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§1. Introduction

Lichnerowicz showed that every holomorphic map between compact almost
Kähler manifolds (i.e., compact symplectic manifolds with compatible almost
Hermitian structures) minimizes the energy in its homotopy class, hence holo-
morphic maps are stable harmonic maps [30].

Since the harmonicity of smooth maps from Riemannian 2-manifolds into
Riemannian manifolds is invariant under conformal transformations of domain
manifolds, harmonicity makes sense for maps from Riemann surfaces into
Riemannian manifolds.

Let M be a complex manifold. A smooth map φ :M → N into a Rieman-
nian manifold is said to be pluriharmonic if its (0, 1)-exterior derivative of the
(1, 0)-derivative ∂φ of φ vanishes. In particular, when M is of complex di-
mension 1, pluriharmonicity is equivalent to harmonicity. Thus pluriharmonic
map theory is a higher dimensional generalization of theory of harmonic maps
from Riemann surfaces.

For maps between Kähler manifolds, pluriharmonicity is weaker than holo-
morphicity and stronger than harmonicity. One can see many interesting
examples of non-holomrphic pluriharmonic maps between Kähler manifolds.
Moreover, pluriharmonic maps into Riemannian symmetric spaces admit nat-
ural deformation family. Thus pluriharmonic immersions can be regarded as
a higher dimensional generalization of minimal surfaces in Euclidean 3-space.
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The existence of natural deformation family characterizes pluriharmonicity
(Eschenburg-Tribuzy [17]). The so-called loop group methods can be ap-
plied to pluriharmonic maps into Riemannian symmetric spaces (Dorfmeister-
Eschenburg [11]). Pluriharmonic maps play important roles in Kähler geom-
etry. See e.g., Udagawa [52].

On the other hand, in odd-dimensional geometry, more precisely, contact
geometry (or CR-geometry), one can study holomorphic maps (or CR-maps)
and harmonic maps between contact Riemannian manifolds.

In contrast to Kähler geometry, although holomorphic maps between com-
pact strongly pseudo convex CR-manifolds are harmonic, but not necessarily,
energy-minimizing. In fact, the identity map of odd-dimensional sphere S2n+1

is unstable ([58]).
From the viewpoint of G-structures, both Kähler manifolds and strongly

pseudo convex CR-manifolds can be treated as special examples of so-called
Riemannian f -manifolds or manifolds with U(n)×O(k)–structure.

An f -structure on a manifold M is an endomorphism field F such that
F 3 + F = 0. This notion was introduced by Yano [59].

Rawnsley studied harmonicity of holomorphic curves in f -manifolds [41].
Lichnerowicz’s theorem for holomorphic maps can be generalized to more gen-
eral Riemannian f -manifolds under the condition (A) in the sense of Rawnsley
[41] (see Definition 5).

On the other hand, inspired by Lichnerowicz’ result, Urakawa [54] initiated
the study of harmonic maps between strongly pseudo convex CR-manifolds.

Strongly pseudo convex CR-manifolds can be characterized as contact Rie-
mannian manifolds satisfying certain integrability condition (see [51]). Strongly
pseudo convex property is weaker than Sasakian condition for contact Rieman-
nian manifolds.

However, the condition (A) does not fit with contact or CR-structure. In
fact, Sasakian manifolds (normal strongly pseudo convex CR-manifolds) never
satisfy condition (A). Ianus and Pastore have shown that every holomorphic
map between contact Riemannian manifolds is harmonic [21]. This is a gen-
eralization of Urakawa’s result [54].

Several kinds of harmonic maps from or into contact manifolds are studied
by Gherghe, Ianus and Pastore [18], [21]. In [43], Saotome studied holomorphic
maps from Sasakian 3-manifolds into strongly pseudo convex CR-manifolds.

On the other hand, study of harmonic maps into non-contact almost contact
manifolds are very few.

In this paper we study harmonicity of holomorphic maps into quasi-Sasakian
manifolds and Kenmotsu manifolds.

In stead of harmonicity, Barletta, Dragomir and Urakawa [1] introduced
the notion of pseudo-harmonic map for maps from nondegenerate pseudo-
Hermitian CR-manifolds into manifolds with linear connection. They gave a
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variational characterization of pseudo-harmonic maps and studied stability of
those maps.

