Even vertex odd mean labeling of transformed trees

G. Pooranam, R. Vasuki and S. Suganthi

(Received March 6, 2015; Revised June 30, 2016)

Abstract

A graph G with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function $f: V(G) \rightarrow$ $\{0,2,4, \ldots, 2 q-2,2 q\}$ such that the induced map $f^{*} E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ defined by $f^{*}(u v)=\frac{f(u)+f(v)}{2}$ is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph. In this paper, we prove that every T_{p}-tree $T, T @ P_{n}, T @ 2 P_{n}, T \odot \overline{K_{n}}, T @ C_{n}$ and $T \widehat{\circ} C_{n}$ are even vertex odd mean graphs.

AMS 2010 Mathematics Subject Classification. 05C78. Key words and phrases. Labeling, even vertex odd mean labeling, even vertex odd mean graph, T_{p}-tree.

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology we follow [4].

Path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by C_{n}. The corona $G_{1} \odot G_{2}$ of the graphs G_{1} and G_{2} is obtained by taking one copy of G_{1} with p vertices and p copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} to every vertex of the $i^{\text {th }}$ copy of G_{2}.

Let T be a tree and u_{0} and v_{0} be two adjacent vertices in $V(T)$. Let there be two pendant vertices u and v in T such that the length of $u_{0}-u$ path is equal to the length of $v_{0}-v$ path. If the edge $u_{0} v_{0}$ is deleted from T and u, v are joined by an edge $u v$, then such a transformation of T is called an elementary parallel transformation (or an EPT) and the edge $u_{0} v_{0}$ is called a transformable edge. If by a sequence of EPT's T can be reduced to a path, then T is called a $T_{p^{-}}$ tree (transformed tree) and any such sequence regarded as a composition of mappings (EPT's) denoted by P, is called a parallel transformation of T. The
path, the image of T under P is denoted as $P(T)$. A T_{p}-tree and a sequence of two EPT's reducing it to a path are shown in Figure 1.

Figure 1. A T_{p}-tree and a sequence of two EPT's reducing it to a path.
Let T be a T_{p}-tree with m vertices. Let $T @ P_{n}$ be the graph obtained from T and m copies of P_{n} by identifying a pendant vertex of $i^{t h}$ copy of P_{n} with $i^{t h}$ vertex of T. Let $T @ 2 P_{n}$ be the graph obtained from T by identifying the pendant vertices of two vertex disjoint paths of equal lengths $n-1$ at each vertex of the T_{p}-tree T. Let $T @ C_{n}$ be a graph obtained from T and m copies of C_{n} by identifying a vertex of $i^{\text {th }}$ copy of C_{n} with $i^{\text {th }}$ vertex of T. Let $T \widehat{o} C_{n}$ be a graph obtained from T and m copies of C_{n} by joining a vertex of $i^{t h}$ copy of C_{n} with $i^{\text {th }}$ vertex of T by an edge.

The graceful labelings of graphs was first introduced by Rosa, in 1967 [1] and R.B. Gnanajothi introduced odd graceful graphs [3]. The concept of mean labeling was introduced and meanness of some standard graphs was studied by S. Somasundaram and R. Ponraj [7]. Further some more results on mean graphs are discussed in $[6,8,9]$. A graph G is said to be a mean graph if there exists an injective function f from $V(G)$ to $\{0,1,2, \ldots, q\}$ such that the induced map f^{*} from $E(G)$ to $\{1,2,3, \ldots, q\}$ defined by $f^{*}(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$ is a bijection.

In [5], K. Manickam and M. Marudai introduced odd mean labeling of a graph. A graph G is said to be odd mean if there exists an injective function f from $V(G)$ to $\{0,1,2,3, \ldots, 2 q-1\}$ such that the induced map f^{*} from $E(G)$ to $\{1,3,5, \ldots, 2 q-1\}$ defined by $f^{*}(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$ is a bijection. Further some new families of odd mean graphs are discussed in [11, 12]. The concept of even mean labeling was introduced and studied by B. Gayathri and R. Gopi [2]. A function f is called an even mean labeling of a graph G with p vertices and q edges, if f is an injection from the vertices of G to the set $\{2,4, \ldots, 2 q\}$ such that when each edge $u v$ is assigned the label $\frac{f(u)+f(v)}{2}$, then the resulting edge labels are distinct. A graph which admits an even mean labeling is said to be even mean graph.

