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Abstract. For multi-way tables, Bhapkar and Darroch (1990) gave the second-
order marginal symmetry model. The present paper proposes a measure to
represent the degree of departure from the second-order marginal symmetry
model. The measure is expressed as the weighted sum of the Shannon entropy.
The paper also gives the approximate confidence interval of the measure, and
shows relationship between the measure and the trivariate normal distribution.
Examples are given.
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§1. Introduction

Consider an rT contingency table (T ≥ 3) with nominal categories. Let Xk

denote the kth variable (k = 1, . . . , T ).

The first-order marginal symmetry (MS(1)) model is defined by

p
(1)
i = p

(2)
i = · · · = p

(T )
i (i = 1, . . . , r),

where p
(k)
i = Pr(Xk = i) (Agresti, 2013, p.439; Tahata and Tomizawa, 2014).

The second-order marginal symmetry (MS(2)) model is defined by{
p
(s,t)
ij = p

(1,2)
ij

p
(s,t)
ij = p

(s,t)
ji

(i, j = 1, . . . , r; 1 ≤ s < t ≤ T ),
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where p
(s,t)
ij = Pr(Xs = i,Xt = j) (Bhapkar and Darroch, 1990). If the MS(2)

model holds then the MS(1) model holds, but the converse is not always true.
Thus the MS(2) model has stronger constraint than the MS(1) model.

The data in Tables 1(a) and 1(b) taken from the 2014 General Social Sur-
vey (Smith et al., 2014) are conducted by the National Opinion Research
Center at the University of Chicago. Tables 1(a) and 1(b) describe the cross-
classifications of subjects’ opinions about government spending on the envi-
ronment, health, assistance to big city and law enforcement in 2004 and 2014,
respectively. The response categories are (1) ‘too little’, (2) ‘about right’ and
(3) ‘too much’. So Tables 1(a) and 1(b) are the 34 contingency tables.

For these data, some statisticians may be interested in determining degrees
of various unbalances of the opinions among items. There is one consider-
able analysis as comparing (first-order) marginal distributions of the opinions,
e.g., analyzing which item tends to be regarded ‘too little’ by relatively more
subjects than the other items. Moreover there is one of the other analyses as
comparing higher-order marginal distributions than first-order. For example,
determining whether there is MS(2) may be motivated by joint distributions of
pairs of opinions being able to unbalanced even though the first-order marginal
distributions are similar. Indeed, the analyses for second-order marginal struc-
ture are developed by several statisticians. Becker and Agresti (1992) dis-
cussed the log-linear models that describe second-order marginal structure for
determining degree of agreement among multiple observers. Fleiss, Levin and
Paik (2003, Chap.18), and Agresti (2013, Sec.11.5) reviewed the measurement
for pairwise agreement or multiple agreement. Balagtas, Becker and Lang
(1995) analyzed the crossover experiment data with three-treatments, three-
periods and binary responses using the models for log-odds-ratio of second-
order marginal probability. Lang and Agresti (1994) discussed simultaneously
modeling for joint and any-order marginal distributions.

For the data in Tables 1(a) and 1(b), the MS(1) model indicates that first-
order marginal distributions of the opinions are identical among items. The
MS(2) model indicates (i) the probabilities that a subject has opinion k about
both items are identical among all pairs of items, and (ii) the probability that
a subject has opinion i about sth item and has opinion j about tth item, is
equal to the probability that the subject has opinion j about sth item and
has opinion i about tth item for k, i, j = 1, 2, 3; i ̸= j; 1 ≤ s < t ≤ 4. If
the goodness-of-fit of the MS(2) model applied to the data is poorly, we are
interested in measuring the degree of departure from MS(2). Such measure
may be interpreted as the degree of unbalance of opinions for second-order
marginal distributions.

Tomizawa and Makii (2001) gave the measure which represents degree of
departure from MS(1). However Tomizawa and Makii’s measure cannot de-
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termine the degree of unbalance of more detailed structure of opinions than
first-order marginal distributions. Therefore, the present paper gives the mea-
sure to represent the degree of departure from MS(2). The proposed measure
enables us to compare the degrees of departure from MS(2) between two dif-
ferent tables (see Section 4).

