Note on markaracter tables of finite groups

Hossein Shabani, Ali Reza Ashrafi and Modjtaba Ghorbani

(Received July 9, 2015; Revised November 20, 2016)

Abstract

The markaracter table of a finite group G is a matrix obtained from the mark table of G in which we select rows and columns corresponding to cyclic subgroups of G. This concept was introduced by a Japanese chemist Shinsaku Fujita in the context of stereochemistry and enumeration of molecules. In this note, the markaracter table of generalized quaternion groups and finite groups of order $p q r, p, q$ and r are prime numbers and $p \geq q \geq r$, are computed.

AMS 2010 Mathematics Subject Classification. 20C15, 192E10.
Key words and phrases. Markaracter table, finite group.

§1. Introduction

Let G be a finite group acting transitively on a finite set X. Then it is well-known that X is G-isomorphic to the set of left cosets $G / H=\{(e=$ $\left.\left.g_{1}\right) H, \cdots, g_{m} H\right\}$, for some subgroup H of G. Moreover, two transitive G-sets G / H and G / K are G-isomorphic if and only if H and K are conjugate. If U is a subgroup of G, then the mark $\beta_{X}(U)$ is defined as $\beta_{X}(U)=\left|F i x_{X}(U)\right|$, where $F_{i x}(U)=\{x \in X: u x=x, \forall u \in U\}$. Set $\operatorname{Sub}(G)=\{U \mid U \leq G\}$. The group G is acting on $S u b(G)$ by conjugation. Assume that the set of orbits of this action is $\Gamma_{G} / G=\left\{G_{i}^{G}\right\}_{i=1}^{r}$, where $G_{1}(=1), G_{2}, \ldots, G_{r}(=G)$ are representatives of the conjugacy classes of subgroups of G and $\left|G_{1}\right| \leq\left|G_{2}\right| \leq$ $\cdots \leq\left|G_{r}\right|$. The table of marks of G, is the square matrix $M(G)=\left(M_{i j}\right)_{i, j=1}^{r}$, where $M_{i j}=\beta_{G / G_{i}}\left(G_{j}\right)$ [3]. This table has substantial applications in isomer counting [1]. For the main properties of this matrix we refer to the interesting paper of Pfeiffer [14].

The matrix $M C(G)$ obtained from $M(G)$ in which we select rows and columns corresponding to cyclic subgroups of G is called the markaracter table of G. It is merit to mention here that the markaracter table of finite groups was firstly introduced by Shinsaku Fujita to discuss marks and characters of a finite group in a common basis. Fujita originally developed his theory
to be the foundation for enumeration of molecules [4]. We encourage the interested readers to consult papers $[5,6,7]$ for some applications in chemistry, the papers $[2,11]$ for applications in nanoscience and two recent books [8,9] for more information on this topic. We also refer to [10], for a history of Fujita's theory.

The cyclic group of order n and the generalized quaternion group of order 2^{n} are denoted by Z_{n} and $Q_{2^{n}}$, respectively. The number of rows in the markaracter table of a finite group G is denoted by $\operatorname{NRM}(G)$. Our other notations are standard and mainly taken from the standard books of group theory such as, e.g., [13, 15].

§2. Main Result

The aim of this section is to calculate generally the markaracter tables of groups of order $p, p q$ and $p q r$, where p, q and r are distinct prime numbers and $p>q>r$.

Theorem 2.1. Suppose G is a finite group, $M C(G)=\left(M_{i, j}\right)$ and G_{1}, G_{2}, \ldots, G_{r} are all non conjugated cyclic subgroups of G, where $\left|G_{1}\right| \leq\left|G_{2}\right| \leq$ $\cdots \leq\left|G_{r}\right|$. Then
a) The matrix $M C(G)$ is a lower triangular matrix,
b) $M_{i, j} \mid M_{1, j}$, for all $1 \leq i, j \leq r$,
c) $M_{i, 1}=\frac{|G|}{\left|G_{i}\right|}$, for all $1 \leq i \leq r$,
d $M_{i, i}=\left[N_{G}\left(G_{i}\right): G_{i}\right]$,
e if G_{i} is a normal subgroup of G then $M_{i j}$ is $|G| /\left|G_{i}\right|$ when $G_{j} \subseteq G_{i}$, and zero otherwise.

Proof. The proof follows from definition and the fact that $M_{i, j}=\beta_{G / G_{i}}\left(G_{j}\right)=$ \mid Fix $_{G / G_{i}}\left(G_{j}\right)\left|=\left|\left\{x G_{i} \mid G_{j} \subseteq x G_{i} x^{-1}\right\}\right|\right.$.

