A measure of departure from second-order marginal symmetry for multi-way tables with nominal categories

Yusuke Saigusa, Kouji Tahata and Sadao Tomizawa

(Received November 2, 2015; Revised February 23, 2016)

Abstract

For multi-way tables, Bhapkar and Darroch (1990) gave the secondorder marginal symmetry model. The present paper proposes a measure to represent the degree of departure from the second-order marginal symmetry model. The measure is expressed as the weighted sum of the Shannon entropy. The paper also gives the approximate confidence interval of the measure, and shows relationship between the measure and the trivariate normal distribution. Examples are given.

AMS 2010 Mathematics Subject Classification. 62H17.
Key words and phrases. Marginal symmetry, measure, multi-way tables, Shannon entropy.

§1. Introduction

Consider an r^{T} contingency table $(T \geq 3)$ with nominal categories. Let X_{k} denote the k th variable ($k=1, \ldots, T$).

The first-order marginal symmetry ($\mathrm{MS}(1)$) model is defined by

$$
p_{i}^{(1)}=p_{i}^{(2)}=\cdots=p_{i}^{(T)} \quad(i=1, \ldots, r)
$$

where $p_{i}^{(k)}=\operatorname{Pr}\left(X_{k}=i\right)$ (Agresti, 2013, p.439; Tahata and Tomizawa, 2014).
The second-order marginal symmetry $(\mathrm{MS}(2))$ model is defined by

$$
\left\{\begin{array}{l}
p_{i j}^{(s, t)}=p_{i j}^{(1,2)} \\
p_{i j}^{(s, t)}=p_{j i}^{(s, t)}
\end{array} \quad(i, j=1, \ldots, r ; 1 \leq s<t \leq T),\right.
$$

where $p_{i j}^{(s, t)}=\operatorname{Pr}\left(X_{s}=i, X_{t}=j\right)$ (Bhapkar and Darroch, 1990). If the $\operatorname{MS}(2)$ model holds then the MS(1) model holds, but the converse is not always true. Thus the MS(2) model has stronger constraint than the MS(1) model.

The data in Tables 1(a) and 1(b) taken from the 2014 General Social Survey (Smith et al., 2014) are conducted by the National Opinion Research Center at the University of Chicago. Tables 1(a) and 1(b) describe the crossclassifications of subjects' opinions about government spending on the environment, health, assistance to big city and law enforcement in 2004 and 2014, respectively. The response categories are (1) 'too little', (2) 'about right' and (3) 'too much'. So Tables 1(a) and 1(b) are the 3^{4} contingency tables.

For these data, some statisticians may be interested in determining degrees of various unbalances of the opinions among items. There is one considerable analysis as comparing (first-order) marginal distributions of the opinions, e.g., analyzing which item tends to be regarded 'too little' by relatively more subjects than the other items. Moreover there is one of the other analyses as comparing higher-order marginal distributions than first-order. For example, determining whether there is $\mathrm{MS}(2)$ may be motivated by joint distributions of pairs of opinions being able to unbalanced even though the first-order marginal distributions are similar. Indeed, the analyses for second-order marginal structure are developed by several statisticians. Becker and Agresti (1992) discussed the log-linear models that describe second-order marginal structure for determining degree of agreement among multiple observers. Fleiss, Levin and Paik (2003, Chap.18), and Agresti (2013, Sec.11.5) reviewed the measurement for pairwise agreement or multiple agreement. Balagtas, Becker and Lang (1995) analyzed the crossover experiment data with three-treatments, threeperiods and binary responses using the models for log-odds-ratio of secondorder marginal probability. Lang and Agresti (1994) discussed simultaneously modeling for joint and any-order marginal distributions.

For the data in Tables 1(a) and 1(b), the MS(1) model indicates that firstorder marginal distributions of the opinions are identical among items. The MS(2) model indicates (i) the probabilities that a subject has opinion k about both items are identical among all pairs of items, and (ii) the probability that a subject has opinion i about s th item and has opinion j about t th item, is equal to the probability that the subject has opinion j about s th item and has opinion i about t th item for $k, i, j=1,2,3 ; i \neq j ; 1 \leq s<t \leq 4$. If the goodness-of-fit of the MS(2) model applied to the data is poorly, we are interested in measuring the degree of departure from MS(2). Such measure may be interpreted as the degree of unbalance of opinions for second-order marginal distributions.

Tomizawa and Makii (2001) gave the measure which represents degree of departure from MS(1). However Tomizawa and Makii's measure cannot de-
termine the degree of unbalance of more detailed structure of opinions than first-order marginal distributions. Therefore, the present paper gives the measure to represent the degree of departure from $\operatorname{MS}(2)$. The proposed measure enables us to compare the degrees of departure from $\operatorname{MS}(2)$ between two different tables (see Section 4).