§2. Measure

The MS(2) model can also be expressed as{
p
(s,t)
kk = p

(1,2)
kk

p
(s,t)
ij = p

(s,t)
ji = p

(1,2)
ij

(k, i, j = 1, . . . , r; i ̸= j; 1 ≤ s < t ≤ T ).

Let

Cij =



T−1∑
l=1

T∑
m=l+1

p
(l,m)
ij (i = j),

T−1∑
l=1

T∑
m=l+1

(
p
(l,m)
ij + p

(l,m)
ji

)
(i ̸= j),

πij =
Cij(
T
2

) (i, j = 1, . . . , r).

Assume that {Cij > 0}. Let

p
∗(s,t)
ij =

p
(s,t)
ij

Cij
(i, j = 1, . . . , r; 1 ≤ s < t ≤ T ).

Consider the measure to represent degree of departure from MS(2) as fol-
lows:

Φ =
r∑

k=1

πkk

[
1− 1

log
(
T
2

)Hkk

]
+

r−1∑
i=1

r∑
j=i+1

πij

1− 1

log
(
2
(
T
2

))Hij

 ,

where

Hij =


−

T−1∑
s=1

T∑
t=s+1

p
∗(s,t)
ij logp

∗(s,t)
ij (i = j),

−
T−1∑
s=1

T∑
t=s+1

(
p
∗(s,t)
ij logp

∗(s,t)
ij + p

∗(s,t)
ji logp

∗(s,t)
ji

)
(i < j),
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and 0log0 = 0. Thus Φ is the weighted sum of the Shannon entropy.
We obtain the following theorem.

Theorem 1.
(i) 0 ≤ Φ < 1,

(ii) Φ = 0 if and only if there is a structure of MS(2) in the rT table.

Proof. We see

Hkk ≤ log

(
T

2

)
(k = 1, . . . , r),

and

Hij ≤ log

(
2

(
T

2

))
(1 ≤ i < j ≤ r).

These lead to

0 ≤
r∑

k=1

πkk

[
1− 1

log
(
T
2

)Hkk

]
,

and

0 ≤
r−1∑
i=1

r∑
j=i+1

πij

1− 1

log
(
2
(
T
2

))Hij

 .

Therefore 0 ≤ Φ. Next, we shall show Φ < 1. Let pi1...iT denote the probability
that an observation will fall in (i1, . . . , iT ) cell of an rT table (ik = 1, . . . , r; k =

1, . . . , T ). From the assumption {Cij > 0}, p(s,t)kk > 0 for at least one s < t

(k = 1, . . . , r). Assume that p
(s0,t0)
kk > 0 for fixed s0 and t0. If pkk...k > 0 then

Hkk > 0. And if pkk...k = 0 (i.e., pi1,...,is0−1,k,is0+1,...,it0−1,k,it0+1,...,iT > 0 for
at least one (i1, . . . , is0−1, is0+1, . . . , it0−1, it0+1, . . . , iT )), then (1) Hisk > 0 for
is < k or (2) Hkis > 0 for is > k (s ̸= s0, t0). Therefore

r∑
k=1

πkk

[
1− 1

log
(
T
2

)Hkk

]
+

r−1∑
i=1

r∑
j=i+1

πij

1− 1

log
(
2
(
T
2

))Hij

 < 1.

Thus we obtain (i). If the MS(2) model holds, Φ = 0. Assuming that Φ = 0,

then Hkk = log
(
T
2

)
for k = 1, . . . , r, and Hij = log

(
2
(
T
2

))
for 1 ≤ i < j ≤ r,

namely the MS(2) model holds. Thus (ii) holds. The proof is completed.

§3. Approximate confidence interval of measure

Let ni1...iT denote the observed frequency in the (i1, . . . , iT ) cell, and let
p̂i1...iT = ni1...iT /n, where n =

∑
· · ·

∑
ni1...iT (ik = 1, . . . , r; k = 1, . . . , T ).
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Assuming that a multinomial distribution applies to the rT table, we consider
an approximate standard error and large-sample confidence interval of Φ. The
sample version of Φ, denoted by Φ̂, is given by Φ with (pi1...iT ) replaced by
(p̂i1...iT ). We obtain the following theorem.

