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Even vertex odd mean labeling of transformed trees

G. Pooranam, R. Vasuki and S. Suganthi

(Received March 6, 2015; Revised June 30, 2016)

Abstract. A graph G with p vertices and q edges is said to have an even
vertex odd mean labeling if there exists an injective function f : V (G) →
{0, 2, 4, . . . , 2q−2, 2q} such that the induced map f∗E(G) → {1, 3, 5, . . . , 2q−1}
defined by f∗(uv) = f(u)+f(v)

2
is a bijection. A graph that admits an even vertex

odd mean labeling is called an even vertex odd mean graph. In this paper, we
prove that every Tp-tree T , T@Pn, T@2Pn, T ⊙Kn, T@Cn and T ◦̂Cn are even
vertex odd mean graphs.
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§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple
graph. Let G(V,E) be a graph with p vertices and q edges. For notations and
terminology we follow [4].

Path on n vertices is denoted by Pn and a cycle on n vertices is denoted by
Cn. The corona G1 ⊙ G2 of the graphs G1 and G2 is obtained by taking one
copy of G1 with p vertices and p copies of G2 and joining the ith vertex of G1

to every vertex of the ith copy of G2.

Let T be a tree and u0 and v0 be two adjacent vertices in V (T ). Let there be
two pendant vertices u and v in T such that the length of u0−u path is equal to
the length of v0−v path. If the edge u0v0 is deleted from T and u, v are joined
by an edge uv, then such a transformation of T is called an elementary parallel
transformation (or an EPT) and the edge u0v0 is called a transformable edge.
If by a sequence of EPT’s T can be reduced to a path, then T is called a Tp-
tree (transformed tree) and any such sequence regarded as a composition of
mappings (EPT’s) denoted by P, is called a parallel transformation of T. The
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path, the image of T under P is denoted as P (T ). A Tp-tree and a sequence
of two EPT’s reducing it to a path are shown in Figure 1.
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Figure 1. A Tp-tree and a sequence of two EPT’s reducing it to a path.

Let T be a Tp-tree with m vertices. Let T@Pn be the graph obtained from
T and m copies of Pn by identifying a pendant vertex of ith copy of Pn with
ith vertex of T. Let T@2Pn be the graph obtained from T by identifying the
pendant vertices of two vertex disjoint paths of equal lengths n − 1 at each
vertex of the Tp-tree T. Let T@Cn be a graph obtained from T and m copies
of Cn by identifying a vertex of ith copy of Cn with ith vertex of T. Let T ◦̂Cn

be a graph obtained from T and m copies of Cn by joining a vertex of ith copy
of Cn with ith vertex of T by an edge.

The graceful labelings of graphs was first introduced by Rosa, in 1967 [1]
and R.B. Gnanajothi introduced odd graceful graphs [3]. The concept of mean
labeling was introduced and meanness of some standard graphs was studied
by S. Somasundaram and R. Ponraj [7]. Further some more results on mean
graphs are discussed in [6, 8, 9]. A graph G is said to be a mean graph if
there exists an injective function f from V (G) to {0, 1, 2, . . . , q} such that the

induced map f∗ from E(G) to {1, 2, 3, . . . , q} defined by f∗(uv) =
⌈
f(u)+f(v)

2

⌉
is a bijection.

In [5], K. Manickam and M. Marudai introduced odd mean labeling of a
graph. A graph G is said to be odd mean if there exists an injective function f
from V (G) to {0, 1, 2, 3, . . . , 2q− 1} such that the induced map f∗ from E(G)

to {1, 3, 5, . . . , 2q − 1} defined by f∗(uv) =
⌈
f(u)+f(v)

2

⌉
is a bijection. Further

some new families of odd mean graphs are discussed in [11, 12]. The concept
of even mean labeling was introduced and studied by B. Gayathri and R. Gopi
[2]. A function f is called an even mean labeling of a graph G with p vertices
and q edges, if f is an injection from the vertices of G to the set {2, 4, . . . , 2q}
such that when each edge uv is assigned the label f(u)+f(v)

2 , then the resulting
edge labels are distinct. A graph which admits an even mean labeling is said
to be even mean graph.

Motivated by these, R. Vasuki et al. introduced the concept of even vertex
odd mean labeling [10] and discussed the even vertex odd mean behaviour
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of some standard graphs. A graph G with p vertices and q edges is said to
have an even vertex odd mean labeling if there exists an injective function
f : V (G) → {0, 2, 4, . . . , 2q − 2, 2q} such that the induced map f∗E(G) →
{1, 3, 5, . . . , 2q − 1} defined by f∗(uv) = f(u)+f(v)

2 is a bijection. A graph that
admits an even vertex odd mean labeling is called an even vertex odd mean
graph.