§2. Measure

The MS(2) model can also be expressed as

$$
\left\{\begin{array}{l}
p_{k k}^{(s, t)}=p_{k k}^{(1,2)} \\
p_{i j}^{(s, t)}=p_{j i}^{(s, t)}=p_{i j}^{(1,2)}
\end{array} \quad(k, i, j=1, \ldots, r ; i \neq j ; 1 \leq s<t \leq T)\right.
$$

Let

$$
\begin{aligned}
C_{i j} & =\left\{\begin{array}{ll}
\sum_{l=1}^{T-1} \sum_{m=l+1}^{T} p_{i j}^{(l, m)} & (i=j), \\
\sum_{l=1}^{T-1} \sum_{m=l+1}^{T}\left(p_{i j}^{(l, m)}+p_{j i}^{(l, m)}\right) & (i \neq j), \\
\pi_{i j} & =\frac{C_{i j}}{\binom{T}{2}}
\end{array}(i, j=1, \ldots, r) .\right.
\end{aligned}
$$

Assume that $\left\{C_{i j}>0\right\}$. Let

$$
p_{i j}^{*(s, t)}=\frac{p_{i j}^{(s, t)}}{C_{i j}} \quad(i, j=1, \ldots, r ; 1 \leq s<t \leq T)
$$

Consider the measure to represent degree of departure from $\operatorname{MS}(2)$ as follows:

$$
\Phi=\sum_{k=1}^{r} \pi_{k k}\left[1-\frac{1}{\log \binom{T}{2}} H_{k k}\right]+\sum_{i=1}^{r-1} \sum_{j=i+1}^{r} \pi_{i j}\left[1-\frac{1}{\log \left(2\binom{T}{2}\right)} H_{i j}\right]
$$

where

$$
H_{i j}= \begin{cases}-\sum_{s=1}^{T-1} \sum_{t=s+1}^{T} p_{i j}^{*(s, t)} \log p_{i j}^{*(s, t)} & (i=j), \\ -\sum_{s=1}^{T-1} \sum_{t=s+1}^{T}\left(p_{i j}^{*(s, t)} \log p_{i j}^{*(s, t)}+p_{j i}^{*(s, t)} \log p_{j i}^{*(s, t)}\right) & (i<j)\end{cases}
$$

and $0 \log 0=0$. Thus Φ is the weighted sum of the Shannon entropy.
We obtain the following theorem.

Theorem 1.

(i) $0 \leq \Phi<1$,
(ii) $\Phi=0$ if and only if there is a structure of $M S$ (2) in the r^{T} table.

Proof. We see

$$
H_{k k} \leq \log \binom{T}{2} \quad(k=1, \ldots, r)
$$

and

$$
H_{i j} \leq \log \left(2\binom{T}{2}\right) \quad(1 \leq i<j \leq r)
$$

These lead to

$$
0 \leq \sum_{k=1}^{r} \pi_{k k}\left[1-\frac{1}{\log \binom{T}{2}} H_{k k}\right]
$$

and

$$
0 \leq \sum_{i=1}^{r-1} \sum_{j=i+1}^{r} \pi_{i j}\left[1-\frac{1}{\log \left(2\binom{T}{2}\right)} H_{i j}\right] .
$$

Therefore $0 \leq \Phi$. Next, we shall show $\Phi<1$. Let $p_{i_{1} \ldots i_{T}}$ denote the probability that an observation will fall in $\left(i_{1}, \ldots, i_{T}\right)$ cell of an r^{T} table $\left(i_{k}=1, \ldots, r ; k=\right.$ $1, \ldots, T)$. From the assumption $\left\{C_{i j}>0\right\}, p_{k k}^{(s, t)}>0$ for at least one $s<t$ $(k=1, \ldots, r)$. Assume that $p_{k k}^{\left(s_{0}, t_{0}\right)}>0$ for fixed s_{0} and t_{0}. If $p_{k k \ldots k}>0$ then $H_{k k}>0$. And if $p_{k k \ldots k}=0$ (i.e., $p_{i_{1}, \ldots, i_{s_{0}-1}, k, i_{s_{0}+1}, \ldots, i_{t_{0}-1}, k, i_{t_{0}+1}, \ldots, i_{T}}>0$ for at least one $\left(i_{1}, \ldots, i_{s_{0}-1}, i_{s_{0}+1}, \ldots, i_{t_{0}-1}, i_{t_{0}+1}, \ldots, i_{T}\right)$), then (1) $H_{i_{s} k}>0$ for $i_{s}<k$ or (2) $H_{k i_{s}}>0$ for $i_{s}>k\left(s \neq s_{0}, t_{0}\right)$. Therefore

$$
\sum_{k=1}^{r} \pi_{k k}\left[1-\frac{1}{\log \binom{T}{2}} H_{k k}\right]+\sum_{i=1}^{r-1} \sum_{j=i+1}^{r} \pi_{i j}\left[1-\frac{1}{\log \left(2\binom{T}{2}\right)} H_{i j}\right]<1
$$

Thus we obtain (i). If the MS(2) model holds, $\Phi=0$. Assuming that $\Phi=0$, then $H_{k k}=\log \binom{T}{2}$ for $k=1, \ldots, r$, and $H_{i j}=\log \left(2\binom{T}{2}\right)$ for $1 \leq i<j \leq r$, namely the MS(2) model holds. Thus (ii) holds. The proof is completed.

