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Abstract. As a generalization of quasi-Einstein manifold, De and Ghosh
introduced the notion of generalized quasi-Einstein manifold. The object of
the present paper is to study Ricci pseudosymmetric generalized quasi-Einstein
manifolds (briefly, G(QE)n) in the framework of pseudo-Riemannian geometry.
Specifically, we study the concircular Ricci pseudosymmetric G(QE)n, projec-
tive Ricci pseudosymmetric G(QE)n, W3-Ricci pseudosymmetric G(QE)n, con-
harmonic Ricci pseudosymmetric G(QE)n, conformal Ricci pseudosymmetric
G(QE)n and quasi-conformal Ricci pseudosymmetric G(QE)n.
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§1. Introduction

It is well known that a pseudo-Riemannian manifold (Mn, g)(n > 2) is Ein-
stein if its Ricci tensor S of type (0,2) is of the form S = αg, where α is a
constant, which turns into S = r

ng, r being the scalar curvature (constant)
of the manifold. Let (Mn, g)(n ≥ 3) be a pseudo-Riemannian manifold. Let
US = {x ∈ M : S ̸= r

ng at x}. Then the manifold (Mn, g) is said to be
quasi-Einstein manifold ([2],[8],[10], [11],[13]–[17],[19],[21],[22]) if on US ⊂ M ,
we have

(1.1) S − αg = βA⊗A,

where A is a unit 1-form on US and α, β are some functions on US . It is
clear that the 1-form A as well as the function β are non-zero at every point
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on US . From the above definition, it follows that every Einstein manifold is
quasi-Einstein. In particular, every Ricci-flat manifold (e.g. Schwarzschild
spacetime) is quasi-Einstein. The scalars α, β are known as the associated
scalars of the manifold. Also, the unit 1-form A is called the associated 1-
form of the manifold defined by g(X, ρ) = A(X) for any vector field X; ρ
being a unit vector field, called the generator of the manifold. Such an n-
dimensional quasi-Einstein manifold is denoted by (QE)n. The quasi-Einstein
manifolds has also been studied among other by De and De [3], De and Ghosh
[4], Deszcz, Hotloś and Sentürk [18], Deszcz, Glogowska, Hotloś and Sawicz
[12], Shaikh, Yoon and Hui [30], Shaikh, Kim and Hui [31], Shaikh and Patra
[32].

As a generalization of quasi-Einstein manifold, in [5], De and Ghosh in-
troduced and studied the notion of generalized quasi-Einstein manifold. A
pseudo-Riemannian manifold (Mn, g)(n ≥ 3) is said to be generalized quasi-
Einstein manifold if its Ricci tensor S of type (0,2) is not identically zero and
satisfies the following:

(1.2) S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + γB(X)B(Y ),

where α, β, γ are scalars of which β ̸= 0, γ ̸= 0 and A, B are orthonormal
system of 1-forms such that g(X, ρ) = A(X), g(X,µ) = B(X) for all vector
fields X. The unit vectors ρ and µ corresponding to the 1-forms A and B
are orthogonal to each other. Also, ρ and µ are known as the generators of
the manifold. Such an n-dimensional manifold is denoted by G(QE)n. The
generalized quasi-Einstein manifolds are also studied by De and Ghosh [6],
Shaikh and Hui [29] and many others.

Again, as a generalization of quasi-Einstein manifold, recently Shaikh [28]
introduced the notion of pseudo quasi-Einstein manifolds. A pseudo-
Riemannian manifold (Mn, g)(n ≥ 3) is said to be pseudo quasi-Einstein man-
ifold if its Ricci tensor S of type (0,2) is not identically zero and satisfies the
following:

(1.3) S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + γD(X,Y ),

where α, β, γ are scalars of which β ̸= 0, γ ̸= 0 and D is a trace free sym-
metric tensor of type (0,2) such that D(X, ρ) = 0 for any vector field X. It
follows that every quasi-Einstein manifold is a pseudo quasi-Einstein manifold
but not conversely as follows by various examples given in [28].

It is known that the outer product of two covariant tensors is a tensor of
type (0,2) but the converse is not true, in general [7]. Consequently, the ten-
sor D can not be decomposed into product of two 1-forms. In particular, if
D = B⊗B, B being a non-zero 1-form, then a pseudo quasi-Einstein manifold
reduces to generalized quasi-Einstein manifold by De and Ghosh [5].
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An n-dimensional pseudo-Riemannian manifold (Mn, g) is called Ricci pseu-
dosymmetric [9] if the tensor R·S and the Tachibana tensorQ(g, S) are linearly
dependent, where

(1.4) (R(X,Y ) · S)(Z,U) = −S(R(X,Y )Z,U)− S(Z,R(X,Y )U),

(1.5) Q(g, S)(Z,U ;X,Y ) = −S((X ∧g Y )Z,U)− S(Z, (X ∧g Y )U),

and

(1.6) (X ∧g Y )Z = g(Y, Z)X − g(X,Z)Y

for all vector fields X,Y, Z, U of M , R denotes the curvature tensor of M .
Then (Mn, g) is Ricci pseudosymmetric if and only if

(1.7) (R(X,Y ) · S)(Z,U) = LSQ(g, S)(Z,U ;X,Y )

holds on US = {x ∈ M : S ̸= r
ng at x}, where LS is some function on US . If

R ·S = 0, then Mn is called Ricci semisymmetric. Every Ricci semisymmetric
manifold is Ricci pseudosymmetric but the converse is not true [9]. In [5] De
and Ghosh studied Ricci semisymmetric G(QE)n and in [23], Shaikh and Hui
studied Ricci pseudosymmetric G(QE)n.