Theorem 2.
√
n(Φ̂−Φ) has asymptotically (as n → ∞) a normal distribution

with mean zero and variance σ2[Φ]. The asymptotic variance σ2[Φ] is obtained
as follows:

σ2[Φ] =
r∑

i1=1

· · ·
r∑

iT=1

pi1...iT γ
2
i1...iT

− Φ2,

where

γi1...iT = 1 +
1(
T
2

) T−1∑
s=1

T∑
t=s+1

{
I(is = it)

logp
∗(s,t)
isit

log
(
T
2

) + I(is ̸= it)
logp

∗(s,t)
isit

log
(
2
(
T
2

))
}
,

and I(·) is an indicator function.

Proof. Let p = (p1...11, . . . , p1...1r, p1...21, . . . , p1...2r, . . . , pr...rr)
′ where ‘′’ means

the transpose, and let p̂ denote p with (pi1...iT ) replaced by (p̂i1...iT ). Note that√
n(p̂ − p) has a normal distribution with mean zero vector and covariance

matrix D − pp′ where D means a diagonal matrix with ith component of p
as ith diagonal component. From Taylor expansion of the estimated measure
Φ̂ about p̂ = p,

Φ̂ = Φ +
∂Φ

∂p′ (p̂− p) + o (∥p̂− p∥) .

Using the delta method (Agresti, 2013, p.587),
√
n(Φ̂−Φ) has asymptotically

a normal distribution with mean zero and variance

σ2[Φ] =

(
∂Φ

∂p′

)
(D − pp′)

(
∂Φ

∂p′

)′
.

The proof is completed.

Let σ̂2[Φ] denote σ2[Φ] with {pi1...iT } replaced by {p̂i1...iT }. Then an esti-
mated standard error of Φ̂ is σ̂[Φ]/

√
n. Therefore, we obtain an approximate

100(1−α)% confidence interval of Φ as Φ̂±zα/2σ̂[Φ]/
√
n, where zα/2 is the per-

centage point from standard normal distribution corresponding to a two-tail
probability equal to α.

§4. Examples

The estimated measures Φ̂ applied to the data in Tables 1(a) and 1(b) are
0.104 and 0.064, respectively. The approximate 95% confidence interval of Φ
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for Table 1(a) is (0.094, 0.115) with the estimated approximate standard error
0.005, and that for Table 1(b) is (0.055, 0.073) with the estimated approximate
standard error 0.005.

Thus it is inferred that the degree of departure from MS(2) for Table 1(a) is
larger than that for Table 1(b), since lower limit of the 95% confidence interval
of Φ for Table 1(a) is greater than upper limit of the 95% confidence interval
of Φ for Table 1(b). Namely, subjects’ opinions about government spending
on the environment, health, assistance to big city and law enforcement in 2004
may be more unbalanced than in 2014, in the sense structure of the pairwise
opinions in 2004 are more distant from MS(2) in terms of Φ than in 2014.

§5. Relationship between measure and normal distribution

Assume that
∑T

l=1 p
(l)
i > 0 for i = 1, . . . , r. Let

πi =

∑T
l=1 p

(l)
i

T
, p

∗(s)
i =

p
(s)
i∑T

l=1 p
(l)
i

(i = 1, . . . , r; s = 1, . . . , T ).

Tomizawa and Makii (2001) gave the measure to represent degree of departure
from MS(1), defined by

ΦTM =
r∑

i=1

πi

(
1− 1

logT
Hi

)
,

where

Hi = −
T∑

s=1

p
∗(s)
i logp

∗(s)
i (i = 1, . . . , r),

and 0log0 = 0. Hi is the Shannon entropy. Note that Tomizawa and Makii
(2001) also gave more general measure to represent the degree of departure
from MS(1).