§3. Approximate confidence interval of measure

Let $n_{i_{1} \ldots i_{T}}$ denote the observed frequency in the $\left(i_{1}, \ldots, i_{T}\right)$ cell, and let $\hat{p}_{i_{1} \ldots i_{T}}=n_{i_{1} \ldots i_{T}} / n$, where $n=\sum \cdots \sum n_{i_{1} \ldots i_{T}}\left(i_{k}=1, \ldots, r ; k=1, \ldots, T\right)$.

Assuming that a multinomial distribution applies to the r^{T} table, we consider an approximate standard error and large-sample confidence interval of Φ. The sample version of Φ, denoted by $\hat{\Phi}$, is given by Φ with ($p_{i_{1} \ldots i_{T}}$) replaced by $\left(\hat{p}_{i_{1} \ldots i_{T}}\right)$. We obtain the following theorem.

Theorem 2. $\sqrt{n}(\hat{\Phi}-\Phi)$ has asymptotically $($ as $n \rightarrow \infty)$ a normal distribution with mean zero and variance $\sigma^{2}[\Phi]$. The asymptotic variance $\sigma^{2}[\Phi]$ is obtained as follows:

$$
\sigma^{2}[\Phi]=\sum_{i_{1}=1}^{r} \cdots \sum_{i_{T}=1}^{r} p_{i_{1} \ldots i_{T}} \gamma_{i_{1} \ldots i_{T}}^{2}-\Phi^{2}
$$

where

$$
\gamma_{i_{1} \ldots i_{T}}=1+\frac{1}{\binom{T}{2}} \sum_{s=1}^{T-1} \sum_{t=s+1}^{T}\left\{I\left(i_{s}=i_{t}\right) \frac{\log p_{s i t}^{*(s, t)}}{\log \binom{T}{2}}+I\left(i_{s} \neq i_{t}\right) \frac{\log p_{s i t}^{*(s, t)}}{\log \left(2\binom{T}{2}\right)}\right\}
$$

and $I(\cdot)$ is an indicator function.
Proof. Let $\boldsymbol{p}=\left(p_{1 \ldots 11}, \ldots, p_{1 \ldots 1 r}, p_{1 \ldots 21}, \ldots, p_{1 \ldots 2 r}, \ldots, p_{r \ldots r r}\right)^{\prime}$ where '/' means the transpose, and let $\hat{\boldsymbol{p}}$ denote \boldsymbol{p} with $\left(p_{i_{1} \ldots i_{T}}\right)$ replaced by $\left(\hat{p}_{i_{1} \ldots i_{T}}\right)$. Note that $\sqrt{n}(\hat{\boldsymbol{p}}-\boldsymbol{p})$ has a normal distribution with mean zero vector and covariance matrix $\boldsymbol{D}-\boldsymbol{p} \boldsymbol{p}^{\prime}$ where \boldsymbol{D} means a diagonal matrix with i th component of \boldsymbol{p} as i th diagonal component. From Taylor expansion of the estimated measure $\hat{\Phi}$ about $\hat{\boldsymbol{p}}=\boldsymbol{p}$,

$$
\hat{\Phi}=\Phi+\frac{\partial \Phi}{\partial \boldsymbol{p}^{\prime}}(\hat{\boldsymbol{p}}-\boldsymbol{p})+o(\|\hat{\boldsymbol{p}}-\boldsymbol{p}\|) .
$$

Using the delta method (Agresti, 2013, p.587), $\sqrt{n}(\hat{\Phi}-\Phi)$ has asymptotically a normal distribution with mean zero and variance

$$
\sigma^{2}[\Phi]=\left(\frac{\partial \Phi}{\partial \boldsymbol{p}^{\prime}}\right)\left(\boldsymbol{D}-\boldsymbol{p} \boldsymbol{p}^{\prime}\right)\left(\frac{\partial \Phi}{\partial \boldsymbol{p}^{\prime}}\right)^{\prime}
$$

The proof is completed.
Let $\hat{\sigma}^{2}[\Phi]$ denote $\sigma^{2}[\Phi]$ with $\left\{p_{i_{1} \ldots i_{T}}\right\}$ replaced by $\left\{\hat{p}_{i_{1} \ldots i_{T}}\right\}$. Then an estimated standard error of $\bar{\Phi}$ is $\hat{\sigma}[\Phi] / \sqrt{n}$. Therefore, we obtain an approximate $100(1-\alpha) \%$ confidence interval of Φ as $\hat{\Phi} \pm z_{\alpha / 2} \hat{\sigma}[\Phi] / \sqrt{n}$, where $z_{\alpha / 2}$ is the percentage point from standard normal distribution corresponding to a two-tail probability equal to α.

§4. Examples

The estimated measures $\hat{\Phi}$ applied to the data in Tables 1(a) and 1(b) are 0.104 and 0.064 , respectively. The approximate 95% confidence interval of Φ
for Table 1(a) is $(0.094,0.115)$ with the estimated approximate standard error 0.005 , and that for Table $1(\mathrm{~b})$ is $(0.055,0.073)$ with the estimated approximate standard error 0.005.

Thus it is inferred that the degree of departure from MS(2) for Table 1(a) is larger than that for Table 1(b), since lower limit of the 95% confidence interval of Φ for Table 1(a) is greater than upper limit of the 95% confidence interval of Φ for Table 1(b). Namely, subjects' opinions about government spending on the environment, health, assistance to big city and law enforcement in 2004 may be more unbalanced than in 2014, in the sense structure of the pairwise opinions in 2004 are more distant from $\operatorname{MS}(2)$ in terms of Φ than in 2014.