As an immediate consequence of Theorem 2.1, the markaracter table of a cyclic group G of prime order p can be computed as:

Table 1. The Markaracter Table of Cyclic Group of Order p, p is Prime.

$M C(G)$	G_{1}	G_{2}
G / G_{1}	p	0
G / G_{2}	1	1

where $G_{1}=1$ and $G_{2}=G$.
Suppose A and B are $m \times n$ and $p \times q$ matrices, respectively. The tensor product $A \otimes B$ of matrices A and B is the $m p \times n q$ block matrix:

$$
A \otimes B=\left[\begin{array}{lll}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right]
$$

Lemma 2.2. Suppose that G_{1} and G_{2} are two finite groups with co-prime orders. Then the markaracter table of $G_{1} \times G_{2}$ is obtained from the tensor product of $M C\left(G_{1}\right)$ and $M C\left(G_{2}\right)$ by permuting rows and columns suitably.

Proof. Let A, A_{1} and A_{2} be the set of all non-conjugate cyclic subgroups of $G_{1} \times G_{2}, G_{1}$ and G_{2}, respectively. Suppose that $U=\langle u\rangle \in A_{1}$ and $V=$ $\langle v\rangle \in A_{2}$, then $U \times V$ is a cyclic group generated by (u, v). So, $U \times V$ is conjugate with a cyclic subgroup in A. On the other hand, if $H=\langle h\rangle \in A$, then $h=(u, v)$ such that $u \in G_{1}, v \in G_{2}$ and $g c d(o(u), o(v))=1$. Then there are $U \in A_{1}$ and $V \in A_{2}$ conjugate with $\langle u\rangle$ and $\langle v\rangle$, respectively, such that $H=U \times V$. Therefore, $N R M\left(G_{1} \times G_{2}\right)=N R M\left(G_{1}\right) N R M\left(G_{2}\right)$ and the result follows from Theorem 2.1.

Let G be a cyclic group of order $n=p_{1}^{\alpha_{1}} \ldots a_{r}^{\alpha_{r}}$. Then Lemma 2.2 shows that $M C\left(Z_{n}\right)=M C\left(Z_{p_{1}^{\alpha_{1}}}\right) \otimes \ldots \otimes M C\left(Z_{p_{r}^{\alpha_{r}}}\right)$. Let p be a prime number and q be a positive integer such that $q \mid p-1$. Define the group $F_{p, q}$ to be presented by $F_{p, q}=\left\langle a, b: a^{p}=b^{q}=1, b^{-1} a b=a^{u}\right\rangle$, where u is an element of order q in multiplicative group \mathbb{Z}_{p}^{*} [13, Page 290]. It is easy to see that $F_{p, q}$ is a Frobenius group of order $p q$.

Theorem 2.3. Let p be a prime number and q be a positive integer such that $q \mid p-1$ and $q=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \ldots q_{s}^{\alpha_{s}}$ be its decomposition into distinct primes $q_{1}<q_{2}<\cdots<q_{s}$. Suppose $\tau(n)$ denotes the number of divisors of n and $d_{1}<\cdots<d_{\tau(q)}$ are positive divisors of q. Then the markaracter table of the Frobenius group $F_{p, q}$ can be computed as Table 2.

Proof. The group $F_{p, q}$ has order $p q$ and its non-conjugate cyclic subgroups are $G_{i}=\left\langle b^{k_{i}}\right\rangle$ where $k_{i}=\frac{q}{d_{i}}$ for $1 \leq i \leq \tau(q)$ and $G_{\tau(q)+1}=\langle a\rangle$. Set $M C\left(F_{p, q}\right)=\left(M_{i, j}\right)$. The first column of this table can be computed from Theorem 2.1 (c). The normalizer of $G_{i}, 1<i \leq \tau(q)$, is equal to $\langle b\rangle$ and so for each $1<i \leq \tau(q)$, we have $M_{i, i}=\frac{q}{d_{i}}=d_{\tau(q)-i+1}$. But by Sylow theorem, $G_{\tau(q)+1}$ is normal subgroup of $F_{p, q}$ and by using Theorem 2.1, $M_{\tau(q)+1,1}=$ $M_{\tau(q)+1, \tau(q)+1}=q$ and $M_{\tau(q)+1, j}=0$, where $2 \leq j \leq \tau(q)-1$.