Motivated by these, R. Vasuki et al. introduced the concept of even vertex odd mean labeling [10] and discussed the even vertex odd mean behaviour
of some standard graphs. A graph G with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function $f: V(G) \rightarrow\{0,2,4, \ldots, 2 q-2,2 q\}$ such that the induced map $f^{*} E(G) \rightarrow$ $\{1,3,5, \ldots, 2 q-1\}$ defined by $f^{*}(u v)=\frac{f(u)+f(v)}{2}$ is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph.

An even vertex odd mean labeling of $P_{6} \odot K_{1}$ is shown in Figure 2.

Figure 2. An even vertex odd mean labeling of $P_{6} \odot K_{1}$.
In this paper, we prove that every T_{p}-tree $T, T @ P_{n}, T @ 2 P_{n}, T \odot \overline{K_{n}}, T @ C_{n}$ and $T \hat{o} C_{n}$ are even vertex odd mean graphs.

§2. Even vertex odd mean graphs

Theorem 2.1. Every T_{p}-tree T is an even vertex odd mean graph.
Proof. Let T be a T_{p}-tree with m-vertices. By the definition of a T_{p}-tree there exists a parallel transformation P of T such that for the path $P(T)$, we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T)-E_{d}\right) \cup E_{p}$, where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPT's P used to arrive at the path $P(T)$. Clearly E_{d} and E_{p} have the same number of edges. Now, denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right upto the other.

Define $f: V(T) \rightarrow\{0,2, \ldots, 2 q-2,2 q=2(m-1)\}$ as follows:

$$
f\left(v_{i}\right)=2 i-2, \quad 1 \leq i \leq m .
$$

Let $v_{i} v_{j}$ be an edge of T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes this edge and adds the edge $v_{i+t} v_{j-t}$ where t is the distance from v_{i} to v_{i+1} and also the distance from v_{j} to v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent EPT's. Since $v_{i+t} v_{j-t}$ is an edge of the path $P(T)$, it follows that $i+t+1=j-t$,
which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i} v_{i+2 t+1}\right) \\
& =\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2} \\
& =2(i+t)-1 \text { and } \\
f^{*}\left(v_{i+t} v_{j-t}\right) & =f^{*}\left(v_{i+t} v_{i+t+1}\right) \\
& =\frac{f\left(v_{i+t}\right)+f\left(v_{i+t+1}\right)}{2} \\
& =2(i+t)-1 \\
\text { Therefore, } f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i+t} v_{j-t}\right) .
\end{aligned}
$$

For each vertex label f, the induced edge label f^{*} is defined as follows:

$$
f^{*}\left(v_{i} v_{i+1}\right)=2 i-1, \quad 1 \leq i \leq m-1 .
$$

It can be verified that f is an even vertex odd mean labeling. Hence, every T_{P}-tree T is an even vertex odd mean graph.

For example, an even vertex odd mean labeling of a T_{p}-tree with 18 vertices is given in Figure 3.

Figure 3. An even vertex odd mean labeling of a T_{p}-tree.

Theorem 2.2. Let T be a T_{p}-tree on m-vertices. Then the graph $T @ P_{n}$ is an even vertex odd mean graph.

Proof. Let T be a T_{p}-tree with m-vertices. By the definition of a T_{p}-tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T)-E_{d}\right) \cup E_{p}$, where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPT's P used to arrive at the path $P(T)$.

Clearly E_{d} and E_{p} have the same number of edges. Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of
$P(T)$ right upto other. Let $u_{1}^{j}, u_{2}^{j}, u_{3}^{j}, \ldots, u_{n}^{j}(1 \leq j \leq m)$ be the vertices of $j^{\text {th }}$ copy of P_{n}. Then $V\left(T @ P_{n}\right)=\left\{u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right.$ with $\left.u_{n}^{j}=v_{j}\right\}$

The graph $T @ P_{n}$ has $m n$ vertices and $m n-1$ edges. Define $f: V\left(T @ P_{n}\right) \rightarrow$ $\{0,2,4, \ldots, 2 q-2,2 q=2(m n-1)\}$ as follows:
For $1 \leq j \leq m$,

$$
f\left(u_{i}^{j}\right)= \begin{cases}2 n(j-1)+2 i-2, & 1 \leq i \leq n \text { and } j \text { is odd } \\ 2 n j-2 i, & 1 \leq i \leq n \text { and } j \text { is even. }\end{cases}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}.