The object of the present paper is to study Ricci pseudosymmetric G(QE)n.
The paper is organized as follows. Section 2 is concerned with preliminar-
ies including the known examples of G(QE)n. These examples ensured the
existence of G(QE)n. In sections 3-8, we investigate, respectively, the con-
circular Ricci pseudosymmetric G(QE)n, the projective Ricci pseudosymmet-
ric G(QE)n, W3-Ricci pseudosymmetric G(QE)n, conharmonic Ricci pseu-
dosymmetric G(QE)n, conformal Ricci pseudosymmetric G(QE)n and quasi-
conformal Ricci pseudosymmetric G(QE)n. In each of the case, we obtained
that either the associated scalars β and γ are equal or the curvature ten-
sor R satisfies a definite condition. Finally, in the last section, we gave the
geometrical significance of the paper.

§2. Preliminaries

In this section, we will obtain some formulas of G(QE)n, which will be required
in the sequel. Let {ei : i = 1, 2, · · · , n} be an orthonormal frame field at any
point of the manifold. Then settingX = Y = ei in (1.2) and taking summation
over i, 1 ≤ i ≤ n, we obtain

(2.1) r = nα+ ϵAβ + ϵBγ,
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where r is the scalar curvature of the manifold and ϵA = g(ρ, ρ)(= ±1) and
ϵB = g(µ, µ)(= ±1). Also, from (1.2), we have

(2.2) S(X, ρ) = (α+ ϵAβ)A(X), S(ρ, ρ) = ϵAα+ β,

(2.3) S(X,µ) = (α+ ϵBγ)B(X), S(µ, µ) = ϵBα+ γ

and

(2.4) S(ρ, µ) = 0.

Let Q be the Ricci-operator. Then g(QX,Y ) = S(X,Y ) for all X, Y .
Below are some known examples of G(QE)n.
Example 2.1. An n-dimensional hypersurface M , n ≥ 3, in a Riemannian
manifold M̃ is said to be quasi-umbilical [20] at a point x ∈ M if at the point
x its second fundamental tensor H satisfies the relation

H = ag + bω ⊗ ω,

where ω is an 1-form and a and b are some functions on M . If a = 0 (respec-
tively, b = 0 or a = b = 0) holds at x then it is called cylindrical (respectively,
umbilical or geodesic) at x.

It is proved that [5] a 2-quasi umbilical hypersurface of a Euclidean space
is a generalized quasi-Einstein manifold.
Example 2.2. In contact metric geometry, a Kenmotsu manifold with con-
stant ϕ-holomorphic sectional curvature c is called Kenmotsu-space-form and
the curvature tensor of such a manifold is given by [33]

R̃(X,Y )Z =
c− 3

4

{
g(Y,Z)X − g(X,Z)Y

}
+

c+ 1

4

{
g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ

}
+

c+ 1

4

[
η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ
]
.

Let M be a quasi-umbilical hypersurface of a Kenmotsu-space-form M̃n(c),
n = 2m+ 1. Then M is a generalized quasi-Einstein manifold [33].
Example 2.3. [29] Let (M4, g) be a Riemannian manifold endowed with the
metric given by

ds2 = gijdx
idxj = (1+2p)[(dx1)2+(dx2)2+(dx3)2+(dx4)2], (i, j = 1, 2, 3, 4),

where p = ex
1

k2
and k is a non-zero constant. Then (M4, g) is a G(QE)4 with

non-vanishing scalar curvature which is not quasi-Einstein.
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Example 2.4. [29] Let (M4, g) be a Riemannian manifold endowed with the
metric given by

ds2 = e2x
1
(dx1)2 + sin2 x1[(dx2)2 + (dx3)2 + (dx4)2],

where 0 < x1 < π
2 but x1 ̸= π

4 . Then (M4, g) is a G(QE)4 with non-vanishing
scalar curvature which is not quasi-Einstein.

§3. Concircular Ricci pseudosymmetric G(QE)n

A transformation of an n-dimensional pseudo-Riemannian manifold M , which
transforms every geodesic circle of M into a geodesic circle, is called a concir-
cular transformation [34]. The interesting invariant of a concircular transfor-
mation is the concircular curvature tensor C̃, which is defined by [34]

(3.1) C̃(X,Y )Z = R(X,Y )Z − r

n(n− 1)

[
g(Y, Z)X − g(X,Z)Y

]
,

where r is the scalar curvature of the manifold.
An n-dimensional pseudo-Riemannian manifold (Mn, g) is said to be con-

circular Ricci pseudosymmetric if its concircular curvature tensor C̃ satisfies

(3.2) (C̃(X,Y ) · S)(Z,U) = LSQ(g, S)(Z,U ;X,Y )

holds on US = {x ∈ M : S ̸= r
ng at x}, where LS is some function on US .