§5. Relationship between measure and normal distribution

Assume that $\sum_{l=1}^{T} p_{i}^{(l)}>0$ for $i=1, \ldots, r$. Let

$$
\pi_{i}=\frac{\sum_{l=1}^{T} p_{i}^{(l)}}{T}, \quad p_{i}^{*(s)}=\frac{p_{i}^{(s)}}{\sum_{l=1}^{T} p_{i}^{(l)}} \quad(i=1, \ldots, r ; s=1, \ldots, T) .
$$

Tomizawa and Makii (2001) gave the measure to represent degree of departure from $\operatorname{MS}(1)$, defined by

$$
\Phi_{T M}=\sum_{i=1}^{r} \pi_{i}\left(1-\frac{1}{\log T} H_{i}\right)
$$

where

$$
H_{i}=-\sum_{s=1}^{T} p_{i}^{*(s)} \log p_{i}^{*(s)} \quad(i=1, \ldots, r)
$$

and $0 \log 0=0 . H_{i}$ is the Shannon entropy. Note that Tomizawa and Makii (2001) also gave more general measure to represent the degree of departure from $\operatorname{MS}(1)$.

We suppose that there is an underlying trivariate normal distribution for the variables of the r^{3} contingency table. Consider random variables U_{1}, U_{2} and U_{3} having a joint trivariate normal distribution with means $\mathrm{E}\left[U_{k}\right]=\mu_{k}$, variances $\operatorname{Var}\left[U_{k}\right]=\sigma^{2}(k=1,2,3)$, and correlations $\operatorname{Corr}\left[U_{s}, U_{t}\right]=\rho_{s t}$ $(1 \leq s<t \leq 3)$. Denote the probability density function of $\left(U_{1}, U_{2}, U_{3}\right)$ by $f\left(u_{1}, u_{2}, u_{3}\right)$. Let Y_{k} denote the k th variable of the r^{3} table ($k=1,2,3$), and let $D_{i j}^{(s, t)}$ denote the integral interval corresponding to U_{1}, U_{2} and U_{3} for obtaining the second-order marginal probability that Y_{s} takes i and Y_{t} takes $j(i, j=1, \ldots, r ; 1 \leq s<t \leq 3)$. We shall consider the second-order marginal
probability obtained by multiple integral of $f\left(u_{1}, u_{2}, u_{3}\right)$ as follows:

$$
q_{i j}^{(s, t)}=\iiint_{D_{i j}^{(s, t)}} f\left(u_{1}, u_{2}, u_{3}\right) d u_{1} d u_{2} d u_{3}
$$

Tables 2, 3, 4 and 5 give the second-order marginal probability tables based on the $\left\{q_{i j}^{(s, t)}\right\}$, formed by using cutpoints for each variable at $\mu_{1}, \mu_{1} \pm 0.6 \sigma$, for the underlying trivariate normal distribution with the conditions given in the tables themselves. For examples,

$$
\begin{aligned}
D_{11}^{(2,3)}=\left\{\left(u_{1}, u_{2}, u_{3}\right) \mid-\infty<u_{1}<+\infty,-\infty<u_{2} \leq\right. & \mu_{1}-0.6 \sigma \\
& \left.-\infty<u_{3} \leq \mu_{1}-0.6 \sigma\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
D_{23}^{(1,3)}=\left\{\left(u_{1}, u_{2}, u_{3}\right) \mid \mu_{1}-0.6 \sigma<u_{1} \leq \mu_{1},-\infty<u_{2}<\right. & +\infty \\
& \left.\mu_{1}<u_{3} \leq \mu_{1}+0.6 \sigma\right\}
\end{aligned}
$$

Note that values of $\left\{q_{i j}^{(s, t)}\right\}$ are calculated using cubature package in the statistical software R version 3.2.3. Tables 6(a) and 6(b) give the values of $\Phi_{T M}$ and Φ for each of Tables $2,3,4$ and 5 .

Let $f_{U_{s} U_{t}}$ denote the second-order marginal probability density function of U_{s} and $U_{t}(s<t)$. We see

$$
\frac{f_{U_{s} U_{t}}\left(u_{s}, u_{t}\right)}{f_{U_{s} U_{t}}\left(u_{t}, u_{s}\right)}=\exp \left[\frac{\left(u_{s}-u_{t}\right)\left(\mu_{s}-\mu_{t}\right)}{\left(1-\rho_{s t}\right) \sigma^{2}}\right] \quad \text { for } \quad u_{s}<u_{t}
$$