In this paper we discuss several candidates of “pluriharmonic maps” in
CR-geometry.

The author would like to thank professor Seiichi Udagawa for his careful
reading of the manuscript and his information on Iwamatsu’s work [22]. He
also would like to thank professor Marian Ioan Munteanu and the referee for
their useful comments.

§2. Harmonic maps

Let (M, g) and (N,h) be Riemannian manifolds and φ : M → N a smooth
map. Then φ induces a vector bundle φ∗TN over N by

φ∗TN = {(p,X) ∈M × TN | φ(p) = π(X)}.

Here TN is the tangent bundle of N with natural projection π : TN → N (see
[53, p. 124]). The space of all smooth sections of TN and φ∗TN are denoted
by Γ (TN) and Γ (φ∗TN), respectively.

The Levi-Civita connection h∇ of N induces a connection h∇φ on φ∗TN
which satisfies the condition

h∇φ
X(V ◦ φ) = (h∇φ∗XV ) ◦ φ,

for all X ∈ Γ (TM) and V ∈ Γ (TN) (see [14, p. 4] or [53, p. 126]).
The second fundamental form h∇dφ of φ is defined by

(h∇dφ)(Y ;X) = h∇φ
Xdφ(Y )− dφ(g∇XY ), X, Y ∈ Γ (TM).

Here g∇ is the Levi-Civita connection of (M, g).
The energy density e(φ) of φ is a smooth function on M defined by

e(φ) :=
1

2
trg(φ

∗h).

The energy of φ over a compact region D is defined by

E(φ;D) =

∫
D
e(φ)dvg.

Here dvg is the volume element of (M, g). A smooth map φ is said to be
harmonic if it is a critical point of the energy over any compact region of M .

The first variation formula of the energy is given by (see [15]):

d

dt

∣∣∣∣
t=0

E(φt;D) = −
∫
D
h(τ(φ), V )dvg, V =

d

dt

∣∣∣∣
t=0

φt,
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where φt : M × (−ε, ε) → N is a smooth variation through φ = φ0 and τ(φ)
is a section of φ∗TN defined by

τ(φ) = trg (
h∇φdφ).

The section τ(φ) is called the tension field of φ.
The first variation formula implies that, a map φ is harmonic if and only

if its tension field vanishes.
Let {ei}mi=1 be a local orthonormal frame field of M . Then the tension field

is computed as

(2.1) τ(φ) =

m∑
i=1

{
h∇φ

ei(φ∗ei)− φ∗(
g∇eiei)

}
.

Next, we recall the notion of vertical harmonicity introduced by Wood [57].
Let (P, gP ) and (B, gB) be Riemannian manifolds and assume that there ex-

ists a Riemannian submersion π : P → B. Denote by V the vertical subbundle
of the tangent bundle TP :

V =
∪
u∈P

Vu, Vu = Ker( π∗u), u ∈ P.

The horizontal distribution H is defined by

H =
∪
u∈P

Hu, Hu = Ker( π∗u)
⊥, u ∈ P.

Now let φ : (M, g) → (P, gP ) be a smooth map. Then the tension field
τ(φ) is decomposed as τ(φ) = τH(φ) + τV(φ) according to the splitting:

TuP = Hu ⊕ Vu.

Then φ is said to be vertically harmonic if its vertical tension field τV(φ)
vanishes.

In case φ : M = B → P is a section, then the vertical harmonicity of φ is
equivalent to the criticality of the vertical energy of φ. See [57].

§3. CR-manifolds

Here we recall the notion of CR-structure (Cauchy-Riemann structure).

Definition 1. Let M be a manifold. A complex vector subbundle S of the
complexified tangent bundle TCM is said to be an almost CR-structure if
S∩S̄ = {0}. A manifoldM equipped with an almost CR-structure is called an



HARMONIC MAPS 357

almost CR-manifold. An almost CR-structure is called integrable if the space
Γ (S) of all smooth sections satisfies the following integrability condition:

(3.1) [Γ (S), Γ (S)] ⊂ Γ (S).