An even vertex odd mean labeling of P6 ⊙K1 is shown in Figure 2.
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Figure 2. An even vertex odd mean labeling of P6 ⊙K1.

In this paper, we prove that every Tp-tree T, T@Pn, T@2Pn, T ⊙Kn, T@Cn

and T ◦̂Cn are even vertex odd mean graphs.

§2. Even vertex odd mean graphs

Theorem 2.1. Every Tp-tree T is an even vertex odd mean graph.

Proof. Let T be a Tp-tree with m-vertices. By the definition of a Tp-tree there
exists a parallel transformation P of T such that for the path P (T ), we have
(i) V (P (T )) = V (T ) and (ii) E(P (T )) = (E(T ) − Ed) ∪ Ep, where Ed is the
set of edges deleted from T and Ep is the set of edges newly added through
the sequence P = (P1, P2, . . . , Pk) of the EPT’s P used to arrive at the path
P (T ). Clearly Ed and Ep have the same number of edges. Now, denote the
vertices of P (T ) successively as v1, v2, v3, . . . , vm starting from one pendant
vertex of P (T ) right upto the other.

Define f : V (T ) → {0, 2, . . . , 2q − 2, 2q = 2(m− 1)} as follows:

f(vi) = 2i− 2, 1 ≤ i ≤ m.

Let vivj be an edge of T for some indices i and j, 1 ≤ i ≤ j ≤ m and let
P1 be the EPT that deletes this edge and adds the edge vi+tvj−t where t is
the distance from vi to vi+1 and also the distance from vj to vj−t. Let P be a
parallel transformation of T that contains P1 as one of the constituent EPT’s.
Since vi+tvj−t is an edge of the path P (T ), it follows that i + t + 1 = j − t,
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which implies j = i+ 2t+ 1. The induced label of the edge vivj is given by

f∗(vivj) = f∗(vivi+2t+1)

=
f(vi) + f(vi+2t+1)

2
= 2(i+ t)− 1 and

f∗(vi+tvj−t) = f∗(vi+tvi+t+1)

=
f(vi+t) + f(vi+t+1)

2
= 2(i+ t)− 1

Therefore, f∗(vivj) = f∗(vi+tvj−t).

For each vertex label f, the induced edge label f∗ is defined as follows:

f∗(vivi+1) = 2i− 1, 1 ≤ i ≤ m− 1.

It can be verified that f is an even vertex odd mean labeling. Hence, every
TP -tree T is an even vertex odd mean graph.

For example, an even vertex odd mean labeling of a Tp-tree with 18 vertices
is given in Figure 3.
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Figure 3. An even vertex odd mean labeling of a Tp-tree.

Theorem 2.2. Let T be a Tp-tree on m-vertices. Then the graph T@Pn is an
even vertex odd mean graph.

Proof. Let T be a Tp-tree with m-vertices. By the definition of a Tp-tree there
exists a parallel transformation P of T such that for the path P (T ) we have
(i) V (P (T )) = V (T ) and (ii) E(P (T )) = (E(T ) − Ed) ∪ Ep, where Ed is the
set of edges deleted from T and Ep is the set of edges newly added through
the sequence P = (P1, P2, . . . , Pk) of the EPT’s P used to arrive at the path
P (T ).

Clearly Ed and Ep have the same number of edges. Now denote the vertices
of P (T ) successively as v1, v2, v3, . . . , vm starting from one pendant vertex of
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P (T ) right upto other. Let uj1, u
j
2, u

j
3, . . . , u

j
n(1 ≤ j ≤ m) be the vertices of jth

copy of Pn. Then V (T@Pn) = {uji : 1 ≤ i ≤ n, 1 ≤ j ≤ m with ujn = vj}
The graph T@Pn hasmn vertices andmn−1 edges. Define f : V (T@Pn) →

{0, 2, 4, . . . , 2q − 2, 2q = 2(mn− 1)} as follows:

For 1 ≤ j ≤ m,

f(uji ) =

{
2n(j − 1) + 2i− 2, 1 ≤ i ≤ n and j is odd
2nj − 2i, 1 ≤ i ≤ n and j is even.