From this equation and Tables 2, 3 and 4, it follows that if $\mu_{s}<\mu_{t}$, then it tends to be $q_{i j}^{(s, t)} / q_{j i}^{(s, t)}>1$ for $i<j$, and $q_{i j}^{(s, t)} / q_{j i}^{(s, t)}$ tends to increase (i) as the difference of means $\mu_{s}-\mu_{t}$ decreases for fixed σ^{2} and $\rho_{s t}$, or (ii) as the correlation $\rho_{s t}$ increases for fixed μ_{s}, μ_{t} and σ^{2}. Also, if $\mu_{s}>\mu_{t}$, then $q_{i j}^{(s, t)} / q_{j i}^{(s, t)}<1$ for $i<j$, and $q_{i j}^{(s, t)} / q_{j i}^{(s, t)}$ tends to decrease (i) as the difference of means $\mu_{s}-\mu_{t}$ increases for fixed σ^{2} and $\rho_{s t}$, or (ii) as the correlation $\rho_{s t}$ increases for fixed μ_{s}, μ_{t} and σ^{2}. Moreover, if $\mu_{s}=\mu_{t}$, then $q_{i j}^{(s, t)} / q_{j i}^{(s, t)}=1$ for $i<j$. We see from Tables $2,3,4$ and $6(\mathrm{a})$, as all the differences of means of latent variables, i.e. $\mu_{1}-\mu_{2}, \mu_{1}-\mu_{3}$ and $\mu_{2}-\mu_{3}$, decrease for fixed σ^{2}, ρ_{12}, ρ_{13} and ρ_{23}, each of $\Phi_{T M}$ and Φ tends to increase. Also, as all the correlations of latent variables, i.e. ρ, where $\rho=\rho_{s t}(1 \leq s<t \leq 3)$, increases for fixed $\mu_{1}, \mu_{2}, \mu_{3}$ and σ^{2}, Φ tends to increase, while $\Phi_{T M}$ is constant. It seems natural to assume that the degree of departure from symmetry of the secondorder marginal probabilities becomes larger (i) as all the differences of means
increase, or (ii) as all the correlations increase, because $q_{i j}^{(s, t)} / q_{j i}^{(s, t)}(>1)$ tends to increase for $i<j$ (see Tables 2, 3 and 4). Thus Φ may be appropriate for measuring the degree of departure from symmetry of second-order marginal probabilities.

We see from Tables 5 and $6(\mathrm{~b})$, as the correlation ρ_{12} increases for fixed $\mu_{1}, \mu_{2}, \mu_{3}, \sigma^{2}, \rho_{13}$ and ρ_{23}, Φ tends to increase, while $\Phi_{T M}$ is constant. It seems natural to assume that the degree of departure from homogeneity of the second-order marginal probabilities becomes larger as the correlation ρ_{12} increases, because $q_{k k}^{(1,2)} / q_{k k}^{(s, t)}(\geq 1)$ increases for $k=1, \ldots, 4$, and $q_{i j}^{(1,2)} / q_{i j}^{(s, t)}$ (≤ 1) decreases for $|i-j| \geq 2$ (see Table 5). Thus Φ may be appropriate for measuring the degree of departure from homogeneity of second-order marginal probabilities.

Therefore Φ may be appropriate for measuring the degree of departure from MS(2), because Φ may simultaneously measure the degrees of departure from symmetry and homogeneity of second-order marginal probabilities. Also $\Phi_{T M}$ may not be appropriate for measuring the degree of departure from $\operatorname{MS}(2)$.

§6. Concluding remarks

For an r^{T} contingency table ($T \geq 3$), we have proposed the measure to represent the degree of departure from the $\mathrm{MS}(2)$ model. Note that, the proposed measure Φ is invariant under arbitrary same permutations of categories of variables. Thus the measure Φ is appropriate for the nominal contingency table because this measure does not use information about the order of the categories.

We have shown that the measure Φ is useful for comparing the degrees of departure from MS(2) between two different tables in Section 4. Also we have shown how the measure Φ takes the values when there is an underlying trivariate normal distribution with various conditions on three-way tables, and have discussed the appropriation of the measure Φ in Section 5 .

Acknowledgments

The authors would like to thank the editor and referee for their helpful suggestions and comments.

References

[1] Agresti, A. (2013). Categorical Data Analysis, 3rd edition. Wiley, Hoboken, New Jersey.
[2] Balagtas, C. C., Becker, M. P. and Lang, J. B. (1995). Marginal modelling of categorical data from crossover experiments. Journal of the Royal Statistical Society, Series C, 44, 63-77.
[3] Becker, M. P. and Agresti, A. (1992). Log-linear modelling of pairwise interobserver agreement on a categorical scale. Statistics in Medicine, 11, 101-114.
[4] Bhapkar, V. P. and Darroch, J. N. (1990). Marginal symmetry and quasi symmetry of general order. Journal of Multivariate Analysis, 34, 173-184.
[5] Fleiss, J. L., Levin, B. and Paik, M. C. (2003). Statistical Methods for Rates and Proportions, 3rd edition. Wiley, Hoboken, New Jersey.
[6] Lang, J. B. and Agresti, A. (1994). Simultaneously modeling joint and marginal distributions of multivariate categorical responses. Journal of the American Statistical Association, 89, 625-632.
[7] Smith, T. W., Marsden, P. V., Hout, M. and Kim, J. (2014). General Social Survey 1972-2014, [machine-readable data file]. Principal Investigator, Smith, T. W.; Co-Principal Investigator, Marsden, P. V. and Hout, M.. Sponsored by National Science Foundation. National Opinion Research Center, Chicago.
[8] Tahata, K. and Tomizawa, S. (2014). Symmetry and asymmetry models and decompositions of models for contingency tables. SUT Journal of Mathematics, 50, 131-165.
[9] Tomizawa, S. and Makii, T. (2001). Generalized measure of departure from marginal homogeneity for contingency tables with nominal categories. Journal of Statistical Research, 35, 1-24.

