Note on markaracter tables of finite groups

Hossein Shabani, Ali Reza Ashrafi and Modjtaba Ghorbani

(Received July 9, 2015; Revised November 20, 2016)

Abstract. The markaracter table of a finite group G is a matrix obtained from the mark table of G in which we select rows and columns corresponding to cyclic subgroups of G. This concept was introduced by a Japanese chemist Shinsaku Fujita in the context of stereochemistry and enumeration of molecules. In this note, the markaracter table of generalized quaternion groups and finite groups of order pqr, p, q and r are prime numbers and $p \ge q \ge r$, are computed.

AMS 2010 Mathematics Subject Classification. 20C15, 192E10.

Key words and phrases. Markaracter table, finite group.

§1. Introduction

Let G be a finite group acting transitively on a finite set X. Then it is well-known that X is G-isomorphic to the set of left cosets $G/H = \{(e = g_1)H, \dots, g_mH\}$, for some subgroup H of G. Moreover, two transitive G-sets G/H and G/K are G-isomorphic if and only if H and K are conjugate. If U is a subgroup of G, then the mark $\beta_X(U)$ is defined as $\beta_X(U) = |Fix_X(U)|$, where $Fix_X(U) = \{x \in X : ux = x, \forall u \in U\}$. Set $Sub(G) = \{U|U \leq G\}$. The group G is acting on Sub(G) by conjugation. Assume that the set of orbits of this action is $\Gamma_G/G = \{G_i^G\}_{i=1}^r$, where $G_1(=1), G_2, \dots, G_r(=G)$ are representatives of the conjugacy classes of subgroups of G and $|G_1| \leq |G_2| \leq$ $\dots \leq |G_r|$. The **table of marks** of G, is the square matrix $M(G) = (M_{ij})_{i,j=1}^r$, where $M_{ij} = \beta_{G/G_i}(G_j)$ [3]. This table has substantial applications in isomer counting [1]. For the main properties of this matrix we refer to the interesting paper of Pfeiffer [14].

The matrix MC(G) obtained from M(G) in which we select rows and columns corresponding to cyclic subgroups of G is called the **markaracter table** of G. It is merit to mention here that the markaracter table of finite groups was firstly introduced by Shinsaku Fujita to discuss marks and characters of a finite group in a common basis. Fujita originally developed his theory to be the foundation for enumeration of molecules [4]. We encourage the interested readers to consult papers [5, 6, 7] for some applications in chemistry, the papers [2, 11] for applications in nanoscience and two recent books [8, 9] for more information on this topic. We also refer to [10], for a history of Fujita's theory.

The cyclic group of order n and the generalized quaternion group of order 2^n are denoted by Z_n and Q_{2^n} , respectively. The number of rows in the markaracter table of a finite group G is denoted by NRM(G). Our other notations are standard and mainly taken from the standard books of group theory such as, e.g., [13, 15].

§2. Main Result

The aim of this section is to calculate generally the markaracter tables of groups of order p, pq and pqr, where p, q and r are distinct prime numbers and p > q > r.

Theorem 2.1. Suppose G is a finite group, $MC(G) = (M_{i,j})$ and G_1, G_2, \ldots, G_r are all non conjugated cyclic subgroups of G, where $|G_1| \leq |G_2| \leq \cdots \leq |G_r|$. Then

- a) The matrix MC(G) is a lower triangular matrix,
- b) $M_{i,j}|M_{1,j}$, for all $1 \le i, j \le r$,
- c) $M_{i,1} = \frac{|G|}{|G_i|}$, for all $1 \le i \le r$,
- $d M_{i,i} = [N_G(G_i) : G_i],$
- e if G_i is a normal subgroup of G then M_{ij} is $|G|/|G_i|$ when $G_j \subseteq G_i$, and zero otherwise.

Proof. The proof follows from definition and the fact that $M_{i,j} = \beta_{G/G_i}(G_j) = |Fix_{G/G_i}(G_j)| = |\{xG_i \mid G_j \subseteq xG_ix^{-1}\}|.$

As an immediate consequence of Theorem 2.1, the markaracter table of a cyclic group G of prime order p can be computed as:

Table 1. The Markaracter Table of Cyclic Group of Order p, p is Prime.