Let vivj be a transformed edge in T for some indices i and j, 1 ≤ i ≤ j ≤ m
and let P1 be the EPT that deletes the edge vivj and adds the edge vi+tvj−t

where t is the distance of vi from vi+t and also the distance of vj from vj−t.

Let P be a parallel transformation of T that contains P1 as one as the
constituent EPT’s. Since vi+tvj−t is an edge in the path P (T ), i+t+1 = j−t,
which implies j = i+ 2t+ 1. The induced label of the edge vivj is given by

f∗(vivj) = f∗(vivi+2t+1)

=
f(vi) + f(vi+2t+1)

2
= 2n(i+ t)− 1 and

f∗(vi+tvj−t) = f∗(vi+tvi+t+1)

=
f(vi+t) + f(vi+t+1)

2
= 2n(i+ t)− 1

Therefore, f∗(vivj) = f∗(vi+tvj−t).

For each vertex label f, the induced edge label f∗ is obtained as follows:

For 1 ≤ j ≤ m,

f∗(ujiu
j
i+1) =

{
2n(j − 1) + 2i− 1, 1 ≤ i ≤ n− 1 and j is odd
2nj − (2i+ 1), 1 ≤ i ≤ n− 1 and j is even

f∗(vjvj+1) = 2nj − 1 for 1 ≤ j ≤ m− 1.

It can be verified that f is an even vertex odd mean labeling of T@Pn.
Hence, T@Pn is an even vertex odd mean graph.

For example, an even vertex odd mean labeling of T@P5, where T is a
Tp-tree with 14-vertices is given in Figure 4.
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Figure 4. An even vertex odd mean labeling of T@P5.

Theorem 2.3. Let T be a Tp-tree on m-vertices. Then the graph T@2Pn is
an even vertex odd mean graph.

Proof. Let T be a Tp-tree with m-vertices. By the definition of a Tp-tree there
exists a parallel transformation P of T such that for the path P (T ) we have
(i) V (P (T )) = V (T ) and (ii) E(P (T )) = (E(T ) − Ed) ∪ Ep, where Ed is the
set of edges deleted from T and Ep is the set of edges newly added through
the sequence P = (P1, P2, . . . , Pk) of the EPT’s P used to arrive at the path
P (T ). Clearly Ed and Ep have the same number of edges.

Now denote the vertices of P (T ) successively as v1, v2, v3, . . . , vm starting
from one pendant vertex of P (T ) right upto other. Let uj1,1, u

j
1,2, u

j
1,3, . . . , u

j
1,n

and uj2,1, u
j
2,2, u

j
2,3, . . . , u

j
2,n(1 ≤ j ≤ m) be the vertices of the two vertex

disjoint paths joined with jth vertex of T such that vj = uj1,n = uj2,n. Then

V (T@2Pn) = {vj , uj1,iu
j
2,i : 1 ≤ i ≤ n, 1 ≤ j ≤ m with vj = uj1,n = uj2,n}.

Define f : V (T@2Pn) → {0, 2, 4, . . . , 2q−2, 2q = 2m(2n−1)−2} as follows:

f(uj1,i) = (4n− 2)(j − 1) + 2i− 2, 1 ≤ i ≤ n and 1 ≤ j ≤ m

f(uj2,i) = (4n− 2)j − 2i, 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m.

Let vivj be a transformed edge in T for some indices i and j, 1 ≤ i ≤ j ≤ m
and let P1 be the EPT that deletes the edge vivj and adds the edge vi+tvj−t

where t is the distance of vi from vi+t and also the distance of vj from vj−t. Let
P be a parallel transformation of T that contains P1 as one as the constituent
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EPT’s. Since vi+tvj−t is an edge in the path P (T ), i + t + 1 = j − t, which
implies j = i+ 2t+ 1. The induced label of the edge vivj is given by

f∗(vivj) = f∗(vivi+2t+1)

=
f(vi) + f(vi+2t+1)

2
= (4n− 2)(i+ t)− 1 and

f∗(vi+tvj−t) = f∗(vi+tvi+t+1)

=
f(vi+t) + f(vi+t+1)

2
= (4n− 2)(i+ t)− 1

Therefore, f∗(vivj) = f∗(vi+tvj−t).

For each vertex label f, the induced edge label f∗ is obtained as follows:

f∗(vjvj+1) = (4n− 2)j − 1, 1 ≤ j ≤ m− 1

f∗(uj1,iu
j
1,i+1) = (4n− 2)(j − 1) + 2i− 1, 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m

f∗(uj2,iu
j
2,i+1) = (4n− 2)j − (2i+ 1), 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m.