Table 1. Opinions about government spending (a) in 2004 with sample size $n=1172$ and (b) in 2014 with sample size $n=1061$

(a)									
Big city	1			2			3		
Law enforcement	1	2	3	1	2	3	1	2	3
Environment Health									
11	83	48	14	187	115	23	109	54	21
2	4	5	3	12	23	3	9	11	5
3	4	3	0	7	7	0	4	2	2
21	21	15	3	59	34	7	42	34	4
2	2	2	2	18	24	3	12	10	3
3	3	0	0	4	4	2	6	9	1
$3 \quad 1$	4	1	2	10	5	2	13	6	6
2	0	0	2	2	6	2	2	4	2
3	2	0	1	1	0	1	8	3	5

(b)

Big city		1			2			3		
Law enforcement		1	2	3	1	2	3	1	2	3
Environment Health										
1	1	59	34	22	99	74	16	79	35	18
	2	10	6	9	24	35	7	12	15	8
	3	6	6	9	15	14	4	21	7	4
2	1	8	5	1	30	27	5	29	18	4
	2	10	6	1	13	23	4	6	18	2
	3	3	0	0	11	17	1	18	15	7
3	1	5	4	0	4	4	0	13	10	1
	2	1	1	0	3	5	2	6	8	3
	3	1	2	4	4	5	1	15	16	13

Note: These data are from the 2014 General Social Survey, with categories 1 is 'too little', 2 is 'about right' and 3 is 'too much'.
Table 2. The second-order marginal probability tables, formed by using cutpoints for each variable at $\mu_{1}, \mu_{1} \pm 0.6$, for an underlying trivariate normal distribution with the conditions $\mu_{2}=\mu_{1}+0.4, \mu_{3}=\mu_{1}+0.8, \sigma^{2}=1$ and $\rho_{s t}=\rho$

(a) $\rho=0$											
T_{12}				T_{13}				T_{23}			
0.04	0.05	0.06	0.12	0.02	0.04	0.06	0.16	0.01	0.02	0.03	0.09
0.04	0.04	0.05	0.09	0.02	0.03	0.05	0.13	0.02	0.02	0.04	0.11
0.04	0.04	0.05	0.09	0.02	0.03	0.05	0.13	0.02	0.03	0.05	0.14
0.04	0.05	0.06	0.12	0.02	0.04	0.06	0.16	0.03	0.06	0.09	0.24

(b) $\rho=0.3$											
T_{12}				T_{13}				T_{23}			
0.07	0.06	0.06	0.08	0.04	0.05	0.07	0.12	0.03	0.03	0.04	0.06
0.04	0.05	0.06	0.09	0.02	0.03	0.05	0.12	0.02	0.03	0.04	0.09
0.03	0.04	0.05	0.10	0.01	0.03	0.05	0.14	0.02	0.03	0.05	0.13
0.02	0.04	0.06	0.16	0.01	0.02	0.05	0.20	0.02	0.04	0.07	0.29

Table 2. (continued)

(c) $\rho=0$											
T_{12}				T_{13}				T_{23}			
0.10	0.08	0.06	0.04	0.06	0.07	0.07	0.07	0.04	0.04	0.04	0.03
0.03	0.05	0.07	0.07	0.01	0.03	0.06	0.12	0.02	0.04	0.05	0.07
0.02	0.04	0.06	0.11	0.01	0.02	0.05	0.15	0.01	0.03	0.06	0.13
0.01	0.02	0.05	0.20	$1.56 \mathrm{E}-03$	0.01	0.03	0.24	$4.60 \mathrm{E}-03$	0.02	0.06	0.34
(d) $\rho=0.9$											
T_{12}				T_{13}				T_{23}			
0.15	0.09	0.03	$2.62 \mathrm{E}-03$	0.08	0.10	0.08	0.02	0.07	0.06	0.02	$2.21 \mathrm{E}-03$
0.01	0.07	0.10	0.04	$1.55 \mathrm{E}-03$	0.03	0.10	0.10	0.01	0.06	0.09	0.03
$6.97 \mathrm{E}-04$	0.02	0.08	0.12	$3.36 \mathrm{E}-05$	$2.38 \mathrm{E}-03$	0.03	0.19	$5.20 \mathrm{E}-04$	0.01	0.08	0.14
$7.65 \mathrm{E}-06$	7.91E-04	0.02	0.26	$1.34 \mathrm{E}-07$	$4.33 \mathrm{E}-05$	$2.57 \mathrm{E}-03$	0.27	$6.47 \mathrm{E}-06$	$7.60 \mathrm{E}-04$	0.02	0.40

Table 3. The second-order marginal probability tables, formed by using cutpoints for each variable at $\mu_{1}, \mu_{1} \pm 0.6$, for an underlying trivariate normal distribution with the conditions $\mu_{2}=\mu_{1}+0.6, \mu_{3}=\mu_{1}+1.2, \sigma^{2}=1$ and $\rho_{s t}=\rho$