Let P be a parallel transformation of T that contains P_{1} as one as the constituent EPT's. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$, which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i} v_{i+2 t+1}\right) \\
& =\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2} \\
& =2 n(i+t)-1 \text { and } \\
f^{*}\left(v_{i+t} v_{j-t}\right) & =f^{*}\left(v_{i+t} v_{i+t+1}\right) \\
& =\frac{f\left(v_{i+t}\right)+f\left(v_{i+t+1}\right)}{2} \\
& =2 n(i+t)-1 \\
\text { Therefore, } f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i+t} v_{j-t}\right) .
\end{aligned}
$$

For each vertex label f, the induced edge label f^{*} is obtained as follows: For $1 \leq j \leq m$,

$$
\begin{aligned}
f^{*}\left(u_{i}^{j} u_{i+1}^{j}\right) & = \begin{cases}2 n(j-1)+2 i-1, & 1 \leq i \leq n-1 \text { and } j \text { is odd } \\
2 n j-(2 i+1), & 1 \leq i \leq n-1 \text { and } j \text { is even }\end{cases} \\
f^{*}\left(v_{j} v_{j+1}\right) & =2 n j-1 \text { for } 1 \leq j \leq m-1 .
\end{aligned}
$$

It can be verified that f is an even vertex odd mean labeling of $T @ P_{n}$. Hence, $T @ P_{n}$ is an even vertex odd mean graph.

For example, an even vertex odd mean labeling of $T @ P_{5}$, where T is a T_{p}-tree with 14 -vertices is given in Figure 4.

Figure 4. An even vertex odd mean labeling of $T @ P_{5}$.

Theorem 2.3. Let T be a T_{p}-tree on m-vertices. Then the graph $T @ 2 P_{n}$ is an even vertex odd mean graph.

Proof. Let T be a T_{p}-tree with m-vertices. By the definition of a T_{p}-tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T)-E_{d}\right) \cup E_{p}$, where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPT's P used to arrive at the path $P(T)$. Clearly E_{d} and E_{p} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right upto other. Let $u_{1,1}^{j}, u_{1,2}^{j}, u_{1,3}^{j}, \ldots, u_{1, n}^{j}$ and $u_{2,1}^{j}, u_{2,2}^{j}, u_{2,3}^{j}, \ldots, u_{2, n}^{j}(1 \leq j \leq m)$ be the vertices of the two vertex disjoint paths joined with $j^{\text {th }}$ vertex of T such that $v_{j}=u_{1, n}^{j}=u_{2, n}^{j}$. Then $V\left(T @ 2 P_{n}\right)=\left\{v_{j}, u_{1, i}^{j} u_{2, i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right.$ with $\left.v_{j}=u_{1, n}^{j}=u_{2, n}^{j}\right\}$.

Define $f: V\left(T @ 2 P_{n}\right) \rightarrow\{0,2,4, \ldots, 2 q-2,2 q=2 m(2 n-1)-2\}$ as follows:

$$
\begin{aligned}
& f\left(u_{1, i}^{j}\right)=(4 n-2)(j-1)+2 i-2, \quad 1 \leq i \leq n \text { and } 1 \leq j \leq m \\
& f\left(u_{2, i}^{j}\right)=(4 n-2) j-2 i, \quad 1 \leq i \leq n-1 \text { and } 1 \leq j \leq m .
\end{aligned}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one as the constituent

EPT's. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$, which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i} v_{i+2 t+1}\right) \\
& =\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2} \\
& =(4 n-2)(i+t)-1 \text { and } \\
f^{*}\left(v_{i+t} v_{j-t}\right) & =f^{*}\left(v_{i+t} v_{i+t+1}\right) \\
& =\frac{f\left(v_{i+t}\right)+f\left(v_{i+t+1}\right)}{2} \\
& =(4 n-2)(i+t)-1
\end{aligned}
$$