Since $M_{i, j}=\left|\left\{x G_{i} \mid G_{j} \subseteq x G_{i} x^{-1}\right\}\right|, 1<j<i \leq \tau(q), G_{j} \subseteq x G_{i} x^{-1}$ if and only if $x \in G_{\tau(q)}$ and therefore it is sufficient to compute the number of cosets
of G_{i} in $G_{\tau(q)}$. Finally, this equals to $\frac{q}{d_{i}}$ if and only if $d_{j} \mid d_{i}$. This completes the proof.

Table 2. The Markaracter Table of the Frobenius Group $F_{p, q}$.

$M C\left(F_{p, q}\right)$	G_{1}	G_{2}	G_{3}	\ldots	G_{i}	\ldots	$G_{\tau(q)}$	$G_{\tau(q)+1}$
G / G_{1}	$p q$	0	0	\ldots	0	\ldots	0	0
G / G_{2}	$\frac{p q}{d_{2}}$	$d_{\tau(q)-1}$	0	\ldots	0	\ldots	0	0
G / G_{3}	$\frac{p q}{d_{3}}$	0	$d_{\tau(q)-2}$	\ldots	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\vdots
G / G_{i}	$\frac{p q}{d_{i}}$	$m_{i, 3}$	$m_{i, 4}$	\ldots	$d_{\tau(q)-i+1}$	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\vdots
$G / G_{\tau(q)}$	p	1	1	\ldots	1	\ldots	1	0
$G / G_{\tau(q)+1}$	q	0	0	\ldots	0	\ldots	0	q

where $m_{i, j}=\left\{\begin{array}{ll}\frac{q}{d_{i}}, & d_{j} \mid d_{i} \\ 0, & \text { o.w. }\end{array}\right.$.
Corollary 2.4. Let p and q be two prime numbers such that $p>q$ and G is isomorphic to $F_{p, q}$. Then the group $F_{p, q}$ has three non-conjugate subgroups $G_{1}=\langle i d\rangle, G_{2}=\langle a\rangle$ and $G_{3}=\langle b\rangle$ and the markaracter table of $F_{p, q}$ is as follows:

Table 3. The Markaracter Table of Non-abelian Group of Order $p q$.

$M C\left(F_{p, q}\right)$	G_{1}	G_{2}	G_{3}
G / G_{1}	$p q$	0	0
G / G_{2}	p	1	0
G / G_{3}	q	0	q

where $\left|G_{1}\right|=1,\left|G_{2}\right|=q$ and $\left|G_{3}\right|=p$.
Suppose $\mathfrak{G}(p, q, r)$ be the set of all groups of order $p q r$ where p, q and r are distinct prime numbers with $p>q>r$. Hölder [12] classified groups in $\mathfrak{G}(p, q, r)$. By his result, it can be proved that all groups of order pqr, $p>q>r$, are isomorphic to one of the following groups:

- $G_{1}=\mathbb{Z}_{p q r}$,
- $G_{2}=\mathbb{Z}_{r} \times F_{p, q}(q \mid p-1)$,
- $G_{3}=\mathbb{Z}_{q} \times F_{p, r}(r \mid p-1)$,
- $G_{4}=\mathbb{Z}_{p} \times F_{q, r}(r \mid q-1)$,
- $G_{5}=F_{p, q r}(q r \mid p-1)$,
- $G_{i+5}=\left\langle a, b, c: a^{p}=b^{q}=c^{r}=1, a b=b a, c^{-1} b c=b^{u}, c^{-1} a c=a^{v^{i}}\right\rangle$, where $r \mid p-1, q-1, o(u)=r$ in \mathbb{Z}_{q}^{*} and $o(v)=r$ in $\mathbb{Z}_{p}^{*}(1 \leq i \leq r-1)$.

Theorem 2.5. Let p, q and r be prime numbers such that $p>q>r$ and $G \in \mathfrak{G}(p, q, r)$. Then the markaracter table of G has one of the following shapes:

1. $M C(G)=M C\left(\mathbb{Z}_{p}\right) \otimes M C\left(\mathbb{Z}_{q}\right) \otimes M C\left(\mathbb{Z}_{r}\right)$,
2. $M C(G)=M C\left(F_{p, q}\right) \otimes M C\left(\mathbb{Z}_{r}\right)(q \mid p-1)$,
3. $M C(G)=M C\left(F_{p, r}\right) \otimes M C\left(\mathbb{Z}_{q}\right)(r \mid p-1)$,
4. $M C(G)=M C\left(F_{q, r}\right) \otimes M C\left(\mathbb{Z}_{p}\right)(r \mid q-1)$,
5. $M C(G)=M C\left(F_{p, q r}\right)(q r \mid p-1)$,
6. $M C(G)=M C\left(G_{i+5}\right)(r \mid p-1, q-1)$ and the markaracter table $M C\left(G_{i+5}\right)$ is as follows:

Table 4. The Markaracter Table of Group $G \cong G_{i+5}$ of Order $p q r$.