(a) $\rho=0$											
T_{12}				T_{13}				T_{23}			
0.03	0.04	0.06	0.14	0.01	0.02	0.04	0.20	4.13E-03	0.01	0.02	0.08
0.03	0.04	0.05	0.11	0.01	0.02	0.04	0.16	0.01	0.01	0.03	0.12
0.03	0.04	0.05	0.11	0.01	0.02	0.04	0.16	0.01	0.02	0.04	0.16
0.03	0.04	0.06	0.14	0.01	0.02	0.04	0.20	0.02	0.04	0.08	0.36

T_{12}				T_{13}				T_{23}			
0.05	0.06	0.07	0.10	0.02	0.03	0.06	0.16	0.01	0.02	0.03	0.06
0.03	0.04	0.05	0.10	0.01	0.02	0.04	0.16	0.01	0.02	0.03	0.10
0.02	0.03	0.05	0.12	0.01	0.01	0.03	0.17	0.01	0.02	0.04	0.16
0.01	0.03	0.05	0.18	$3.40 \mathrm{E}-03$	0.01	0.03	0.23	0.01	0.03	0.06	0.40

Table 3. (continued)

(c) $\rho=0$											
T_{12}				T_{13}				T_{23}			
0.08	0.07	0.07	0.05	0.03	0.05	0.07	0.12	0.02	0.03	0.03	0.04
0.02	0.04	0.06	0.09	$4.96 \mathrm{E}-03$	0.02	0.04	0.16	0.01	0.02	0.04	0.09
0.01	0.03	0.06	0.13	$1.62 \mathrm{E}-03$	0.01	0.03	0.19	$4.96 \mathrm{E}-03$	0.02	0.04	0.16
$3.03 \mathrm{E}-03$	0.01	0.04	0.22	$3.53 \mathrm{E}-04$	$2.67 \mathrm{E}-03$	0.01	0.26	$1.97 \mathrm{E}-03$	0.01	0.04	0.45
(d) $\rho=0.9$											
T_{12}				T_{13}				T_{23}			
0.11	0.10	0.05	0.01	0.04	0.07	0.10	0.06	0.03	0.05	0.03	4.97E-03
$4.80 \mathrm{E}-03$	0.05	0.11	0.06	$9.55 \mathrm{E}-05$	$4.71 \mathrm{E}-03$	0.05	0.17	$2.26 \mathrm{E}-03$	0.03	0.07	0.05
$1.68 \mathrm{E}-04$	0.01	0.06	0.16	$7.63 \mathrm{E}-07$	$1.67 \mathrm{E}-04$	0.01	0.22	$9.55 \mathrm{E}-05$	$4.71 \mathrm{E}-03$	0.05	0.17
$1.11 \mathrm{E}-06$	$2.03 \mathrm{E}-04$	0.01	0.27	$1.06 \mathrm{E}-09$	1.11E-06	$2.03 \mathrm{E}-04$	0.27	$7.64 \mathrm{E}-07$	$1.68 \mathrm{E}-04$	0.01	0.49

Table 4. The second-order marginal probability tables, formed by using cutpoints for each variable at $\mu_{1}, \mu_{1} \pm 0.6$, for an underlying trivariate normal distribution with the conditions $\mu_{2}=\mu_{1}+0.8, \mu_{3}=\mu_{1}+1.6, \sigma^{2}=1$ and $\rho_{s t}=\rho$

(a) $\rho=0$											
T_{12}				T_{13}				T_{23}			
0.02	0.04	0.06	0.16	$3.81 \mathrm{E}-03$	0.01	0.03	0.23	1.12E-03	$3.30 \mathrm{E}-03$	0.01	0.07
0.02	0.03	0.05	0.13	$3.14 \mathrm{E}-03$	0.01	0.02	0.19	$1.82 \mathrm{E}-03$	0.01	0.01	0.11
0.02	0.03	0.05	0.13	$3.14 \mathrm{E}-03$	0.01	0.02	0.19	$2.90 \mathrm{E}-03$	0.01	0.02	0.18
0.02	0.04	0.06	0.16	$3.81 \mathrm{E}-03$	0.01	0.03	0.23	0.01	0.02	0.06	0.49

(b) $\rho=0.3$											
T_{12}				T_{13}				T_{23}			
0.04	0.05	0.07	0.12	0.01	0.02	0.04	0.20	$3.53 \mathrm{E}-03$	0.01	0.01	0.05
0.02	0.03	0.05	0.12	$3.05 \mathrm{E}-03$	0.01	0.03	0.19	$3.22 \mathrm{E}-03$	0.01	0.02	0.10
0.01	0.03	0.05	0.14	$1.88 \mathrm{E}-03$	0.01	0.02	0.20	$3.29 \mathrm{E}-03$	0.01	0.03	0.17
0.01	0.02	0.05	0.20	$1.07 \mathrm{E}-03$	$4.65 \mathrm{E}-03$	0.02	0.25	$3.86 \mathrm{E}-03$	0.01	0.04	0.52

Table 4. (continued)