Therefore, $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.
For each vertex label f, the induced edge label f^{*} is obtained as follows:

$$
\begin{aligned}
f^{*}\left(v_{j} v_{j+1}\right) & =(4 n-2) j-1, \quad 1 \leq j \leq m-1 \\
f^{*}\left(u_{1, i}^{j} u_{1, i+1}^{j}\right) & =(4 n-2)(j-1)+2 i-1, \quad 1 \leq i \leq n-1 \text { and } 1 \leq j \leq m \\
f^{*}\left(u_{2, i}^{j} u_{2, i+1}^{j}\right) & =(4 n-2) j-(2 i+1), \quad 1 \leq i \leq n-1 \text { and } 1 \leq j \leq m
\end{aligned}
$$

It can be verified that f is an even vertex odd mean labeling of $T @ 2 P_{n}$. Hence, $T @ 2 P_{n}$ is an even vertex odd mean graph.

For example, an even vertex odd mean labeling of $T @ 2 P_{4}$, where T is a T_{p}-tree with 10 -vertices is given in Figure 5.

Figure 5. An even vertex odd mean labeling of $T @ 2 P_{4}$.

Theorem 2.4. Let T be a T_{p}-tree on m-vertices. Then the graph $T \odot \overline{K_{n}}$ is an even vertex odd mean graph if m is even.
Proof. Let T be a T_{p}-tree with m-vertices with the vertex set $V(T)=\left\{v_{1}, v_{2}\right.$, $\left.\ldots, v_{m}\right\}$. Let $u_{1}^{j}, u_{2}^{j}, \ldots, u_{n}^{j}$ be the pendant vertices joined with $v_{j}(1 \leq j \leq m)$ by an edge. Then $V\left(T \odot \overline{K_{n}}\right)=\left\{v_{j}, u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$.

By the definition of a T_{p}-tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=$ $\left(E(T)-E_{d}\right) \cup E_{p}$, where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPT's P used to arrive at the path $P(T)$. Clearly E_{d} and E_{p} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right upto the other.

We define $f: V\left(T \odot \overline{K_{n}}\right) \rightarrow\{0,2,4, \ldots, 2 q-2,2 q=2 m(n+1)-2\}$ as follows:
$f\left(v_{j}\right)= \begin{cases}2 n(j-1)+2 j & \text { for } 1 \leq j \leq m \text { and } j \text { is odd } \\ 2 j(n+1)-4 & \text { for } 1 \leq j \leq m \text { and } j \text { is even }\end{cases}$ $f\left(u_{i}^{j}\right)=\left\{\begin{array}{l}2(n+1)(j-1)+4 i-4 \text { for } j \text { is odd, } 1 \leq j \leq m \text { and } 1 \leq i \leq n \\ 2(n+1)(j-2)+4 i+2 \text { for } j \text { is even, } 1 \leq j \leq m \text { and } 1 \leq i \leq n\end{array}\right.$

Let $v_{i} v_{j}$ be an edge of T for some indices i and $j, 1 \leq i \leq j \leq n$ and let P_{1} be the EPT that deletes this edge and adds the edge $v_{i+t} v_{j-t}$ where t is the distance from v_{i} to v_{i+t} and also the distance from v_{j} to v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent EPT's. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, it follows that $i+t+1=j-t$, which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i} v_{i+2 t+1}\right) \\
& =\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2} \\
& =(2 n+2)(i+t)-1 \text { and } \\
f^{*}\left(v_{i+t} v_{j-t}\right) & =f^{*}\left(v_{i+t} v_{i+t+1}\right) \\
& =\frac{f\left(v_{i+t}\right)+f\left(v_{i+t+1}\right)}{2} \\
& =(2 n+2)(i+t)-1
\end{aligned}
$$

Therefore, $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.
For each vertex label f, the induced edge labeling f^{*} is obtained as follows:

$$
\begin{aligned}
f^{*}\left(v_{j} u_{i}^{j}\right) & =2(n+1)(j-1)+2 i-1, \quad 1 \leq j \leq m \text { and } 1 \leq i \leq n \\
f^{*}\left(v_{j} v_{j+1}\right) & =2 j(n+1)-1, \quad 1 \leq j \leq m-1 .
\end{aligned}
$$

It can be verified that f is an even vertex odd mean labeling. Hence, $T \odot \overline{K_{n}}$ is an even vertex odd mean graph.