$M C(G)$	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}
G / H_{1}	$p q r$	0	0	0	0
G / H_{2}	$p q$	1	0	0	0
G / H_{3}	$p r$	0	$p r$	0	0
G / H_{4}	$q r$	0	0	$q r$	0
G / H_{5}	r	0	r	r	r

Proof. If $G \cong G_{1}$, then the markaracter table of G can be computed by Theorem 2.1. If G is isomorphic to G_{2}, G_{3} or G_{4} then by applying Lemma 2.2 and Corollary 2.4, the result is obtained. If G is isomorphic to G_{5} then the markaracter of G can be computed directly from Theorem 2.3. It is remained to compute the markaracter table of groups $G \cong G_{i+5}$.

Let $G=G_{i+5}$ for $1 \leq i \leq r-1$. It is easy to see that $\left\langle a^{\alpha}\right\rangle=\left\langle a^{\beta}\right\rangle$, $\left\langle b^{\delta}\right\rangle=\left\langle b^{\eta}\right\rangle,\left\langle c^{\theta}\right\rangle=\left\langle c^{\lambda}\right\rangle$ and $\left\langle b^{\mu} a^{\nu}\right\rangle=\left\langle b^{\rho} a^{\varphi}\right\rangle$, where $1 \leq \alpha, \beta, \nu, \varphi \leq p-1$, $1 \leq \delta, \eta, \mu, \rho \leq q-1$ and $1 \leq \theta, \lambda \leq r-1$. Therefore, all of non-conjugate cyclic subgroups of G are $\langle i d\rangle,\langle a\rangle,\langle b\rangle,\langle a b\rangle,\langle c\rangle$. Let $H_{1}=\langle i d\rangle, H_{2}=\langle c\rangle$, $H_{3}=\langle b\rangle, H_{4}=\langle a\rangle$ and $H_{5}=\langle a b\rangle$. One can easily check that $N_{G}\left(H_{2}\right)=H_{2}$ and $N_{G}\left(H_{3}\right)=N_{G}\left(H_{4}\right)=N_{G}\left(H_{5}\right)=G$ and so by applying Theorem 2.1, the entries of diagonal and the first column of markaracter table can be calculated. Since p, q, r are distinct prime numbers, $M_{3,2}=M_{4,2}=M_{4,3}=M_{5,2}=0$ and the proof is completed.

We notice that by our results, the markaracter table of cyclic groups $Z_{p q r}$, $p<q<r$ are primes, can be computed by Table 5.

Table 5. The Markaracter Table of Cyclic Groups $G \cong Z_{p q r}, p<q<r$ are Primes.

$M C(G)$	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}
G / H_{1}	$p q r$	0	0	0	0
G / H_{2}	$p q$	$p q$	0	0	0
G / H_{3}	$p r$	0	$p r$	0	0
G / H_{4}	$q r$	0	0	$q r$	0
G / H_{5}	r	0	r	r	r

In the end of this paper, we compute the markaracter table of the generalized quaternion groups. For $n \geq 3$, the generalized quaternion groups can be defined as:

$$
Q_{2^{n}}=\frac{\left(Z_{2^{n-1}} \rtimes Z_{4}\right)}{\left\langle\left(2^{n-2}, 2\right)\right\rangle},
$$

where the semi-direct product has group law $(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right)$. The order of $Q_{2^{n}}$ is equal to 2^{n}.
Theorem 2.6. The markaracter table of $G \cong Q_{2^{n}}$ is as follows:

$M C\left(Q_{2^{n}}\right)$	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	\cdots	G_{r}
G / G_{1}	2^{n}	0	0	0	0	0	\cdots	0
G / G_{2}	2^{n-1}	2^{n-1}	0	0	0	0	\cdots	0
G / G_{3}	2^{n-2}	2^{n-2}	2^{n-2}	0	0	0	\cdots	0
G / G_{4}	2^{n-2}	2^{n-2}	0	2	0	0	\cdots	0
G / G_{5}	2^{n-2}	2^{n-2}	0	0	2	0	\cdots	0
G / G_{6}	2^{n-3}	2^{n-3}	2^{n-3}	0	0	2^{n-3}	\cdots	0
\vdots	\ddots	\vdots						
G / G_{r}	2	2	2	0	0	2	\cdots	2

where r is the number of non-conjugate subgroups of G.
Proof. Suppose $a=\overline{(1,0)}$ and $b=\overline{(0,1)}$. It is well-known that,