(c) $\rho=0.6$											
T_{12}				T_{13}				T_{23}			
0.06	0.07	0.07	0.07	0.01	0.03	0.06	0.17	0.01	0.01	0.02	0.04
0.01	0.03	0.06	0.12	$1.36 \mathrm{E}-03$	0.01	0.03	0.19	$3.49 \mathrm{E}-03$	0.01	0.03	0.09
0.01	0.02	0.05	0.15	$3.65 \mathrm{E}-04$	$2.77 \mathrm{E}-03$	0.01	0.21	1.88E-03	0.01	0.03	0.17
$1.56 \mathrm{E}-03$	0.01	0.03	0.24	$6.38 \mathrm{E}-05$	7.00E-04	$4.80 \mathrm{E}-03$	0.27	7.27E-04	0.01	0.03	0.55
(d) $\rho=0.9$											
	T_{12}				T_{13}				T_{23}		
0.08	0.10	0.08	0.02	0.01	0.04	0.09	0.13	0.01	0.03	0.03	0.01
$1.55 \mathrm{E}-03$	0.03	0.10	0.10	$2.79 \mathrm{E}-06$	4.19E-04	0.01	0.21	$4.82 \mathrm{E}-04$	0.01	0.05	0.07
$3.36 \mathrm{E}-05$	$2.38 \mathrm{E}-03$	0.03	0.19	7.95E-09	5.57E-06	6.92E-04	0.23	$1.34 \mathrm{E}-05$	$1.22 \mathrm{E}-03$	0.02	0.19
$1.34 \mathrm{E}-07$	$4.33 \mathrm{E}-05$	$2.57 \mathrm{E}-03$	0.27	$3.81 \mathrm{E}-12$	$1.32 \mathrm{E}-08$	7.64E-06	0.27	$6.83 \mathrm{E}-08$	$2.85 \mathrm{E}-05$	$2.19 \mathrm{E}-03$	0.58

Table 5. The second-order marginal probability tables, formed by using cutpoints for each variable at $\mu_{1}, \mu_{1} \pm 0.6$, for an underlying joint trivariate normal distribution with the conditions $\mu_{1}=\mu_{2}=\mu_{3}, \sigma^{2}=1, \rho_{12}=0,0.3,0.6,0.9$ and
$\rho_{13}=\rho_{23}=0 . T_{s t}$ is the marginal table of Y_{s} and Y_{t}.

(a)	$=0$,	$\rho_{13}=$	23 $=$								
T_{12}				T_{13}				T_{23}			
0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08
0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06
0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06
0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08
(b) $\rho_{12}=0.3, \rho_{13}=\rho_{23}=0$											
T_{12}				T_{13}				T_{23}			
0.11	0.07	0.05	0.04	0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08
0.07	0.05	0.05	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06
0.05	0.05	0.05	0.07	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06
0.04	0.05	0.07	0.11	0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08

Table 5. (continued)

(c) $\rho_{12}=$	$6, \rho_{1}$	$=\rho_{2}$	$=0$								
T_{12}				T_{13}				T_{23}			
0.15	0.07	0.04	0.02	0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08
0.07	0.06	0.06	0.04	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06
0.04	0.06	0.06	0.07	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06
0.02	0.04	0.07	0.15	0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08
(d) $\rho_{12}=0.9, \rho_{13}=\rho_{23}=0$											
T_{12}				T_{13}				T_{23}			
0.21	0.05	0.01	$2.04 \mathrm{E}-04$	0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08
0.05	0.11	0.06	0.01	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06
0.01	0.06	0.11	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06
$2.04 \mathrm{E}-04$	0.01	0.05	0.21	0.08	0.06	0.06	0.08	0.08	0.06	0.06	0.08

Table 6. Values of $\Phi_{T M}$ and Φ (a) for each of Tables 2,3 and 4 and (b) for Table 5

(a)						
ρ	Table 2		Table 3		Table 4	
	$\Phi_{T M}$	Φ	$\Phi_{T M}$	Φ	$\Phi_{T M}$	Φ
0	0.038	0.051	0.078	0.103	0.123	0.161
0.3	0.038	0.059	0.078	0.116	0.123	0.176
0.6	0.038	0.078	0.078	0.147	0.123	0.211
0.9	0.038	0.156	0.078	0.241	0.123	0.292

(b)		
ρ_{12}	$\Phi_{T M}$	Φ
0	0	0
0.3	0	0.005
0.6	0	0.025
0.9	0	0.084

[^0]
[^0]: Yusuke Saigusa
 Department of Information Sciences, Faculty of Science and Technology,
 Tokyo University of Science
 Noda City, Chiba, 278-8510, Japan
 E-mail: saigusaysk@gmail.com
 Kouji Tahata
 Department of Information Sciences, Faculty of Science and Technology,
 Tokyo University of Science
 Noda City, Chiba, 278-8510, Japan
 E-mail: kouji_tahata@is.noda.tus.ac.jp

 Sadao Tomizawa
 Department of Information Sciences, Faculty of Science and Technology,
 Tokyo University of Science
 Noda City, Chiba, 278-8510, Japan
 E-mail: tomizawa@is.noda.tus.ac.jp