We now state our result on concircular Ricci pseudosymmetric G(QE)n.

Theorem 3.1. In a concircular Ricci pseudosymmetric G(QE)n, either the
associated scalars β and γ satisfy β = ϵAϵBγ or the curvature tensor R of the
manifold satisfies the relation

R(X,Y, ρ, µ) =
[
LS +

r

n(n− 1)

]
{A(Y )B(X)−A(X)B(Y )},

where ϵA = g(ρ, ρ) and ϵB = g(µ, µ).

Proof. Let us take a concircular Ricci pseudosymmetric G(QE)n. Then we
get (3.2). From (3.2), we get

S(C̃(X,Y )Z,U) + S(Z, C̃(X,Y )U) = LS [g(Y, Z)S(X,U)(3.3)

−g(X,Z)S(Y,U) + g(Y, U)S(X,Z)− g(X,U)S(Y,Z)].

By virtue of (1.2) and (3.1) it follows from (3.3) that

β[A(C̃(X,Y )Z)A(U) +A(Z)A(C̃(X,Y )U)] + γ[B(C̃(X,Y )Z)B(U)

+B(Z)B(C̃(X,Y )U)] = LS [β{g(Y,Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+g(Y, U)A(X)A(Z)− g(X,U)A(Y )A(Z)}+ γ{g(Y, Z)B(X)B(U)

−g(X,Z)B(Y )B(U) + g(Y, U)B(X)B(Z)− g(X,U)B(Y )B(Z)}].
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Setting Z = ρ and U = µ in the equation above, we get

(3.4) (ϵAϵBγ − β)[C̃(X,Y, ρ, µ)− LS{A(Y )B(X)−A(X)B(Y )}] = 0,

which yields either β = ϵAϵBγ or

(3.5) C̃(X,Y, ρ, µ) = LS{A(Y )B(X)−A(X)B(Y )}.

Using (3.1) in (3.5), we get

(3.6) R(X,Y, ρ, µ) =
[
LS +

r

n(n− 1)

]
{A(Y )B(X)−A(X)B(Y )}.

If the scalar curvature r is identically equal to zero then C̃(X,Y )Z =
R(X,Y )Z for all X, Y , Z, and hence we can state the following:

Corollary 3.1. In a Ricci semisymmetric G(QE)n, either the associated
scalars β and γ satisfy β = ϵAϵBγ or the curvature tensor R of the mani-
fold satisfies the relation

R(X,Y, ρ, µ) = LS{A(Y )B(X)−A(X)B(Y )}.

Note that the above corollary is similar to the result of Shaikh and Hui in
[29].
Now plugging X = ρ and Y = µ in (3.6), we get

(3.7) LS = −
[
ϵAϵBR(ρ, µ, ρ, µ) +

r

n(n− 1)

]
.

This leads to the following:

Theorem 3.2. In a concircular Ricci pseudosymmetric G(QE)n with β ̸=
ϵAϵBγ, LS is determined by the relation (3.7).

§4. Projective Ricci pseudosymmetric G(QE)n

The projective transformation on a pseudo-Riemannian manifold is a transfor-
mation under which geodesic transforms into geodesic. The Weyl projective
curvature tensor is given by [7]

(4.1) P (X,Y )Z = R(X,Y )Z − 1

n− 1

[
S(Y, Z)X − S(X,Z)Y

]
.

An n-dimensional pseudo-Riemannian manifold (Mn, g) is said to be pro-
jective Ricci pseudosymmetric if its projective curvature tensor P satisfies

(4.2) (P (X,Y ) · S)(Z,U) = LSQ(g, S)(Z,U ;X,Y ).

holds on US = {x ∈ M : S ̸= r
ng at x}, where LS is some function on US .

We now state our result on projective Ricci pseudosymmetric G(QE)n.
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Theorem 4.1. In a projective Ricci pseudosymmetric G(QE)n, either the
associated scalars β and γ satisfy β = ϵAϵBγ or the curvature tensor R of the
manifold satisfies the relation

R(X,Y, ρ, µ) =
[
LS +

1

n− 1

]
{A(Y )B(X)−A(X)B(Y )}.

Proof. Consider a projective Ricci pseudosymmetric G(QE)n. Then we get
(4.2), i.e.,

S(P (X,Y )Z,U) + S(Z,P (X,Y )U) = LS [g(Y, Z)S(X,U)(4.3)

−g(X,Z)S(Y, U) + g(Y,U)S(X,Z)− g(X,U)S(Y, Z)].