MC(G)	G_1	G_2
G/G_1	p	0
G/G_2	1	1

134

where $G_1 = 1$ and $G_2 = G$.

Suppose A and B are $m \times n$ and $p \times q$ matrices, respectively. The tensor product $A \otimes B$ of matrices A and B is the $mp \times nq$ block matrix:

$$A \otimes B = \left[\begin{array}{ccc} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{array} \right].$$

Lemma 2.2. Suppose that G_1 and G_2 are two finite groups with co-prime orders. Then the markaracter table of $G_1 \times G_2$ is obtained from the tensor product of $MC(G_1)$ and $MC(G_2)$ by permuting rows and columns suitably.

Proof. Let A, A_1 and A_2 be the set of all non-conjugate cyclic subgroups of $G_1 \times G_2$, G_1 and G_2 , respectively. Suppose that $U = \langle u \rangle \in A_1$ and $V = \langle v \rangle \in A_2$, then $U \times V$ is a cyclic group generated by (u, v). So, $U \times V$ is conjugate with a cyclic subgroup in A. On the other hand, if $H = \langle h \rangle \in A$, then h = (u, v) such that $u \in G_1$, $v \in G_2$ and gcd(o(u), o(v)) = 1. Then there are $U \in A_1$ and $V \in A_2$ conjugate with $\langle u \rangle$ and $\langle v \rangle$, respectively, such that $H = U \times V$. Therefore, $NRM(G_1 \times G_2) = NRM(G_1)NRM(G_2)$ and the result follows from Theorem 2.1.

Let G be a cyclic group of order $n = p_1^{\alpha_1} \dots a_r^{\alpha_r}$. Then Lemma 2.2 shows that $MC(Z_n) = MC(Z_{p_1^{\alpha_1}}) \otimes \dots \otimes MC(Z_{p_r^{\alpha_r}})$. Let p be a prime number and q be a positive integer such that q|p-1. Define the group $F_{p,q}$ to be presented by $F_{p,q} = \langle a, b : a^p = b^q = 1, b^{-1}ab = a^u \rangle$, where u is an element of order q in multiplicative group \mathbb{Z}_p^* [13, Page 290]. It is easy to see that $F_{p,q}$ is a Frobenius group of order pq.

Theorem 2.3. Let p be a prime number and q be a positive integer such that q|p-1 and $q = q_1^{\alpha_1}q_2^{\alpha_2}\ldots q_s^{\alpha_s}$ be its decomposition into distinct primes $q_1 < q_2 < \cdots < q_s$. Suppose $\tau(n)$ denotes the number of divisors of n and $d_1 < \cdots < d_{\tau(q)}$ are positive divisors of q. Then the markaracter table of the Frobenius group $F_{p,q}$ can be computed as Table 2.

Proof. The group $F_{p,q}$ has order pq and its non-conjugate cyclic subgroups are $G_i = \langle b^{k_i} \rangle$ where $k_i = \frac{q}{d_i}$ for $1 \leq i \leq \tau(q)$ and $G_{\tau(q)+1} = \langle a \rangle$. Set $MC(F_{p,q}) = (M_{i,j})$. The first column of this table can be computed from Theorem 2.1 (c). The normalizer of G_i , $1 < i \leq \tau(q)$, is equal to $\langle b \rangle$ and so for each $1 < i \leq \tau(q)$, we have $M_{i,i} = \frac{q}{d_i} = d_{\tau(q)-i+1}$. But by Sylow theorem, $G_{\tau(q)+1}$ is normal subgroup of $F_{p,q}$ and by using Theorem 2.1, $M_{\tau(q)+1,1} =$ $M_{\tau(q)+1,\tau(q)+1} = q$ and $M_{\tau(q)+1,j} = 0$, where $2 \leq j \leq \tau(q) - 1$.