A manifold M together with an integrable almost CR-structure is called a
CR-manifold. An integrable almost CR-structure is called a CR-structure.

Let (M,S) be an almost CR-manifold. Then there exists a real vector sub-
bundle P of the tangent bundle TM and an endomorphism field J ∈ Γ (EndP )
such that

PC = S ⊕ S̄, J2 = −I.

In fact, J is uniquely defined by

J(Z + Z̄) =
√
−1(Z − Z̄), Z ∈ Γ (S).

The pair (P, J) is called the real expression of S.
An almost complex manifold (M,J) is an almost CR-manifold. In fact,

S = T (1,0)M = {X −
√
−1JX | X ∈ TM}

is an almost CR-structure. The resulting almost CR-manifold (M,S) is inte-
grable if and only if J is integrable.

Definition 2. Let E be a complex vector bundle over (M,S). Then E is said
to be holomorphic if there exists a differential operator

∂̄ = ∂̄E : Γ (E) → Γ (E ⊗ S̄∗); ζ 7−→ ∂̄ζ

such that

∂̄Z̄(f ζ) = (Z̄f)ζ + f∂̄Z̄ζ,(3.2)

∂̄Z̄(∂̄W ζ)− ∂̄W (∂̄Z̄ζ)− ∂̄[Z̄,W ]ζ = 0(3.3)

for all Z,W ∈ Γ (S), f ∈ C∞(M,C) and ζ ∈ Γ (E). Here we used the notation
Z̄ ζ = ∂̄Z̄ζ.

The operator ∂̄ is called the Cauchy-Riemann operator of E.

As we shall see later the CR-structure S is a holomorphic vector bundle
over a normal strongly pseudo convex CR-manifold.



358 J. INOGUCHI

§4. Riemannian f-manifolds

In the preceding section we discussed almost CR-structures which are regarded
as generalizations of almost complex structure. In this section we discuss
another generalization of almost complex structure introduced by Yano.

Definition 3. ([59]) Let M be a manifold and F is an endomorphism field.
Then F is said to be an f -structure if F 3 + F = 0.

Stong showed that every f -structure has constant rank [44].

Obviously, the almost complex structure J of an almost complex manifold
is a typical example of f -structure. A manifoldM equipped with a f -structure
is called a f-manifold.

A Riemannian metric g on an f -manifold is said to be compatible if F is
skew-adjoint with respect to it, i.e.,

g(FX, Y ) = −g(X,FY ), X, Y ∈ X(M).

Here X(M) = Γ (TM) denotes the Lie algebra of all smooth vector fields on
M . An f -manifold together with a compatible metric is called a Riemannian
f-manifold. Almost Hermitian manifolds are typical examples of Riemannian
f -manifolds.

The fundamental 2-form ω = ωF of a Riemannian f -manifold is defined by

ω(X,Y ) = g(X,FY ), X, Y ∈ X(M).

Definition 4. Let (M,F ) and (N, F̃ ) be f -manifolds. Then a smooth map
φ : M → N is said to be an f-holomorphic map (or holomorphic map, in
short) provided that

dφ ◦ F = F̃ ◦ dφ.

Anti f -holomorphic maps are defined in a similar manner. More precisely,
a smooth map φ : (M,F ) → (N, F̃ ) between f -manifolds is said to be anti
f-holomorphic if dφ ◦ F = −F̃ ◦ dφ. We write these alternatives together as
±f -holomorphic (or ± holomorphic, in short).

Example 1. Let us denote by H3 the hyperbolic 3-space of constant cur-
vature −1. Then its unit tangent sphere bundle UH3 admits two standard
f -structures F1 and F2. Note that UH3 equipped with the CR-structure de-
termined by F1 is the twistor CR-manifold of H3 in the sense of LeBrun [29].

For a conformally immersed surfaceM ⊂ H3, its Gauss map φ :M → UH3

is F1-holomorphic if and only if M is totally umbilical. On the other hand φ
is F2-holomorphic if and only if M is minimal (Salamon [42]). A loop group
method for constructing F2-holomorphic maps into UH3 is established in [12].
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Lichnerowicz showed that every holomorphic map between almost Kähler
manifolds is harmonic, especially, it is an energy-minimizing map in its homo-
topy class. The following generalization of Lichnerowicz theorem is known.