By virtue of (1.2) and (4.1) it follows from (4.3) that

α
[
g(P (X,Y )Z,U) + g(Z,P (X,Y )U)

]
+β[A(P (X,Y )Z)A(U) +A(Z)A(P (X,Y )U)] + γ[B(P (X,Y )Z)B(U)

+B(Z)B(P (X,Y )U)] = LS [β{g(Y, Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+g(Y, U)A(X)A(Z)− g(X,U)A(Y )A(Z)}+ γ{g(Y, Z)B(X)B(U)

−g(X,Z)B(Y )B(U) + g(Y,U)B(X)B(Z)− g(X,U)B(Y )B(Z)}].

Setting Z = ρ and U = µ in the equation above, we get

(α+ ϵBγ)P (X,Y, ρ, µ) + (α+ ϵAβ)P (X,Y, µ, ρ)(4.4)

= LS(ϵBγ − ϵAβ){A(Y )B(X)−A(X)B(Y )}.

In view of (4.1), (4.4) yields

(4.5) (ϵAϵBγ − β)[P (X,Y, ρ, µ)− LS{A(Y )B(X)−A(X)B(Y )}] = 0,

which yields either β = ϵAϵBγ or

(4.6) R(X,Y, ρ, µ) =

(
LS +

1

n− 1

)
{A(Y )B(X)−A(X)B(Y )}.

Now putting X = ρ and Y = µ in (4.6), we get

(4.7) LS = −ϵAϵBR(ρ, µ, ρ, µ).

This leads to the following:

Theorem 4.2. In a projective Ricci pseudosymmetric G(QE)n with β ̸=
ϵAϵBγ, LS is determined by the relation (4.7).
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§5. W3-Ricci pseudosymmetric G(QE)n

In 1973 Pokhariyal [27] introduced the notion of a new curvature tensor, de-
noted by W3 and studied its relativistic significance. The W3-curvature tensor
of type (1,3) is defined by

(5.1) W3(X,Y )Z = R(X,Y )Z +
1

n− 1

[
g(Y, Z)QX − S(X,Z)Y

]
,

where R is the curvature tensor and Q is the Ricci-operator, i.e., g(QX,Y ) =
S(X,Y ) for all X, Y .

An n-dimensional pseudo-Riemannian manifold (Mn, g) is said to be W3-
Ricci pseudosymmetric if it satisfies

(5.2) (W3(X,Y ) · S)(Z,U) = LSQ(g, S)(Z,U ;X,Y ).

holds on US = {x ∈ M : S ̸= r
ng at x}, where LS is some function on US .

We now state our result on W3-Ricci pseudosymmetric G(QE)n.

Theorem 5.1. In a W3-Ricci pseudosymmetric G(QE)n, either the associated
scalars β and γ satisfy β = ϵAϵBγ or the curvature tensor R of the manifold
satisfies the relation

R(X,Y, ρ, µ) =
(
LS − α+ ϵBγ

n− 1

)
A(Y )B(X)−

(
LS − α+ ϵAβ

n− 1

)
A(X)B(Y ).

Proof. Consider a W3-Ricci pseudosymmetric G(QE)n. Then we get (5.2),
i.e.,

S(W3(X,Y )Z,U) + S(Z,W3(X,Y )U) = LS [g(Y, Z)S(X,U)(5.3)

−g(X,Z)S(Y, U) + g(Y, U)S(X,Z)− g(X,U)S(Y,Z)].

Using (1.2) in (5.3), we get by virtue of (5.1) that

α
[
g(W3(X,Y )Z,U) + g(Z,W3(X,Y )U)

]
+β[A(W3(X,Y )Z)A(U) +A(Z)A(W3(X,Y )U)] + γ[B(W3(X,Y )Z)B(U)

+B(Z)B(W3(X,Y )U)] = LS [β{g(Y, Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+g(Y,U)A(X)A(Z)− g(X,U)A(Y )A(Z)}+ γ{g(Y,Z)B(X)B(U)

−g(X,Z)B(Y )B(U) + g(Y, U)B(X)B(Z)− g(X,U)B(Y )B(Z)}].

Since g(W3(X,Y )Z,U) = −g(W3(X,Y )U,Z), we get the following

β[A(W3(X,Y )Z)A(U) +A(Z)A(W3(X,Y )U)] + γ[B(W3(X,Y )Z)B(U)

+B(Z)B(W3(X,Y )U)] = LS [β{g(Y,Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+g(Y, U)A(X)A(Z)− g(X,U)A(Y )A(Z)}+ γ{g(Y, Z)B(X)B(U)

−g(X,Z)B(Y )B(U) + g(Y, U)B(X)B(Z)− g(X,U)B(Y )B(Z)}].
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Setting Z = ρ and U = µ in the above equation, we get

(5.4) (ϵAϵBγ − β)[W3(X,Y, ρ, µ)− LS{A(Y )B(X)−A(X)B(Y )}] = 0,

which yields either β = ϵAϵBγ or

(5.5) W3(X,Y, ρ, µ) = LS{A(Y )B(X)−A(X)B(Y )}.