Since $M_{i,j} = |\{xG_i \mid G_j \subseteq xG_ix^{-1}\}|, 1 < j < i \le \tau(q), G_j \subseteq xG_ix^{-1}$ if and only if $x \in G_{\tau(q)}$ and therefore it is sufficient to compute the number of cosets of G_i in $G_{\tau(q)}$. Finally, this equals to $\frac{q}{d_i}$ if and only if $d_j|d_i$. This completes the proof.

$MC(F_{p,q})$	G_1	G_2	G_3		G_i		$G_{\tau(q)}$	$G_{\tau(q)+1}$
G/G_1	pq	0	0		0		0	0
G/G_2	$\frac{pq}{d_2}$	$d_{\tau(q)-1}$	0		0		0	0
G/G_3	$\frac{p\bar{q}}{d_3}$	0	$d_{\tau(q)-2}$		0		0	0
:	:	÷	÷	·	•	· · .	÷	÷
G/G_i	$\frac{pq}{d_i}$	$m_{i,3}$	$m_{i,4}$		$d_{\tau(q)-i+1}$		0	0
:	÷	÷	÷	·		· • .	:	÷
$G/G_{\tau(q)}$	p	1	1		1		1	0
$G/G_{\tau(q)+1}$	q	0	0	•••	0	•••	0	q

Table 2. The Markaracter Table of the Frobenius Group $F_{p,q}$.

where $m_{i,j} = \left\{ \begin{array}{ll} \frac{q}{d_i}, & d_j | d_i \\ 0, & o.w. \end{array} \right.$

Corollary 2.4. Let p and q be two prime numbers such that p > q and G is isomorphic to $F_{p,q}$. Then the group $F_{p,q}$ has three non-conjugate subgroups $G_1 = \langle id \rangle$, $G_2 = \langle a \rangle$ and $G_3 = \langle b \rangle$ and the markaracter table of $F_{p,q}$ is as follows:

Table 3. The Markaracter Table of Non-abelian Group of Order pq.

$MC(F_{p,q})$	G_1	G_2	G_3
G/G_1	pq	0	0
G/G_2	p	1	0
G/G_3	q	0	q

where $|G_1| = 1$, $|G_2| = q$ and $|G_3| = p$.

Suppose $\mathfrak{G}(p,q,r)$ be the set of all groups of order pqr where p, q and r are distinct prime numbers with p > q > r. Hölder [12] classified groups in $\mathfrak{G}(p,q,r)$. By his result, it can be proved that all groups of order pqr, p > q > r, are isomorphic to one of the following groups:

- $G_1 = \mathbb{Z}_{pqr}$,
- $G_2 = \mathbb{Z}_r \times F_{p,q}(q|p-1),$
- $G_3 = \mathbb{Z}_q \times F_{p,r}(r|p-1),$
- $G_4 = \mathbb{Z}_p \times F_{q,r}(r|q-1),$
- $G_5 = F_{p,qr}(qr|p-1),$

• $G_{i+5} = \langle a, b, c : a^p = b^q = c^r = 1, ab = ba, c^{-1}bc = b^u, c^{-1}ac = a^{v^i} \rangle$, where r|p-1, q-1, o(u) = r in \mathbb{Z}_q^* and o(v) = r in \mathbb{Z}_p^* $(1 \le i \le r-1)$.

Theorem 2.5. Let p, q and r be prime numbers such that p > q > r and $G \in \mathfrak{G}(p,q,r)$. Then the markaracter table of G has one of the following shapes:

- 1. $MC(G) = MC(\mathbb{Z}_p) \otimes MC(\mathbb{Z}_q) \otimes MC(\mathbb{Z}_r),$
- 2. $MC(G) = MC(F_{p,q}) \otimes MC(\mathbb{Z}_r)(q|p-1),$
- 3. $MC(G) = MC(F_{p,r}) \otimes MC(\mathbb{Z}_q)(r|p-1),$
- 4. $MC(G) = MC(F_{q,r}) \otimes MC(\mathbb{Z}_p)(r|q-1),$
- 5. $MC(G) = MC(F_{p,qr})(qr|p-1),$
- 6. $MC(G) = MC(G_{i+5})$ (r|p-1, q-1) and the markaracter table $MC(G_{i+5})$ is as follows:

Table 4. The Markaracter Table of Group $G \cong G_{i+5}$ of Order pqr.