For example, an even vertex odd mean labeling of $T \odot \overline{K_{5}}$, where T is a T_{p}-tree with 12 -vertices is given in Figure 6.

Figure 6. An even vertex odd mean labeling of $T \odot \overline{K_{5}}$.

Theorem 2.5. Let T be a T_{p}-tree on m-vertices. Then the graph $T @ C_{n}$ is an even vertex odd mean graph if $n \equiv 0(\bmod 4)$.

Proof. Let T be a T_{p}-tree with m-vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T)-E_{d}\right) \cup E_{p}$, where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPT's P used to arrive at the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges.

Now denote the vertices of $P(T)$ successively by $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right upto the other one.

Let $u_{1}^{j}, u_{2}^{j}, u_{3}^{j}, \ldots, u_{n}^{j}(1 \leq j \leq m)$ be the vertices of $j^{t h}$ copy of P_{n}. Then $V\left(T @ C_{n}\right)=\left\{u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right.$ with $\left.u_{1}^{j}=v_{j}\right\}$.

Define $f: V\left(T @ C_{n}\right) \rightarrow\{0,2,4, \ldots, 2 q-2,2 q=2 m(n+1)-2\}$ as follows: Case (i). $\quad j$ is odd.

$$
f\left(u_{i}^{j}\right)= \begin{cases}2(n+1)(j-1)+2 i-2, & 1 \leq j \leq m \text { and } 1 \leq i \leq \frac{n}{2} \\ 2(n+1)(j-1)+2 i+2, & 1 \leq j \leq m, \frac{n}{2}+1 \leq i \leq n \text { and } i \text { is odd } \\ 2(n+1)(j-1)+2 i-2, & 1 \leq j \leq m, \frac{n}{2}+2 \leq i \leq n \text { and } i \text { is even }\end{cases}
$$

Case (ii). j is even.

$$
f\left(u_{i}^{j}\right)=\left\{\begin{array}{lc}
2(n+1) j-2 i, & 1 \leq j \leq m \text { and } 1 \leq i \leq \frac{n}{2} \\
2(n+1) j-2(i+2), & 1 \leq j \leq m, \frac{n}{2}+1 \leq i \leq n \\
& \text { and } i \text { is odd } \\
2(n+1) j-2 i, & 1 \leq j \leq m, \frac{n}{2}+2 \leq i \leq n \\
& \text { and } i \text { is even. }
\end{array}\right.
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent EPT's. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, it follows that, $i+t+1=$ $j-t$, which implies $j=i+2 t+1$. Therefore i and j are of opposite parity, that is i is odd and j is even or vice-versa.

The induced label of the edge $v_{i} v_{j}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i} v_{i+2 t+1}\right) \\
& =\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =2(n+1)(i+t)-1 \\
\text { and } f^{*}\left(v_{i+t} v_{j-t}\right) & =f^{*}\left(v_{i+t} v_{i+t+1}\right) \\
& =\frac{f\left(v_{i+t}\right)+f\left(v_{i+t+1}\right)}{2} \\
& =2(n+1)(i+t)-1 \\
\text { Therefore, } f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i+t} v_{j-t}\right) .
\end{aligned}
$$

For each vertex label f, the induced edge label f^{*} is defined as follows:

$$
f^{*}\left(v_{j} v_{j+1}\right)=2(n+1) j-1, \quad 1 \leq j \leq m-1 .
$$

For $1 \leq j \leq m$ and j is odd,

$$
\begin{aligned}
f^{*}\left(u_{i}^{j} u_{i+1}^{j}\right) & = \begin{cases}2(n+1)(j-1)+2 i-1, & 1 \leq i \leq \frac{n}{2}-1 \\
2(n+1)(j-1)+2 i+1, & \frac{n}{2} \leq i \leq n-1\end{cases} \\
f^{*}\left(u_{n}^{j} u_{1}^{j}\right) & =2(n+1) j-(n+3) .
\end{aligned}
$$