By virtue of (2.2), (2.3) and (5.1) it follows from (5.5) that
(5.6)

R(X,Y, ρ, µ) =
(
LS − α+ ϵBγ

n− 1

)
A(Y )B(X)−

(
LS − α+ ϵAβ

n− 1

)
A(X)B(Y ).

We now put X = ρ and Y = µ in (5.6), we get

(5.7) LS =
α+ ϵAβ

n− 1
− ϵAϵBR(ρ, µ, ρ, µ).

This leads to the following:

Theorem 5.2. In a W3-Ricci pseudosymmetric G(QE)n with β ̸= ϵAϵBγ, LS

is determined by the relation (5.7).

§6. Conharmonic Ricci pseudosymmetric G(QE)n

As a special subgroup of the conformal transformation group, Ishii [24] in-
troduced the notion of conharmonic transformation under which a harmonic
function transform into a harmonic function. The conharmonic curvature ten-
sor of type (1,3) on a Riemannian manifold (Mn, g), n > 3, is given by [24].

C(X,Y )Z = R(X,Y )Z − 1

n− 2

[
S(Y,Z)X(6.1)

−S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY
]
,

which is invariant under conharmonic transformation, where S is the Ricci
tensor of the manifold of type (0,2).

An n-dimensional pseudo-Riemannian manifold (Mn, g) is said to be con-
harmonic Ricci pseudosymmetric if its conharmonic curvature tensor C satis-
fies

(6.2) (C(X,Y ) · S)(Z,U) = LSQ(g, S)(Z,U ;X,Y ).

holds on US = {x ∈ M : S ̸= r
ng at x}, where LS is some function on US .

We now state our result on conharmonic Ricci pseudosymmetric G(QE)n.
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Theorem 6.1. In a conharmonic Ricci pseudosymmetric G(QE)n, either the
associated scalars β and γ satisfy β = ϵAϵBγ or the curvature tensor R of the
manifold satisfies the relation

R(X,Y, ρ, µ) =
[
LS +

2α+ ϵAβ + ϵBγ

n− 2

][
A(Y )B(X)−A(X)B(Y )

]
.

Proof. Suppose we have a manifold which is a conharmonic Ricci pseudosym-
metric G(QE)n. Then we get (6.2), which implies that

S(C(X,Y )Z,U) + S(Z,C(X,Y )U) = LS [g(Y, Z)S(X,U)(6.3)

−g(X,Z)S(Y,U) + g(Y, U)S(X,Z)− g(X,U)S(Y,Z)].

Using (1.2) and (6.1) in (6.3), we obtain

β[A(C(X,Y )Z)A(U) +A(Z)A(C(X,Y )U)] + γ[B(C(X,Y )Z)B(U)

+B(Z)B(C(X,Y )U)] = LS [β{g(Y, Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+g(Y, U)A(X)A(Z)− g(X,U)A(Y )A(Z)}+ γ{g(Y, Z)B(X)B(U)

−g(X,Z)B(Y )B(U) + g(Y,U)B(X)B(Z)− g(X,U)B(Y )B(Z)}].

Setting Z = ρ and U = µ in the above equation, we get

(6.4) (ϵAϵBγ − β)[C(X,Y, ρ, µ)− LS{A(Y )B(X)−A(X)B(Y )}] = 0,

which yields either β = ϵAϵBγ or

(6.5) C(X,Y, ρ, µ) = LS{A(Y )B(X)−A(X)B(Y )}.

In view of (2.2), (2.3) and (6.1), (6.5) yields

(6.6) R(X,Y, ρ, µ) =
[
LS +

2α+ ϵAβ + ϵBγ

n− 2

][
A(Y )B(X)−A(X)B(Y )

]
.

Setting X = ρ and Y = µ in (6.6), we get

(6.7) LS = −ϵAϵBR(ρ, µ, ρ, µ)− 2α+ ϵAβ + ϵBγ

n− 2
.

This leads to the following:

Theorem 6.2. In a conharmonic Ricci pseudosymmetric G(QE)n with β ̸=
ϵAϵBγ, LS is determined by the relation (6.7).
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§7. Conformal Ricci pseudosymmetric G(QE)n

The conformal transformation on a pseudo Riemannian manifold is a trans-
formation under which the angle between two curves remains invariant. The
Weyl conformal curvature tensor C of type (1,3) of an n-dimensional pseudo-
Riemannian manifold (Mn, g)(n > 3) is defined by [7]

C(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y,Z)X − S(X,Z)Y(7.1)

+ g(Y, Z)QX − g(X,Z)QY ]

+
r

(n− 1)(n− 2)
{g(Y,Z)X − g(X,Z)Y }.

An n-dimensional pseudo-Riemannian manifold (Mn, g) is said to be con-
formal Ricci pseudosymmetric if its conformal curvature tensor C satisfies

(7.2) (C(X,Y ) · S)(Z,U) = LSQ(g, S)(Z,U ;X,Y ).

holds on US = {x ∈ M : S ̸= r
ng at x}, where LS is some function on US .

We now state our result on conformal Ricci pseudosymmetric G(QE)n.