We suppose that there is an underlying trivariate normal distribution for
the variables of the r3 contingency table. Consider random variables U1, U2

and U3 having a joint trivariate normal distribution with means E[Uk] = µk,
variances Var[Uk] = σ2 (k = 1, 2, 3), and correlations Corr[Us, Ut] = ρst
(1 ≤ s < t ≤ 3). Denote the probability density function of (U1, U2, U3)
by f(u1, u2, u3). Let Yk denote the kth variable of the r3 table (k = 1, 2, 3),

and let D
(s,t)
ij denote the integral interval corresponding to U1, U2 and U3 for

obtaining the second-order marginal probability that Ys takes i and Yt takes
j (i, j = 1, . . . , r; 1 ≤ s < t ≤ 3). We shall consider the second-order marginal
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probability obtained by multiple integral of f(u1, u2, u3) as follows:

q
(s,t)
ij =

∫∫∫
D

(s,t)
ij

f(u1, u2, u3)du1du2du3.

Tables 2, 3, 4 and 5 give the second-order marginal probability tables based

on the
{
q
(s,t)
ij

}
, formed by using cutpoints for each variable at µ1, µ1 ± 0.6σ,

for the underlying trivariate normal distribution with the conditions given in
the tables themselves. For examples,

D
(2,3)
11 = {(u1, u2, u3)| −∞ < u1 < +∞,−∞ < u2 ≤µ1 − 0.6σ,

−∞ < u3 ≤ µ1 − 0.6σ},

and

D
(1,3)
23 = {(u1, u2, u3)|µ1 − 0.6σ < u1 ≤ µ1,−∞ < u2 <+∞,

µ1 < u3 ≤ µ1 + 0.6σ}.

Note that values of
{
q
(s,t)
ij

}
are calculated using cubature package in the sta-

tistical software R version 3.2.3. Tables 6(a) and 6(b) give the values of ΦTM

and Φ for each of Tables 2, 3, 4 and 5.
Let fUsUt denote the second-order marginal probability density function of

Us and Ut (s < t). We see

fUsUt(us, ut)

fUsUt(ut, us)
= exp

[
(us − ut)(µs − µt)

(1− ρst)σ2

]
for us < ut.

From this equation and Tables 2, 3 and 4, it follows that if µs < µt, then

it tends to be q
(s,t)
ij /q

(s,t)
ji > 1 for i < j, and q

(s,t)
ij /q

(s,t)
ji tends to increase (i)

as the difference of means µs − µt decreases for fixed σ2 and ρst, or (ii) as
the correlation ρst increases for fixed µs, µt and σ2. Also, if µs > µt, then

q
(s,t)
ij /q

(s,t)
ji < 1 for i < j, and q

(s,t)
ij /q

(s,t)
ji tends to decrease (i) as the difference

of means µs − µt increases for fixed σ2 and ρst, or (ii) as the correlation ρst

increases for fixed µs, µt and σ2. Moreover, if µs = µt, then q
(s,t)
ij /q

(s,t)
ji = 1

for i < j. We see from Tables 2, 3, 4 and 6(a), as all the differences of means
of latent variables, i.e. µ1−µ2, µ1−µ3 and µ2−µ3, decrease for fixed σ2, ρ12,
ρ13 and ρ23, each of ΦTM and Φ tends to increase. Also, as all the correlations
of latent variables, i.e. ρ, where ρ = ρst (1 ≤ s < t ≤ 3), increases for fixed
µ1, µ2, µ3 and σ2, Φ tends to increase, while ΦTM is constant. It seems
natural to assume that the degree of departure from symmetry of the second-
order marginal probabilities becomes larger (i) as all the differences of means
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increase, or (ii) as all the correlations increase, because q
(s,t)
ij /q

(s,t)
ji (> 1) tends

to increase for i < j (see Tables 2, 3 and 4). Thus Φ may be appropriate for
measuring the degree of departure from symmetry of second-order marginal
probabilities.

