows:
$f\left(v_{0}\right)=2\left(p_{1}+p_{2}\right)+5, f\left(v_{j}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+5-4 j$, for $1 \leq j \leq p_{1}+1$,
$f\left(v_{j}^{(2)}\right)=2\left(p_{1}+p_{2}\right)+6-4 j$, for $1 \leq j \leq p_{2}+1$ and
$f\left(v_{j}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+5+2 j$, for $1 \leq j \leq p_{3}+1$.

The induced edge labeling is as follows:
$f^{*}\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+3-4 j$, for $1 \leq j \leq p_{1}$,
$f^{*}\left(v_{j}^{(2)} v_{j+1}^{(2)}\right)=2\left(p_{1}+p_{2}\right)+4-4 j$, for $1 \leq j \leq p_{2}$,
$f^{*}\left(v_{j}^{(3)} v_{j+1}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+6+2 j$, for $1 \leq j \leq p_{3}$,
$f^{*}\left(v_{0} v_{1}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+3, f^{*}\left(v_{0} v_{1}^{(2)}\right)=2\left(p_{1}+p_{2}\right)+4$ and
$f^{*}\left(v_{0} v_{1}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+6$.
Case (ii) $p_{1}<p_{2}<p_{3}$.
We define $f: V\left(S\left(K_{1,3}\right)\right) \rightarrow\left\{1,2,3, \ldots, 2\left(p_{1}+p_{2}+p_{3}\right)+7\right\}$ as follows:
$f\left(v_{0}\right)=2\left(p_{1}+p_{2}\right)+5, f\left(v_{j}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+6-4 j$, for $1 \leq j \leq p_{1}+1$,
$f\left(v_{j}^{(2)}\right)= \begin{cases}2\left(p_{1}+p_{2}\right)+5-4 j & 1 \leq j \leq p_{1}+1 \\ 2 p_{2}+3-2 j & p_{1}+2 \leq j \leq p_{2}+1 \text { and }\end{cases}$
$f\left(v_{j}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+5+2 j$, for $1 \leq j \leq p_{3}+1$.
The induced edge labeling is as follows:
$f^{*}\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+4-4 j$, for $1 \leq j \leq p_{1}$,
$f^{*}\left(v_{j}^{(2)} v_{j+1}^{(2)}\right)= \begin{cases}2\left(p_{1}+p_{2}\right)+3-4 j & 1 \leq j \leq p_{1} \\ 2 p_{2}+2-2 j & p_{1}+1 \leq j \leq p_{2},\end{cases}$
$f^{*}\left(v_{j}^{(3)} v_{j+1}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+6+2 j$, for $1 \leq j \leq p_{3}$,
$f^{*}\left(v_{0} v_{1}^{(1)}\right)=2\left(p_{1}+p_{2}\right)+4$,
$f^{*}\left(v_{0} v_{1}^{(2)}\right)=2\left(p_{1}+p_{2}\right)+3$ and $f^{*}\left(v_{0} v_{1}^{(3)}\right)=2\left(p_{1}+p_{2}\right)+6$.
Hence, f is a super geometric mean labeling of $S\left(K_{1,3}\right)$. Thus the graph the graph $S\left(K_{1,3}\right)$ is a super geometric mean graph.

A Super geometric mean labeling of $S\left(K_{1,3}\right)$ is shown in Figure 11.

Figure 11.

Theorem 2.12. $\widehat{G}\left(p_{1}, k_{1}, p_{2}, k_{2}, \ldots, k_{n-1}, p_{n}\right)$ is a super geometric mean graph with $p_{i} \neq 4$ for $2 \leq i \leq n$ and for any k_{i}.

Proof. Let $\left\{v_{j}^{(i)} ; 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq p_{i}\right\}$ be the vertices of the n number of cycles in \widehat{G} with $p_{i} \neq 4$ for $2 \leq i \leq n$.

Let $\left\{u_{j}^{(i)} ; 1 \leq i \leq n-1\right.$ and $\left.1 \leq j \leq k_{i}\right\}$ be the vertices of the $(n-1)$ number of paths in \widehat{G}. For $1 \leq i \leq n-1$, the $i^{t h}$ cycle and $i^{t h}$ path are identified by a vertex $v_{\left(\frac{p_{i}+3}{2}\right)}^{(i)}$ and $u_{1}^{(i)}$ while p_{i} is odd and $v_{\left(\frac{p_{i}+2}{2}\right)}^{(i)}$ and $u_{1}^{(i)}$ while p_{i} is even and the $i^{t h}$ path and the $(i+1)^{\text {th }}$ cycle are identified by a vertex $u_{k_{i}}^{(i)}$ and $v_{1}^{(i+1)}$ in \widehat{G}.