Theorem 7.1. In a conformal Ricci pseudosymmetric G(QE)n, either the
associated scalars β and γ satisfy β = ϵAϵBγ or the curvature tensor R of the
manifold satisfies the relation

R(X,Y, ρ, µ)

=
[
LS +

2α+ ϵAβ + ϵBγ

n− 2
− r

(n− 1)(n− 2)

][
A(Y )B(X)−A(X)B(Y )

]
.

Proof. Consider a conformal Ricci pseudosymmetric G(QE)n. Then we get
(7.2), which yields

S(C(X,Y )Z,U) + S(Z,C(X,Y )U) = LS [g(Y, Z)S(X,U)(7.3)

−g(X,Z)S(Y,U) + g(Y, U)S(X,Z)− g(X,U)S(Y,Z)].

Using (1.2) and (7.1) in (7.3), we obtain

β[A(C(X,Y )Z)A(U) +A(Z)A(C(X,Y )U)] + γ[B(C(X,Y )Z)B(U)

+B(Z)B(C(X,Y )U)] = LS [β{g(Y, Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+g(Y, U)A(X)A(Z)− g(X,U)A(Y )A(Z)}+ γ{g(Y, Z)B(X)B(U)

−g(X,Z)B(Y )B(U) + g(Y,U)B(X)B(Z)− g(X,U)B(Y )B(Z)}].

Setting Z = ρ and U = µ in the equation above, we get

(7.4) (ϵAϵBγ − β)[C(X,Y, ρ, µ)− LS{A(Y )B(X)−A(X)B(Y )}] = 0,
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which yields either β = ϵAϵBγ or

(7.5) C(X,Y, ρ, µ) = LS{A(Y )B(X)−A(X)B(Y )}.

Using (7.1) in (7.5), we have

R(X,Y, ρ, µ)(7.6)

=
[
LS +

2α+ ϵAβ + ϵBγ

n− 2
− r

(n− 1)(n− 2)

][
A(Y )B(X)−A(X)B(Y )

]
.

Plugging X = ρ and Y = µ in (7.6), we get

(7.7) LS =
r

(n− 1)(n− 2)
− 2α+ ϵAβ + ϵBγ

n− 2
− ϵAϵBR(ρ, µ, ρ, µ).

This leads to the following:

Theorem 7.2. In a conformal Ricci pseudosymmetric G(QE)n with β ̸=
ϵAϵBγ, LS is determined by the relation (7.7).

§8. Quasi-conformal Ricci pseudosymmetric G(QE)n

In 1968, Yano and Sawaki [35] defined and studied a curvature tensor W
of type (1,3) which includes both the conformal curvature tensor C and the
concircular curvature tensor C̃ as special cases and is called quasi-conformal
curvature tensor. The quasi-conformal curvature tensor W of type (1,3) of a
pseudo-Riemannian manifold (Mn, g)(n > 3) is defined by

(8.1) W (X,Y )Z = −(n− 2)bC(X,Y )Z + [a+ (n− 2)b]C̃(X,Y )Z,

where a and b are arbitrary constants not simultaneously zero. In particular,
if a = 1, b = 0 then W reduces to the concircular curvature tensor and if a = 1
and b = − 1

(n−2) , then W reduces to the conformal curvature tensor. Using the

expression of the conformal and the concircular curvature tensor in (8.1), the
quasi-conformal curvature tensor W of type (1,3) can be written as

W (X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y(8.2)

+ g(Y, Z)QX − g(X,Z)QY ]

− r

n
(

a

n− 1
+ 2b){g(Y, Z)X − g(X,Z)Y }.
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An n-dimensional pseudo-Riemannian manifold (Mn, g) is said to be quasi-
conformal Ricci pseudosymmetric if its quasi-conformal curvature tensor W
satisfies

(8.3) (W (X,Y ) · S)(Z,U) = LSQ(g, S)(Z,U ;X,Y ).

holds on US = {x ∈ M : S ̸= r
ng at x}, where LS is some function on US .

We now state our final result which is on quasi-conformal Ricci pseudosym-
metric G(QE)n.

Theorem 8.1. In a quasi-conformal Ricci pseudosymmetric G(QE)n, either
the associated scalars β and γ satisfy β = ϵAϵBγ or the curvature tensor R of
the manifold satisfies the relation

R(X,Y, ρ, µ)

=
1

a

[
LS − (2α+ ϵAβ + ϵBγ)b+

r

n

( a

n− 1
+ 2b

)][
A(Y )B(X)−A(X)B(Y )

]
.

Proof. Consider a quasi-conformal Ricci pseudosymmetric G(QE)n. Conse-
quently, we have (8.3), which implies that

S(W (X,Y )Z,U) + S(Z,W (X,Y )U) = LS [g(Y, Z)S(X,U)(8.4)

−g(X,Z)S(Y,U) + g(Y,U)S(X,Z)− g(X,U)S(Y, Z)].