We see from Tables 5 and 6(b), as the correlation ρ12 increases for fixed
µ1, µ2, µ3, σ

2, ρ13 and ρ23, Φ tends to increase, while ΦTM is constant. It
seems natural to assume that the degree of departure from homogeneity of
the second-order marginal probabilities becomes larger as the correlation ρ12
increases, because q

(1,2)
kk /q

(s,t)
kk (≥ 1) increases for k = 1, . . . , 4, and q

(1,2)
ij /q

(s,t)
ij

(≤ 1) decreases for |i − j| ≥ 2 (see Table 5). Thus Φ may be appropriate for
measuring the degree of departure from homogeneity of second-order marginal
probabilities.

Therefore Φ may be appropriate for measuring the degree of departure from
MS(2), because Φ may simultaneously measure the degrees of departure from
symmetry and homogeneity of second-order marginal probabilities. Also ΦTM

may not be appropriate for measuring the degree of departure from MS(2).

§6. Concluding remarks

For an rT contingency table (T ≥ 3), we have proposed the measure to repre-
sent the degree of departure from the MS(2) model. Note that, the proposed
measure Φ is invariant under arbitrary same permutations of categories of
variables. Thus the measure Φ is appropriate for the nominal contingency
table because this measure does not use information about the order of the
categories.

We have shown that the measure Φ is useful for comparing the degrees
of departure from MS(2) between two different tables in Section 4. Also we
have shown how the measure Φ takes the values when there is an underlying
trivariate normal distribution with various conditions on three-way tables, and
have discussed the appropriation of the measure Φ in Section 5.
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Table 1. Opinions about government spending (a) in 2004 with sample size
n = 1172 and (b) in 2014 with sample size n = 1061

(a)

Big city 1 2 3
Law enforcement 1 2 3 1 2 3 1 2 3

Environment Health
1 1 83 48 14 187 115 23 109 54 21

2 4 5 3 12 23 3 9 11 5
3 4 3 0 7 7 0 4 2 2

2 1 21 15 3 59 34 7 42 34 4
2 2 2 2 18 24 3 12 10 3
3 3 0 0 4 4 2 6 9 1

3 1 4 1 2 10 5 2 13 6 6
2 0 0 2 2 6 2 2 4 2
3 2 0 1 1 0 1 8 3 5

(b)

Big city 1 2 3
Law enforcement 1 2 3 1 2 3 1 2 3

Environment Health
1 1 59 34 22 99 74 16 79 35 18

2 10 6 9 24 35 7 12 15 8
3 6 6 9 15 14 4 21 7 4

2 1 8 5 1 30 27 5 29 18 4
2 10 6 1 13 23 4 6 18 2
3 3 0 0 11 17 1 18 15 7

3 1 5 4 0 4 4 0 13 10 1
2 1 1 0 3 5 2 6 8 3
3 1 2 4 4 5 1 15 16 13

Note: These data are from the 2014 General Social Survey, with categories 1
is ‘too little’, 2 is ‘about right’ and 3 is ‘too much’.
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Table 6. Values of ΦTM and Φ (a) for each of Tables 2, 3 and 4 and (b) for
Table 5

(a)

Table 2 Table 3 Table 4
ρ ΦTM Φ ΦTM Φ ΦTM Φ

0 0.038 0.051 0.078 0.103 0.123 0.161
0.3 0.038 0.059 0.078 0.116 0.123 0.176
0.6 0.038 0.078 0.078 0.147 0.123 0.211
0.9 0.038 0.156 0.078 0.241 0.123 0.292

(b)

ρ12 ΦTM Φ

0 0 0
0.3 0 0.005
0.6 0 0.025
0.9 0 0.084

Yusuke Saigusa
Department of Information Sciences, Faculty of Science and Technology,
Tokyo University of Science
Noda City, Chiba, 278-8510, Japan
E-mail : saigusaysk@gmail.com

Kouji Tahata
Department of Information Sciences, Faculty of Science and Technology,
Tokyo University of Science
Noda City, Chiba, 278-8510, Japan
E-mail : kouji tahata@is.noda.tus.ac.jp

Sadao Tomizawa
Department of Information Sciences, Faculty of Science and Technology,
Tokyo University of Science
Noda City, Chiba, 278-8510, Japan
E-mail : tomizawa@is.noda.tus.ac.jp