It can be verified that f is an even vertex odd mean labeling of T@2Pn.
Hence, T@2Pn is an even vertex odd mean graph.

For example, an even vertex odd mean labeling of T@2P4, where T is a
Tp-tree with 10-vertices is given in Figure 5.
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Figure 5. An even vertex odd mean labeling of T@2P4.
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Theorem 2.4. Let T be a Tp-tree on m-vertices. Then the graph T ⊙Kn is
an even vertex odd mean graph if m is even.

Proof. Let T be a Tp-tree with m-vertices with the vertex set V (T ) = {v1, v2,
. . . , vm}. Let uj1, u

j
2, . . . , u

j
n be the pendant vertices joined with vj(1 ≤ j ≤ m)

by an edge. Then V (T ⊙Kn) = {vj , uji : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
By the definition of a Tp-tree there exists a parallel transformation P of T

such that for the path P (T ) we have (i) V (P (T )) = V (T ) and (ii) E(P (T )) =
(E(T )−Ed)∪Ep, where Ed is the set of edges deleted from T and Ep is the set
of edges newly added through the sequence P = (P1, P2, . . . , Pk) of the EPT’s
P used to arrive at the path P (T ). Clearly Ed and Ep have the same number
of edges.

Now denote the vertices of P (T ) successively as v1, v2, v3, . . . , vm starting
from one pendant vertex of P (T ) right upto the other.

We define f : V (T ⊙ Kn) → {0, 2, 4, . . . , 2q − 2, 2q = 2m(n + 1) − 2} as
follows:

f(vj) =

{
2n(j − 1) + 2j for 1 ≤ j ≤ m and j is odd
2j(n+ 1)− 4 for 1 ≤ j ≤ m and j is even

f(uji ) =

{
2(n+ 1)(j − 1) + 4i− 4 for j is odd, 1 ≤ j ≤ m and 1 ≤ i ≤ n
2(n+ 1)(j − 2) + 4i+ 2 for j is even, 1 ≤ j ≤ m and 1 ≤ i ≤ n

Let vivj be an edge of T for some indices i and j, 1 ≤ i ≤ j ≤ n and let
P1 be the EPT that deletes this edge and adds the edge vi+tvj−t where t is
the distance from vi to vi+t and also the distance from vj to vj−t. Let P be a
parallel transformation of T that contains P1 as one of the constituent EPT’s.
Since vi+tvj−t is an edge in the path P (T ), it follows that i + t + 1 = j − t,
which implies j = i+ 2t+ 1. The induced label of the edge vivj is given by

f∗(vivj) = f∗(vivi+2t+1)

=
f(vi) + f(vi+2t+1)

2
= (2n+ 2)(i+ t)− 1 and

f∗(vi+tvj−t) = f∗(vi+tvi+t+1)

=
f(vi+t) + f(vi+t+1)

2
= (2n+ 2)(i+ t)− 1

Therefore, f∗(vivj) = f∗(vi+tvj−t).

For each vertex label f, the induced edge labeling f∗ is obtained as follows:

f∗(vju
j
i ) = 2(n+ 1)(j − 1) + 2i− 1, 1 ≤ j ≤ m and 1 ≤ i ≤ n

f∗(vjvj+1) = 2j(n+ 1)− 1, 1 ≤ j ≤ m− 1.



EVEN VERTEX ODD MEAN LABELING OF TRANSFORMED TREES 125

It can be verified that f is an even vertex odd mean labeling. Hence, T⊙Kn

is an even vertex odd mean graph.

For example, an even vertex odd mean labeling of T ⊙ K5, where T is a
Tp-tree with 12-vertices is given in Figure 6.
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Figure 6. An even vertex odd mean labeling of T ⊙K5.
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Theorem 2.5. Let T be a Tp-tree on m-vertices. Then the graph T@Cn is an
even vertex odd mean graph if n ≡ 0(mod 4).

Proof. Let T be a Tp-tree with m-vertices. By the definition of a transformed
tree there exists a parallel transformation P of T such that for the path P (T )
we have (i) V (P (T )) = V (T ) and (ii) E(P (T )) = (E(T ) − Ed) ∪ Ep, where
Ed is the set of edges deleted from T and Ep is the set of edges newly added
through the sequence P = (P1, P2, . . . , Pk) of the EPT’s P used to arrive at
the path P (T ). Clearly, Ed and Ep have the same number of edges.