Using (1.2) and (8.1) in (8.4), we obtain

β[A(W (X,Y )Z)A(U) +A(Z)A(W (X,Y )U)] + γ[B(W (X,Y )Z)B(U)

+B(Z)B(W (X,Y )U)] = LS [β{g(Y, Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+g(Y, U)A(X)A(Z)− g(X,U)A(Y )A(Z)}+ γ{g(Y, Z)B(X)B(U)

−g(X,Z)B(Y )B(U) + g(Y,U)B(X)B(Z)− g(X,U)B(Y )B(Z)}].

Setting Z = ρ and U = µ in the above equation, we get

(8.5) (ϵAϵBγ − β)[W (X,Y, ρ, µ)− LS{A(Y )B(X)−A(X)B(Y )}] = 0,

which yields either β = ϵAϵBγ or

(8.6) W (X,Y, ρ, µ) = LS{A(Y )B(X)−A(X)B(Y )}.

In view of (2.2), (2.3) and (8.2), (8.6) yields

aR(X,Y, ρ, µ)(8.7)

=
[
LS − (2α+ ϵAβ + ϵBγ)b+

r

n

( a

n− 1
+ 2b

)][
A(Y )B(X)−A(X)B(Y )

]
.
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Plugging X = ρ and Y = µ in (8.7), we get

(8.8) LS = (2α+ ϵAβ + ϵBγ)b−
r

n

( a

n− 1
+ 2b

)
− aϵAϵBR(ρ, µ, ρ, µ).

This leads to the following:

Theorem 8.2. In a quasi-conformal Ricci pseudosymmetric G(QE)n with
β ̸= ϵAϵBγ, LS is determined by the relation (8.8).

§9. Significance of the study

In differential geometry and mathematical physics, an Einstein manifold is a
pseudo-Riemannian manifold whose Ricci tensor is proportional to the metric
[1]. This name was given after A. Einstein because this condition is equivalent
to saying that the metric is a solution of the vacuum Einstein field equations
(with cosmological constant), although the dimension, as well as the signa-
ture, of the metric can be arbitrary, unlike the four-dimensional Lorentzian
manifolds usually studied in general relativity. Einstein manifolds has many
applications in mathematical physics such as string theory and supergravity.

The generalizations of Einstein manifolds help us to have a deeper under-
standing of the global characteristics of the universe including its topology.
Quasi-Einstein manifold is a simple and natural generalization of an Einstein
manifold. The generalized quasi-Einstein manifold is a further generalization
of quasi-Einstein manifold. Also in Cosmology, space-time models are stud-
ied in order to represent the different phases in the evolution of the Universe
which can be divided into three phases:
Initial Phase: The initial phase is just after the big bang when the effects
of both viscosity and heat flux were quite pronounced.
Intermediate Phase: The effect of viscosity was no longer significant but
the heat flux was still not negligible.
Final Phase: This phase extends to the present state of the universe. In this
phase, both the effects of viscosity and the heat flux have become negligible
and the matter content of the universe may be assumed to be a perfect fluid.

The significance of the study of G(QE)n and (QE)n lies in the fact that
G(QE)n space-time manifold represents the second phase while (QE)n the
space-time manifold correspond to the third phase in the evolution of the
universe [23]. One way of understanding the geometric properties of such
manifolds is by studying the tensors these manifolds admit.

In this paper, we have studied the concircular Ricci pseudosymmetric
G(QE)n, projective Ricci pseudosymmetric G(QE)n, W3-Ricci pseudosym-
metric G(QE)n, conharmonic Ricci pseudosymmetric G(QE)n, conformal
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Ricci pseudosymmetric G(QE)n and quasi-conformal Ricci pseudosymmet-
ric G(QE)n. Here, each curvature tensor has geometrical significance and
hence each type of Ricci pseudosymmetries has different geometrical interpre-
tation. For instances, concircular curvature tensor is an interesting invariant of
a concircular transformation. A transformation of an n-dimensional pseudo-
Riemannian manifold M , which transforms every geodesic circle of M into
a geodesic circle, is called a concircular transformation [34]. A concircular
transformation is always a conformal transformation [26]. Here geodesic circle
means a curve in M whose first curvature is constant and whose second cur-
vature is identically zero. Thus the geometry of concircular transformations,
that is, the concircular geometry, is a generalization of inversive geometry
in the sense that the change of metric is more general than that induced by
a circle preserving diffeomorphism. Also pseudo-Riemannian manifolds with
vanishing concircular curvature tensor are of constant curvature. Thus, the
concircular curvature tensor is a measure of the failure of a pseudo-Riemannian
manifold to be of constant curvature.

The projective curvature tensor is an important tensor from the differential
point of view. Let M be an n-dimensional pseudo-Riemannian manifold. If
there exists a one to one correspondence between each coordinate neighbour-
hood of M and a domain in Euclidean space such that any geodesic of the
Riemannian manifold corresponds to a straight line in the Euclidean space,
then M is said to be locally projectively flat. For n ≥ 3, M is locally pro-
jectively flat if and only if the projective curvature tensor vanishes. Here the
projective curvature tensor P is given by (4.1). In fact M is projectively flat
if and only if it is of constant curvature [7]. Thus the projective curvature
tensor is the measure of the failure of a pseudo-Riemannian manifold to be
of constant curvature. Again the W3-curvature tensor has many relativistic
significance, see [27].