We define $f: V(\widehat{G}) \rightarrow\left\{1,2,3, \ldots, \sum_{i=1}^{n-1}\left(2 p_{i}+2 k_{i}\right)+2 p_{n}-3 n+3\right\}$ as follows:
When p_{1} is odd,

$$
\left.\begin{array}{l}
f\left(v_{j}^{(1)}\right)= \begin{cases}1 & j=1 \\
4 j-4 & 2 \leq j \leq\left\lfloor\frac{p_{1}}{2}\right\rfloor \\
4 j-5 & j=\left\lfloor\frac{p_{1}}{2}\right\rfloor+1 \\
4 j-6 & j=\left\lfloor\frac{p_{1}}{2}\right\rfloor+2\end{cases} \\
4 p_{1}+5-4 j
\end{array} \begin{array}{l}
\left\lfloor\frac{p_{1}}{2}\right\rfloor+3 \leq j \leq p_{1} \text { and }
\end{array}\right] \begin{aligned}
& \left.\left(u_{j}^{(1)}\right)=f\left(\frac{p_{1}}{2}\right\rfloor+2\right)+2 j-2, \quad \text { for } 2 \leq j \leq k_{1} .
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)= \begin{cases}4 j-2 & 1 \leq j \leq\left\lfloor\frac{p_{1}}{2}\right\rfloor \\
4 j-3 & j=\left\lfloor\frac{p_{1}}{2}\right\rfloor+1 \\
4 j-8 & j=\left\lfloor\frac{p_{1}}{2}\right\rfloor+2 \\
4 p_{1}+3-4 j & \left\lfloor\frac{p_{1}}{2}\right\rfloor+3 \leq j \leq p_{1}-1,\end{cases} \\
& f^{*}\left(v_{1}^{(1)} v_{p_{1}}^{(1)}\right)=3 \text { and } \\
& f^{*}\left(u_{j}^{(1)} u_{j+1}^{(1)}\right)=f\left(v_{\left\lfloor\frac{p_{1}}{2}\right\rfloor+2}^{(1)}\right)+2 j-1, \quad \text { for } 1 \leq j \leq k_{1}-1 .
\end{aligned}
$$

When p_{1} is even,

$$
\begin{aligned}
& f\left(v_{j}^{(1)}\right)= \begin{cases}1 & j=1 \\
4 j-4 & 2 \leq j \leq\left\lfloor\frac{p_{1}}{2}\right\rfloor+1 \\
4 p_{1}+5-4 j & \left\lfloor\frac{p_{1}}{2}\right\rfloor+2 \leq j \leq p_{1} \text { and }\end{cases} \\
& f\left(u_{j}^{(1)}\right)=f\left(v_{\left\lfloor\frac{p_{1}}{2}\right\rfloor+1}^{(1)}\right)+2 j-2, \quad \text { for } 2 \leq j \leq k_{1}
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{j}^{(1)} v_{j+1}^{(1)}\right)= \begin{cases}4 j-2 & 1 \leq j \leq\left\lfloor\frac{p_{1}}{2}\right\rfloor \\
4 p_{1}+3-4 j & \left\lfloor\frac{p_{1}}{2}\right\rfloor+1 \leq j \leq p_{1}-1,\end{cases} \\
& f^{*}\left(v_{1}^{(1)} v_{p_{1}}^{(1)}\right)=3 \text { and } \\
& f^{*}\left(u_{j}^{(1)} u_{j+1}^{(1)}\right)=f\left(v_{\left\lfloor\frac{p_{1}}{2}\right\rfloor+1}^{(1)}\right)+2 j-1, \quad \text { for } 1 \leq j \leq k_{1}-1 .
\end{aligned}
$$