For $1 \leq j \leq m$ and j is even,

$$
\begin{aligned}
f^{*}\left(u_{i}^{j} u_{i+1}^{j}\right) & = \begin{cases}2(n+1) j-2 i-1, & 1 \leq i \leq \frac{n}{2}-1 \\
2(n+1) j-2 i-3, & \frac{n}{2} \leq i \leq n-1\end{cases} \\
f^{*}\left(u_{n}^{j} u_{1}^{j}\right) & =2(n+1) j-(n+1) .
\end{aligned}
$$

It can be verified that f is an even vertex odd mean labeling of $T @ C_{n}$ if $n \equiv 0(\bmod 4)$. Hence, $T @ C_{n}$ is an even vertex odd mean graph if $n \equiv 0(\bmod 4)$.

For example, an even vertex odd mean labeling of $T @ C_{8}$, where T is a T_{p}-tree with 13 vertices is shown in Figure 7.

Figure 7. An even vertex odd mean labeling of $T @ C_{8}$.

Theorem 2.6. Let T be a T_{p}-tree on m-vertices. Then the graph $T \check{\circ} C_{n}$ is an even vertex odd mean graph if $n \equiv 0(\bmod 4)$.

Proof. Let T be a T_{p}-tree with m-vertices. By the definition of a T_{p}-tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T)-E_{d}\right) \cup E_{p}$, where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through
the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPT's P used to arrive at the path $P(T)$. Clearly E_{d} and E_{p} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right upto other. Let $u_{1}^{i}, u_{2}^{i}, \ldots, u_{n}^{i}$ be the vertices of the $i^{\text {th }}$ copy of C_{n} for $1 \leq i \leq n$. Then

$$
\begin{aligned}
V\left(T \check{C_{n}}\right) & =\left\{v_{j}, u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\} \\
\text { and } E\left(T \check{ } C_{n}\right) & =E(T) \cup E\left(C_{n}\right) \cup\left\{v_{j} u_{1}^{j}: 1 \leq j \leq m\right\} .
\end{aligned}
$$

Define $f: V\left(T \circ C_{n}\right) \rightarrow\{0,2,4, \ldots, 2 q-2,2 q=2 m(n+2)-2\}$ as follows:

$$
f\left(v_{j}\right)= \begin{cases}2(n+2)(j-1), & 1 \leq j \leq m \text { and } j \text { is odd } \\ 2(n+2) j-2, & 1 \leq j \leq m \text { and } j \text { is even }\end{cases}
$$

For j is odd,

$$
f\left(u_{i}^{j}\right)=\left\{\begin{array}{lc}
2(n+2)(j-1)+2 i, & 1 \leq j \leq m \text { and } 1 \leq i \leq \frac{n}{2} \\
2(n+2)(j-1)+2 i+4, & 1 \leq j \leq m, \frac{n}{2}+1 \leq i \leq n \\
& \text { and } i \text { is odd } \\
2(n+2)(j-1)+2 i, & 1 \leq j \leq m, \frac{n}{2}+2 \leq i \leq n \\
& \text { and } i \text { is even. }
\end{array}\right.
$$

For j is even,

$$
f\left(u_{i}^{j}\right)= \begin{cases}2(n+2) j-2(i+1), & 1 \leq j \leq m \text { and } 1 \leq i \leq \frac{n}{2} \\ 2(n+2) j-2(i+3), & 1 \leq j \leq m, \frac{n}{2}+1 \leq i \leq n \text { and } i \text { is odd } \\ 2(n+2) j-2(i+1), & 1 \leq j \leq m, \frac{n}{2}+2 \leq i \leq n \text { and } i \text { is even. }\end{cases}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent EPT's. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$, which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i} v_{i+2 t+1}\right) \\
& =\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2} \\
& =2(n+2)(i+t)-1 \text { and } \\
f^{*}\left(v_{i+t} v_{j-t}\right) & =f^{*}\left(v_{i+t} v_{i+t+1}\right) \\
& =\frac{f\left(v_{i+t}\right)+f\left(v_{i+t+1}\right)}{2} \\
& =2(n+2)(i+t)-1
\end{aligned}
$$

$$
\text { Therefore, } f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)
$$