Proposition 1. ([3],[41]) Let (M, g, J) be an almost Hermitian manifold,
(N,h, F ) a Riemannian f-manifold and φ : M → N an f-holomorphic map.
Assume that M and N satisfy the following conditions:

(1) ω is coclosed, i.e., d(∗ω) = 0,

(2) (d∇F )(1,1) = 0.

Then φ is harmonic. Here ω is the fundamental 2-form of M , ∗ is the Hodge
star operator and d∇F is the covariant-exterior derivative of F defined by

(d∇F )(X,Y ) = (h∇XF )Y − (h∇Y F )X, X, Y ∈ Γ (TN).

On a Riemannian f -manifold (M,F, g), the complexified tangent bundle
TCM splits into the direct sum:

TCM = S ⊕ S ⊕ F.

Here S, S̄ and F are eigen-subbundles of TCM with respect to F corresponding
to the eigenvalue

√
−1,−

√
−1 and 0, respectively. The subbundle S is an

almost CR-structure on M . We denote the projection TCM onto F by Π0.
The projections onto S and S are denoted by Π+ and Π−, respectively.

Let φ : (M,F ) → N be a smooth map into a manifold N , its differential
dφ is decomposed as

dφ = d+φ+ d−φ+ ðφ,

with

d+φ = dφ ◦Π+, d−φ = dφ ◦Π−, ðφ = dφ ◦Π0.

Proposition 2. Let (M,F ) and (N, F̃ ) be f-manifolds and φ : M → N
a smooth map. Denote by SM and SN the associated almost CR-structure.
Then φ is f -holomorphic if and only if

dφ(SM ) ⊂ SN , dφ(S̄M ) ⊂ S̄N , dφ(FM ) ⊂ FN .

Lemma 3. Let (M,F, g) be a Riemannian f -manifold. Then M satisfies
(d∇F )(1,1) = 0 if and only if

g∇Z̄Γ (S) ⊂ Γ (F ⊕ S), Z ∈ Γ (S),

Π0(
g∇ZW + g∇WZ) = 0, Z,W ∈ Γ (S).
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Definition 5 ([41]). We say a Riemanian f -manifold (M,F, g) satisfies the
Rawnsley’s condition (A) if

g∇Z̄ Γ (S) ⊂ Γ (S), Z ∈ Γ (S).

In particular, if (M,F, g) is an almost Hermitian manifold, then the condi-
tion (A) is equivalent to (dω)1,2 = 0. An almost Hermitian manifold satisfying
this condition is said to be (1, 2)-symplectic. The nearly Kähler 6-sphere is
a typical example of (1, 2)-symplectic almost Hermitian manifold. (see [42,
Proposition 1.4]). Note that (1, 2)-symplectic property is stronger than cosym-
plectic (coclosed fundamental 2-form) property. Hermitian (1, 2)-symplectic
manifolds are Kähler.

Proposition 4. ([41, Proposition 2.6]) A Riemannian f -manifold (M,F, g)
satisfies condition (A) if and only if

(g∇ZF )W = 0, Z,W ∈ Γ (S).

Bejan and Benyounes [2] considered the following condition for Riemannian
f -manifolds:

Definition 6. We say that a Riemannian f -manifold (M,F, g) satisfies con-
dition (Ã) if (M,F, g) satisfies Rawnsley’s condition (A) and in addition M
satisfies

g∇UΓ (F) ⊂ Γ (F), U ∈ Γ (F).

Obviously, if F is parallel with respect to the Levi-Civita connection g∇,
condition (Ã) is equivalent to condition (A). As we will see later, the condition
(A) is a very strong restriction for (almost) contact Riemannian structures.

§5. Almost contact manifolds

Let M be a manifold of odd dimension m = 2n + 1. Then M is said to be
an almost contact manifold if its structure group GLmR of the linear frame
bundle is reducible to U(n)×{1} (cf. Ogiue [31, 32] and Ogiue-Okumura [33]).
This is equivalent to existence of an endomorphism field F , a vector field ξ
and a 1-form η satisfying

F 2 = −I + η ⊗ ξ, η(ξ) = 1.