MC(G)	H_1	H_2	H_3	H_4	H_5
G/H_1	pqr	0	0	0	0
G/H_2	pq	1	0	0	0
G/H_3	pr	0	pr	0	0
G/H_4	qr	0	0	qr	0
G/H_5	r	0	r	r	r

Proof. If $G \cong G_1$, then the markaracter table of G can be computed by Theorem 2.1. If G is isomorphic to G_2 , G_3 or G_4 then by applying Lemma 2.2 and Corollary 2.4, the result is obtained. If G is isomorphic to G_5 then the markaracter of G can be computed directly from Theorem 2.3. It is remained to compute the markaracter table of groups $G \cong G_{i+5}$.

Let $G = G_{i+5}$ for $1 \leq i \leq r-1$. It is easy to see that $\langle a^{\alpha} \rangle = \langle a^{\beta} \rangle$, $\langle b^{\delta} \rangle = \langle b^{\eta} \rangle$, $\langle c^{\theta} \rangle = \langle c^{\lambda} \rangle$ and $\langle b^{\mu}a^{\nu} \rangle = \langle b^{\rho}a^{\varphi} \rangle$, where $1 \leq \alpha, \beta, \nu, \varphi \leq p-1$, $1 \leq \delta, \eta, \mu, \rho \leq q-1$ and $1 \leq \theta, \lambda \leq r-1$. Therefore, all of non-conjugate cyclic subgroups of G are $\langle id \rangle$, $\langle a \rangle$, $\langle b \rangle$, $\langle ab \rangle$, $\langle c \rangle$. Let $H_1 = \langle id \rangle$, $H_2 = \langle c \rangle$, $H_3 = \langle b \rangle$, $H_4 = \langle a \rangle$ and $H_5 = \langle ab \rangle$. One can easily check that $N_G(H_2) = H_2$ and $N_G(H_3) = N_G(H_4) = N_G(H_5) = G$ and so by applying Theorem 2.1, the entries of diagonal and the first column of markaracter table can be calculated. Since p, q, r are distinct prime numbers, $M_{3,2} = M_{4,2} = M_{4,3} = M_{5,2} = 0$ and the proof is completed.

We notice that by our results, the markaracter table of cyclic groups Z_{pqr} , p < q < r are primes, can be computed by Table 5.

Table 5. The Markaracter	Table of Cyclic Groups $G \cong Z_{pqr}, p < q < r$
are Primes.	

MC(G)	H_1	H_2	H_3	H_4	H_5
G/H_1	pqr	0	0	0	0
G/H_2	pq	pq	0	0	0
G/H_3	pr	0	pr	0	0
G/H_4	qr	0	0	qr	0
G/H_5	r	0	r	r	r

In the end of this paper, we compute the markaracter table of the generalized quaternion groups. For $n \ge 3$, the generalized quaternion groups can be defined as:

$$Q_{2^n} = \frac{(Z_{2^{n-1}} \rtimes Z_4)}{\langle (2^{n-2}, 2) \rangle},$$

where the semi-direct product has group law $(a, b)(c, d) = (a + (-1)^{b}c, b + d)$. The order of $Q_{2^{n}}$ is equal to 2^{n} .

$MC(Q_{2^n})$	G_1	G_2	G_3	G_4	G_5	G_6		G_r
G/G_1	2^n	0	0	0	0	0	•••	0
G/G_2	2^{n-1}	2^{n-1}	0	0	0	0	• • •	0
G/G_3	2^{n-2}	2^{n-2}	2^{n-2}	0	0	0	• • •	0
G/G_4	2^{n-2}	2^{n-2}	0	2	0	0	• • •	0
G/G_5	2^{n-2}	2^{n-2}	0	0	2	0	•••	0
G/G_6	2^{n-3}	2^{n-3}	2^{n-3}	0	0	2^{n-3}	•••	0
:	÷	÷	÷	÷	÷	÷	•••	÷
G/G_r	2	2	2	0	0	2	•••	2

Theorem 2.6. The markaracter table of $G \cong Q_{2^n}$ is as follows:

where r is the number of non-conjugate subgroups of G.