Now denote the vertices of P (T ) successively by v1, v2, v3, . . . , vm starting
from one pendant vertex of P (T ) right upto the other one.

Let uj1, u
j
2, u

j
3, . . . , u

j
n(1 ≤ j ≤ m) be the vertices of jth copy of Pn. Then

V (T@Cn) = {uji : 1 ≤ i ≤ n, 1 ≤ j ≤ m with uj1 = vj}.
Define f : V (T@Cn) → {0, 2, 4, . . . , 2q − 2, 2q = 2m(n+ 1)− 2} as follows:

Case (i). j is odd.

f(uj
i ) =


2(n+ 1)(j − 1) + 2i− 2, 1 ≤ j ≤ m and 1 ≤ i ≤ n

2

2(n+ 1)(j − 1) + 2i+ 2, 1 ≤ j ≤ m, n
2
+ 1 ≤ i ≤ n and i is odd

2(n+ 1)(j − 1) + 2i− 2, 1 ≤ j ≤ m, n
2
+ 2 ≤ i ≤ n and i is even

Case (ii). j is even.

f(uji ) =


2(n+ 1)j − 2i, 1 ≤ j ≤ m and 1 ≤ i ≤ n

2
2(n+ 1)j − 2(i+ 2), 1 ≤ j ≤ m, n2 + 1 ≤ i ≤ n

and i is odd
2(n+ 1)j − 2i, 1 ≤ j ≤ m, n2 + 2 ≤ i ≤ n

and i is even.

Let vivj be a transformed edge in T for some indices i and j, 1 ≤ i ≤ j ≤ m
and let P1 be the EPT that deletes the edge vivj and adds the edge vi+tvj−t

where t is the distance of vi from vi+t and also the distance of vj from vj−t. Let
P be a parallel transformation of T that contains P1 as one of the constituent
EPT’s. Since vi+tvj−t is an edge in the path P (T ), it follows that, i+ t+1 =
j − t, which implies j = i + 2t + 1. Therefore i and j are of opposite parity,
that is i is odd and j is even or vice-versa.

The induced label of the edge vivj is given by

f∗(vivj) = f∗(vivi+2t+1)

=
f(vi) + f(vi+2t+1)

2
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= 2(n+ 1)(i+ t)− 1

and f∗(vi+tvj−t) = f∗(vi+tvi+t+1)

=
f(vi+t) + f(vi+t+1)

2
= 2(n+ 1)(i+ t)− 1

Therefore, f∗(vivj) = f∗(vi+tvj−t).

For each vertex label f, the induced edge label f∗ is defined as follows:

f∗(vjvj+1) = 2(n+ 1)j − 1, 1 ≤ j ≤ m− 1.

For 1 ≤ j ≤ m and j is odd,

f∗(ujiu
j
i+1) =

{
2(n+ 1)(j − 1) + 2i− 1, 1 ≤ i ≤ n

2 − 1
2(n+ 1)(j − 1) + 2i+ 1, n

2 ≤ i ≤ n− 1

f∗(ujnu
j
1) = 2(n+ 1)j − (n+ 3).

For 1 ≤ j ≤ m and j is even,

f∗(ujiu
j
i+1) =

{
2(n+ 1)j − 2i− 1, 1 ≤ i ≤ n

2 − 1
2(n+ 1)j − 2i− 3, n

2 ≤ i ≤ n− 1

f∗(ujnu
j
1) = 2(n+ 1)j − (n+ 1).

It can be verified that f is an even vertex odd mean labeling of T@Cn if
n ≡ 0(mod 4). Hence, T@Cn is an even vertex odd mean graph if n ≡ 0(mod 4).

For example, an even vertex odd mean labeling of T@C8, where T is a
Tp-tree with 13 vertices is shown in Figure 7.
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Figure 7. An even vertex odd mean labeling of T@C8.

Theorem 2.6. Let T be a Tp-tree on m-vertices. Then the graph T ◦̌Cn is an
even vertex odd mean graph if n ≡ 0(mod 4).

Proof. Let T be a Tp-tree with m-vertices. By the definition of a Tp-tree there
exists a parallel transformation P of T such that for the path P (T ) we have
(i) V (P (T )) = V (T ) and (ii) E(P (T )) = (E(T ) − Ed) ∪ Ep, where Ed is the
set of edges deleted from T and Ep is the set of edges newly added through



EVEN VERTEX ODD MEAN LABELING OF TRANSFORMED TREES 129

the sequence P = (P1, P2, . . . , Pk) of the EPT’s P used to arrive at the path
P (T ). Clearly Ed and Ep have the same number of edges.