The induced edge label f^{*} is defined as follows:

$$
f^{*}\left(v_{j} v_{j+1}\right)=2 j(n+2)-1, \quad 1 \leq j \leq m-1
$$

For j is odd,

$$
\begin{aligned}
f^{*}\left(u_{i}^{j} u_{i+1}^{j}\right) & = \begin{cases}2(n+2)(j-1)+2 i+1, & 1 \leq j \leq m \text { and } 1 \leq i \leq \frac{n}{2}-1 \\
2(n+2)(j-1)+2 i+3, & 1 \leq j \leq m \text { and } \frac{n}{2} \leq i \leq n-1\end{cases} \\
f^{*}\left(u_{n}^{j} u_{1}^{j}\right) & =2(n+2)(j-1)+n+1, \quad 1 \leq j \leq m \\
f^{*}\left(v_{j} u_{1}^{j}\right) & =2(n+2)(j-1)+1, \quad 1 \leq j \leq m .
\end{aligned}
$$

For j is even,

$$
\begin{aligned}
f^{*}\left(u_{i}^{j} u_{i+1}^{j}\right) & = \begin{cases}2(n+2) j-(2 i+3), & 1 \leq j \leq m \text { and } 1 \leq i \leq \frac{n}{2}-1 \\
2(n+2) j-(2 i+5), & 1 \leq j \leq m \text { and } \frac{n}{2} \leq i \leq n-1\end{cases} \\
f^{*}\left(u_{n}^{j} u_{1}^{j}\right) & =2(n+2) j-n-3, \quad 1 \leq j \leq m \\
f^{*}\left(v_{j} u_{1}^{j}\right) & =2(n+2) j-3, \quad 1 \leq j \leq m .
\end{aligned}
$$

It can be verified that f is an even vertex odd mean labeling of $T \check{\circ} C_{n}$ if $n \equiv 0(\bmod 4)$. Hence, $T \check{\circ} C_{n}$ is an even vertex odd mean graph if $n \equiv 0(\bmod 4)$.

For example, an even vertex odd mean labeling of $T \check{\circ} C_{8}$ where T is a T_{p}-tree with 8 -vertices is given in Figure 8.

Figure 8. An even vertex odd mean labeling of $T \stackrel{\circ}{\circ} C_{8}$.

References

[1] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 16(2010), \# DS6.
[2] B. Gayathri and R. Gopi, k-even mean labeling of $D_{m, n} @ C_{n}$, International Journal of Engineering Science, Advanced Computing and Bio-Technology, 1(3) (2010), 137-145.
[3] R.B. Gnanajothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University, Madurai, 1991.
[4] F. Harary, Graph Theory, Addison Wesley, Reading Mass., 1972.
[5] K. Manickam and M. Marudai, Odd mean labelings of graphs, Bulletin of Pure and Applied Sciences, 25E(1)(2006), 149-153.
[6] Selvam Avadayappan and R. Vasuki, Some results on mean graphs, Ultra Scientist of Physical Sciences, 21(1) (2009), 273-284.
[7] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science Letter, 26 (2003), 210-213.
[8] R. Vasuki and A. Nagarajan, Meanness of the graphs $P_{a, b}$ and P_{a}^{b}, International Journal of Applied Mathematics, 22(4)(2009), 663-675.
[9] R. Vasuki and A. Nagarajan, Further results on mean graphs, Scientia Magna, 6(3)(2010), 1-14.
[10] R. Vasuki, A. Nagarajan and S. Arockiaraj, Even vertex odd mean labeling of graphs, SUT Journal of Mathematics, 49(2) (2013), 79-92.
[11] R. Vasuki and A. Nagarajan, Odd mean labeling of the graphs $P_{a, b}, P_{a}^{b}$ and $P_{\langle 2 a\rangle}^{b}$, Kragujevac Journal of Mathematics, 36(1) (2012), 141-150.
[12] R. Vasuki and S. Arockiaraj, On odd mean graphs, Journal of Discrete Mathematical Sciences and Cryptography, (To appear).

[^0]
[^0]: G. Pooranam, R. Vasuki and S. Suganthi

 Department of Mathematics
 Dr. Sivanthi Aditanar College of Engineering
 Tiruchendur-628 215, Tamil Nadu, India.
 E-mail: dpooranamg@gmail.com, vasukisehar@gmail.com, vinisuga21@gmail.com