Proof. Suppose $a = \overline{(1,0)}$ and $b = \overline{(0,1)}$. It is well-known that,

- $|\langle a \rangle| = 2^{n-1}$ and $|\langle b \rangle| = 4$,
- $a^{2^{n-2}} = b^2$, $bab^{-1} = a^{-1}$ and for all $g \in Q_{2^n} \setminus \langle a \rangle$, g has order 4 and $gag^{-1} = a^{-1}$,
- the elements of this group have the forms a^x or $a^y b$ where $x, y \in \mathbb{Z}$,
- the $2^{n-2} + 3$ conjugacy classes of Q_{2^n} with representatives $1, a, a^2, \ldots, a^{2^{n-2}-1}, a^{2^{n-2}}, b, ab$.

Therefore, all non-conjugate cyclic subgroups of Q_{2^n} are $\langle b \rangle$, $\langle ab \rangle$ and all nonconjugate subgroups of $\langle a \rangle$. Note that the table obtained from removing the rows and columns 3 and 4, is equal to the markaracter table of $Z_{2^{n-1}}$.

Acknowledgments

The authors are indebted to the referee for his/her suggestions and helpful remarks. The research of the first and second authors are partially supported by the University of Kashan under grant no 159020/183 and the third author is partially supported by Shahid Rajaee Teacher Training University under grant no 29226.

References

- C. Alden Mead, Table of marks and double cosets in isomer counting, J. Am. Chem. Soc. 109 (1987), 2130–2137.
- [2] A. R. Ashrafi and M. Ghorbani, A note on markaracter tables of finite groups, MATCH Commun. Math. Comput. Chem. 59 (2008), 595–603.
- [3] W. Burnside, Theory of groups of finite order, The University Press, Cambridge, 1987.
- [4] S. Fujita, Dominant representations and a markaracter table for a group of finite order, Theor. Chim. Acta 91 (1995), 291–314.
- [5] S. Fujita, Markaracter tables and Q-conjugacy character tables for cyclic groups. an application to combinatorial enumeration, Bull. Chem. Soc. Jpn. 71 (1998), 1587–1596.
- [6] S. Fujita, The unit-subduced-cycle-index methods and the characteristicmonomial method. Their relationship as group-theoretical tools for chemical combinatorics, J. Math. Chem. **30** (2001), 249–270.
- [7] S. Fujita and S. El-Basil, Graphical models of characters of groups, J. Math. Chem. 33 (2003), 255–277.
- [8] S. Fujita, Diagrammatical Approach to Molecular Simmetry and Enumeration of Stereoisomers, Mathematical Chemistry Monographs, No. 4, University of Kragujevac, 2007.
- [9] S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and Chemical Compounds, Mathematical Chemistry Monographs, No. 15, University of Kragujevac, 2013.
- [10] S. Fujita, Type-itemized enumeration of RS-stereoisomers of octahedral complexes, Iranian J. Math. Chem. 7 (2016), 113–153.
- [11] M. Ghorbani, Remarks on markaracter table of fullerene graphs, J. Comput. Theor. Nanosci. 11 (2014), 363–379.
- [12] H. Hölder, Die Gruppen der Ordnungen p^3, pq^2, pqr, p^4 , Math. Ann. XLIII (1893), 371–410.

- [13] G. James and M. Liebeck, Representations and characters of groups, Cambridge University Press, Cambridge, 1993.
- [14] G. Pfeiffer, The subgroups of M₂₄ or how to compute a table of marks, Experiment. Math. 6 (1997), 247–270.
- [15] H. Shabani, A. R. Ashrafi and M. Ghorbani, Rational Character Table of some Finite Groups, J. Algebraic Sys. 3 2 (2016), 151–169.

Hossein Shabani Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran *E-mail*: shabai@grad.kashanu.ac.ir

Ali Reza Ashrafi Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran *E-mail*: ashrafi@kashanu.ac.ir

Mosjtaba Ghorbani Department of Mathematics, Faculty of Science, Shahid Rajaee Teachers Training University, Tehran, I. R. Iran *E-mail*: mghorbani@srttu.edu