Now denote the vertices of P (T ) successively as v1, v2, v3, . . . , vm starting
from one pendant vertex of P (T ) right upto other. Let ui1, u

i
2, . . . , u

i
n be the

vertices of the ith copy of Cn for 1 ≤ i ≤ n. Then

V (T ◦̌Cn) = {vj , uji : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
and E(T ◦̌Cn) = E(T ) ∪ E(Cn) ∪ {vjuj1 : 1 ≤ j ≤ m}.

Define f : V (T ◦̌Cn) → {0, 2, 4, . . . , 2q − 2, 2q = 2m(n+ 2)− 2} as follows:

f(vj) =

{
2(n+ 2)(j − 1), 1 ≤ j ≤ m and j is odd
2(n+ 2)j − 2, 1 ≤ j ≤ m and j is even.

For j is odd,

f(uji ) =


2(n+ 2)(j − 1) + 2i, 1 ≤ j ≤ m and 1 ≤ i ≤ n

2
2(n+ 2)(j − 1) + 2i+ 4, 1 ≤ j ≤ m, n

2 + 1 ≤ i ≤ n
and i is odd

2(n+ 2)(j − 1) + 2i, 1 ≤ j ≤ m, n
2 + 2 ≤ i ≤ n

and i is even.
For j is even,

f(uj
i ) =


2(n+ 2)j − 2(i+ 1), 1 ≤ j ≤ m and 1 ≤ i ≤ n

2

2(n+ 2)j − 2(i+ 3), 1 ≤ j ≤ m, n
2
+ 1 ≤ i ≤ n and i is odd

2(n+ 2)j − 2(i+ 1), 1 ≤ j ≤ m, n
2
+ 2 ≤ i ≤ n and i is even.

Let vivj be a transformed edge in T for some indices i and j, 1 ≤ i ≤ j ≤ m
and let P1 be the EPT that deletes the edge vivj and adds the edge vi+tvj−t

where t is the distance of vi from vi+t and also the distance of vj from vj−t. Let
P be a parallel transformation of T that contains P1 as one of the constituent
EPT’s. Since vi+tvj−t is an edge in the path P (T ), i + t + 1 = j − t, which
implies j = i+ 2t+ 1. The induced label of the edge vivj is given by

f∗(vivj) = f∗(vivi+2t+1)

=
f(vi) + f(vi+2t+1)

2
= 2(n+ 2)(i+ t)− 1 and

f∗(vi+tvj−t) = f∗(vi+tvi+t+1)

=
f(vi+t) + f(vi+t+1)

2
= 2(n+ 2)(i+ t)− 1

Therefore, f∗(vivj) = f∗(vi+tvj−t).

The induced edge label f∗ is defined as follows:

f∗(vjvj+1) = 2j(n+ 2)− 1, 1 ≤ j ≤ m− 1.
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For j is odd,

f∗(ujiu
j
i+1) =

{
2(n+ 2)(j − 1) + 2i+ 1, 1 ≤ j ≤ m and 1 ≤ i ≤ n

2 − 1
2(n+ 2)(j − 1) + 2i+ 3, 1 ≤ j ≤ m and n

2 ≤ i ≤ n− 1

f∗(ujnu
j
1) = 2(n+ 2)(j − 1) + n+ 1, 1 ≤ j ≤ m

f∗(vju
j
1) = 2(n+ 2)(j − 1) + 1, 1 ≤ j ≤ m.

For j is even,

f∗(ujiu
j
i+1) =

{
2(n+ 2)j − (2i+ 3), 1 ≤ j ≤ m and 1 ≤ i ≤ n

2 − 1
2(n+ 2)j − (2i+ 5), 1 ≤ j ≤ m and n

2 ≤ i ≤ n− 1

f∗(ujnu
j
1) = 2(n+ 2)j − n− 3, 1 ≤ j ≤ m

f∗(vju
j
1) = 2(n+ 2)j − 3, 1 ≤ j ≤ m.

It can be verified that f is an even vertex odd mean labeling of T ◦̌Cn if
n ≡ 0(mod 4). Hence, T ◦̌Cn is an even vertex odd mean graph if n ≡ 0(mod 4).

For example, an even vertex odd mean labeling of T ◦̌C8 where T is a Tp-tree
with 8-vertices is given in Figure 8.
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Figure 8. An even vertex odd mean labeling of T ◦̌C8.
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