For $2 \leq i \leq n-1$,
$f\left(u_{j}^{(i)}\right)= \begin{cases}f\left(v_{\left\lfloor\frac{p_{i}}{2}\right\rfloor+2}^{(i)}\right)+2 j-2 & 2 \leq j \leq k_{i} \text { and } p_{i} \text { is odd } \\ f\left(v_{\left\lfloor\frac{p_{i}}{2}\right\rfloor+1}^{(i)}\right)+2 j-2 & 2 \leq j \leq k_{i} \text { and } p_{i} \text { is even. }\end{cases}$
For $2 \leq i \leq n$,
$f\left(v_{j}^{(i)}\right)=\left\{\begin{array}{ll} \begin{cases}f\left(u_{k_{i-1}}^{(i-1)}\right)+4 j-6 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \text { and } p_{i} \text { is odd } \\ f\left(u_{k_{i-1}}^{(i-1)}\right)+4 p_{i}+5-4 j\end{cases} & \left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \leq j \leq p_{i} \text { and } p_{i} \text { is odd }\end{array}\right\} \begin{array}{ll}f\left(u_{k_{i-1}}^{(i-1)}\right)+4 j-6 & 2 \leq j \leq\left\lfloor\frac{p_{i}}{2}\right\rfloor \text { and } p_{i} \text { is even } \\ f\left(u_{k_{i-1}}^{(i-1)}\right)+4 j-5 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor+1 \text { and } p_{i} \text { is even } \\ f\left(u_{k_{i-1}}^{(i-1)}\right)+4 j-12 & j=\left\lfloor\frac{p_{i}}{2}\right\rfloor+2 \text { and } p_{i} \text { is even } \\ f\left(u_{k_{i-1}}^{(i-1)}\right)+4 p_{i}+5-4 j & \left\lfloor\begin{array}{l}\left\lfloor p_{i}\right. \\ \text { and } \\ \text { and } p_{i} \text { is even. } .\end{array}\right.\end{array}$
The induced edge labeling is as follows:
For $2 \leq i \leq n-1$,
$f^{*}\left(u_{j}^{(i)} u_{j+1}^{(i)}\right)= \begin{cases}f\left(v_{\left\lfloor\frac{p_{i}}{2}\right\rfloor+2}^{(i)}\right)+2 j-1 & 1 \leq j \leq k_{i}-1 \text { and } p_{i} \text { is odd } \\ f\left(v_{\left\lfloor\left\lfloor\frac{p_{i}}{2}\right\rfloor+1\right.}^{(i)}\right)+2 j-1 & 1 \leq j \leq k_{i}-1 \text { and } p_{i} \text { is even. }\end{cases}$
For $2 \leq i \leq n$,
$f^{*}\left(v_{1}^{(i)} v_{p_{i}}^{(i)}\right)=f\left(u_{k_{i-1}}^{(i-1)}\right)+3$.
Hence, f is a super geometric mean labeling of $\widehat{G}\left(p_{1}, k_{1}, p_{2}, k_{2}, \ldots, k_{n-1}, p_{n}\right)$. Thus the graph $\widehat{G}\left(p_{1}, k_{1}, p_{2}, k_{2}, \ldots, k_{n-1}, p_{n}\right)$ is a super geometric mean graph with $p_{i} \neq 4$ for $2 \leq i \leq n$ and for any k_{i}.

A Super geometric mean labeling of $\widehat{G}(9,5,12,3,6)$ is shown in Figure 12.

Figure 12.
Corollary 2.13. $G^{*}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is a super geometric mean graph with $p_{i} \neq$ 4 , for all $2 \leq i \leq n$.

Corollary 2.14. Every triangular snake is a super geometric mean graph.
Proof. By Corollary 2.13, if $p_{1}=p_{2}=p_{3}=\cdots=p_{n}=3$, then the triangular snake $T_{n} \cong G^{*}(3,3, \ldots, 3)$ is a super geometric mean graph.

Corollary 2.15. Tadpoles $T(n, k)$ is a super geometric mean graph, for $n \geq 3$ and $k \geq 2$.

Acknowledgments

The authors would like to thank the editor and anonymous reviewers for helpful suggestions which improved the presentation of the paper.

References

[1] C. Barrientos, Graceful labelings of chain and corona graphs, Bulletin ICA, 34 (2002), 17-26.
[2] A. Durai Baskar, S. Arockiaraj and B. Rajendran, F-Geometric mean labeling of some chain graphs and thorn graphs, Kragujevac Journal of Mathematics, 37(1) (2013), 163-186.
[3] A. Durai Baskar, S. Arockiaraj and B. Rajendran, Geometric Meanness of graphs obtained from paths, Utilitas Mathematica, 101 (2016), 45-68.
[4] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, $\mathbf{1 7}(2011)$.
[5] F. Harary, Graph theory, Addison Wesely, Reading Mass., 1972.
[6] R. Ponraj and D. Ramya, On super mean graphs of order ≥ 5, Bulletin of Pure and Applied Sciences, (Section E Maths and Statistics) 25E (2006), 143-148.
[7] R. Vasuki and A. Nagarajan, Some results on super mean graphs, International Journal of Mathematical Combinatorics, 3 (2009), 82-96.
[8] R. Vasuki and A. Nagarajan, On the construction of new classes of super mean graphs, Journal of Discrete Mathematical Sciences and Cryptography, 13(3) (2010), 277-290.
[9] R. Vasuki and A. Nagarajan, Further results on super mean graphs, Journal of Discrete Mathematical Sciences and Cryptography, (To appear).
A. Durai Baskar

Department of Mathematics
Mepco Schlenk Engineering College
Mepco Engineering College (PO) - 626005
Sivakasi
Tamilnadu
India.
E-mail: a.duraibaskr@gmail.com
S. Arockiaraj

Department of Mathematics
Kamarajar Government Arts College
Surandai - 627859
Tirunelveli
Tamilnadu
India.
E-mail: psarockiaraj@gmail.com