- $|\langle a\rangle|=2^{n-1}$ and $|\langle b\rangle|=4$,
- $a^{2^{n-2}}=b^{2}, b a b^{-1}=a^{-1}$ and for all $g \in Q_{2^{n}} \backslash\langle a\rangle, g$ has order 4 and $g a g^{-1}=a^{-1}$,
- the elements of this group have the forms a^{x} or $a^{y} b$ where $x, y \in \mathbb{Z}$,
- the $2^{n-2}+3$ conjugacy classes of $Q_{2^{n}}$ with representatives $1, a, a^{2}, \ldots$, $a^{2^{n-2}-1}, a^{2^{n-2}}, b, a b$.

Therefore, all non-conjugate cyclic subgroups of $Q_{2^{n}}$ are $\langle b\rangle,\langle a b\rangle$ and all nonconjugate subgroups of $\langle a\rangle$. Note that the table obtained from removing the rows and columns 3 and 4 , is equal to the markaracter table of $Z_{2^{n-1}}$.

Acknowledgments

The authors are indebted to the referee for his/her suggestions and helpful remarks. The research of the first and second authors are partially supported by the University of Kashan under grant no 159020/183 and the third author is partially supported by Shahid Rajaee Teacher Training University under grant no 29226.

References

[1] C. Alden Mead, Table of marks and double cosets in isomer counting, J. Am. Chem. Soc. 109 (1987), 2130-2137.
[2] A. R. Ashrafi and M. Ghorbani, A note on markaracter tables of finite groups, MATCH Commun. Math. Comput. Chem. 59 (2008), 595-603.
[3] W. Burnside, Theory of groups of finite order, The University Press, Cambridge, 1987.
[4] S. Fujita, Dominant representations and a markaracter table for a group of finite order, Theor. Chim. Acta 91 (1995), 291-314.
[5] S. Fujita, Markaracter tables and Q-conjugacy character tables for cyclic groups. an application to combinatorial enumeration, Bull. Chem. Soc. Jpn. 71 (1998), 1587-1596.
[6] S. Fujita, The unit-subduced-cycle-index methods and the characteristicmonomial method. Their relationship as group-theoretical tools for chemical combinatorics, J. Math. Chem. 30 (2001), 249-270.
[7] S. Fujita and S. El-Basil, Graphical models of characters of groups, J. Math. Chem. 33 (2003), 255-277.
[8] S. Fujita, Diagrammatical Approach to Molecular Simmetry and Enumeration of Stereoisomers, Mathematical Chemistry Monographs, No. 4, University of Kragujevac, 2007.
[9] S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and Chemical Compounds, Mathematical Chemistry Monographs, No. 15, University of Kragujevac, 2013.
[10] S. Fujita, Type-itemized enumeration of RS-stereoisomers of octahedral complexes, Iranian J. Math. Chem. 7 (2016), 113-153.
[11] M. Ghorbani, Remarks on markaracter table of fullerene graphs, J. Comput. Theor. Nanosci. 11 (2014), 363-379.
[12] H. Hölder, Die Gruppen der Ordnungen $p^{3}, p q^{2}, p q r, p^{4}$, Math. Ann. XLIII (1893), 371-410.
[13] G. James and M. Liebeck, Representations and characters of groups, Cambridge University Press, Cambridge, 1993.
[14] G. Pfeiffer, The subgroups of M_{24} or how to compute a table of marks, Experiment. Math. 6 (1997), 247-270.
[15] H. Shabani, A. R. Ashrafi and M. Ghorbani, Rational Character Table of some Finite Groups, J. Algebraic Sys. 32 (2016), 151-169.

Hossein Shabani
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran
E-mail: shabai@grad.kashanu.ac.ir
Ali Reza Ashrafi
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran
E-mail: ashrafi@kashanu.ac.ir
Mosjtaba Ghorbani
Department of Mathematics, Faculty of Science, Shahid Rajaee Teachers Training University, Tehran, I. R. Iran
E-mail: mghorbani@srttu.edu