In differential geometry, the Weyl curvature tensor, named after Hermann
Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-
Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor
expresses the tidal force that a body feels when moving along a geodesic. The
Weyl tensor differs from the Riemann curvature tensor in that it does not
convey information on how the volume of the body changes, but rather only
how the shape of the body is distorted by the tidal force. The Ricci curvature,
or trace component of the Riemann tensor contains precisely the information
about how volumes change in the presence of tidal forces, so the Weyl tensor
is the traceless component of the Riemann tensor. It is a tensor that has the
same symmetries as the Riemann tensor with the extra condition that it be
trace-free: metric contraction on any pair of indices yields zero.

In general relativity, the Weyl curvature is the only part of the curvature
that exists in free space, a solution of the vacuum Einstein equation and it
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governs the propagation of gravitational radiation through regions of space
devoid of matter. More generally, the Weyl curvature is the only component
of curvature for Ricci-flat manifolds and always governs the characteristics of
the field equations of an Einstein manifold. In dimensions 2 and 3 the Weyl
curvature tensor vanishes identically. In dimensions ≥ 4, the Weyl curvature
is generally nonzero. If the Weyl tensor vanishes in dimension ≥ 4, then the
metric is locally conformally flat: there exists a local coordinate system in
which the metric tensor is proportional to a constant tensor. This fact was a
key component of Nordström’s theory of gravitation, which was a precursor of
general relativity.

The Weyl tensor has the special property that it is invariant under con-
formal changes to the metric. For this reason the Weyl tensor is also called
the conformal tensor. It follows that a necessary condition for a pseudo-
Riemannian manifold to be conformally flat is that the Weyl tensor vanish. In
dimensions ≥ 4 this condition is sufficient as well. In dimension 3 the vanishing
of the Cotton tensor is a necessary and sufficient condition for the Rieman-
nian manifold being conformally flat. Any 2-dimensional pseudo-Riemannian
manifold is conformally flat, a consequence of the existence of isothermal co-
ordinates. Conformal transformations of a pseudo-Riemannian structures are
an important object of study in differential geometry. Of considerable interest
in a special type of conformal transformations, conharmonic transformations,
which are conformal transformations are preserving the harmonicity property
of smooth functions. This type of transformation was introduced by Ishii [24]
in 1957 and is now studied from various points of view. It is well known that
such transformations have a tensor invariant, the so-called conharmonic cur-
vature tensor. It is easy to verify that this tensor is an algebraic curvature
tensor; that is, it possesses the classical symmetry properties of the pseudo
Riemannian curvature tensor. It is known that a harmonic function is defined
as a function whose Laplacian vanishes. A harmonic function is not invariant,
in general. The conditions under which a harmonic function remains invariant
have been studied by Ishii [24] who introduced the conharmonic transforma-
tion as a subgroup of the conformal transformation. A pseudo Riemannian
manifold whose conharmonic curvature tensor vanishes at every point of the
manifold is called conharmonically flat manifold. Thus this tensor represents
the deviation of the manifold from conharmonic flatness. Similarly quasi-
conformal curvature tensor has geometrical significance in physics.

A geometrical interpretation of Ricci pseudosymmetric manifolds, in the
Riemannian case, is given in [25]. Due to importance of each type of Ricci
pseudosymmetries in physics we motivate to study this topic.

Acknowledgements. The authors wish to express their sincere thanks and



RICCI PSEUDOSYMMETRIC GQE 211

gratitude to the referee for his / her valuable suggestions towards the improve-
ment of the paper.

References

[1] Besse, A. L., Einstein manifolds, classics in mathematics, Berlin, Springer, 1987.

[2] Chaki, M. C. and Maity, R. K., On quasi-Einstein manifolds, Publ. Math. De-
brecen 57(2000), 297–306.

[3] De, U. C. and De, B. K., On quasi-Einstein manifolds, Commun. Korean Math.
Soc., 23 (2008), 413–420.

[4] De, U. C. and Ghosh, G. C., On quasi-Einstein manifolds, Period. Math. Hun-
gar., 48(2004), 223–231.

[5] De, U. C. and Ghosh, G. C., On generalized quasi-Einstein manifolds, Kyung-
pook Math. J., 44 (2004), 607–615.

[6] De, U. C. and Ghosh, G. C., Some global properties of generalized quasi-Einstein
manifolds, Ganita, 56(1) (2005), 65–70.

[7] De, U. C. and Shaikh, A. A., Differential Geometry of Manifolds, Narosa Pub-
lishing House Pvt. Ltd., New Delhi, 2007.
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[15] Deszcz, R. and Hotloś, M., On hypersurfaces with type number two in spaces of
constant curvature, Annales Univ. Sci. Budapest. Eötvös Sect. Math., 46(2003),
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