From these conditions one can deduce that

Fξ = 0, η ◦ F = 0.
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Obviously F is an f -structure onM . Moreover, since U(n)×{1} ⊂ SO(2n+1),
M admits a Riemannian metric g satisfying

g(FX,FY ) = g(X,Y )− η(X)η(Y )

for all X, Y ∈ X(M). Such a metric is called an associated metric of the
almost contact manifold M = (M,F, ξ, η). With respect to the associated
metric g, η is metrically dual to ξ, that is

g(X, ξ) = η(X)

for all X ∈ X(M). A structure (F, ξ, η, g) on M is called an almost contact
Riemannian structure, and a manifold M equipped with an almost contact
Riemannian structure is said to be an almost contact Riemannian manifold.
Thus every almost contact Riemannian manifold is a Riemannian f -manifold.

The fundamental 2-form of (M ;F, ξ, η, g) is usually denoted by Φ, i.e.,

Φ(X,Y ) = g(X,FY ), X, Y ∈ X(M).

On an almost contact Riemannian manifold M , we define a distribution D by

D = {X ∈ TM | η(X) = 0}.

Then one can see that

S = {X −
√
−1JX | X ∈ D}, J := F |D

is an almost CR-structure on M with real expression (D, J). This almost
CR-structure is called the standard almost CR-structure on M .

An almost contact Riemannian manifold (M ;F, ξ, η, g) is said to be normal
if it satisfies

[F, F ](X,Y ) + 2dη(X,Y )ξ = 0, X, Y ∈ X(M),

where [F, F ] is the Nijenhuis torsion of F defined by

[F, F ](X,Y ) = [FX,FY ] + F 2[X,Y ]− F [FX, Y ]− F [X,FY ]

for any X,Y ∈ X(M).

Ianus [20] showed that the standard almost CR-structures of normal almost
contact Riemannian manifolds are integrable.

Definition 7. An almost contact Riemannian manifold M is said to be a
contact Riemannian manifold if Φ = dη.
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Remark 1. A 1-form η on a manifold of dimension m = 2n + 1 is called a
contact form if (dη)n ∧ η ̸= 0. A manifold M together with a contact form is
called a contact manifold (in the strict sense). The unique vector field ξ on
a contact manifold (M,η) satisfying η(ξ) = 1 and dη(ξ, ·) = 0 is called the
Reeb vector field of a contact manifold (M,η). One can see that on a contact
Riemannian manifold (M ;F, ξ, η, g), the 1-form η is a contact form with Reeb
vector field ξ.

Let M be a contact Riemannian manifold. Then its standard almost CR-
structure is integrable if and only if its Tanno tensor field Q vanishes:

Q(X,Y ) = (g∇Y F )X + {(g∇Y η)FX}ξ + η(X)F (g∇Y ξ).

A contact Riemannian manifold M is said to be integrable if Q = 0. An inte-
grable contact Riemannian manifold is regarded as a strongly pseudo convex
CR-manifold. This follows from the following

Remark 2. Let (M,S) be an almost CR-manifold of dimension m = 2n + 1
with real expression (P, J). Assume that there exists a contact form η such
that P is defined by the Pfaff equation η = 0. Then the Levi-form L is defined
by

L(X,Y ) = −dη(X,JY ), X, Y ∈ Γ (P ).

If L is J-invariant, then (M,η, L) is said to be a non-degenerate pseudo-
Hermitian manifold. In particular, if L is positive definite, (M,η, L) is called a
strongly pseudo convex CR-manifold. On a strongly pseudo convex CR mani-
fold (M,η, L), we can extend L to the Riemannian metric g (called theWebster
metric) on M by the formula g = L+ η ⊗ η. Next, take the Reeb vector field
ξ of η and extend J to the F ∈ Γ (End TM) by Fξ = 0, then (M ;F, ξ, η, g) is
a contact Riemannian manifold satisfying Q = 0.

Conversely, let (M ;F, ξ, η, g) be an integrable contact Riemannian manifold
and denote by L and J the restrictions of g and F to D, respectively. Then
(M,η, L) is a strongly pseudo convex CR-manifold ([51], see also Blair and
Dragomir [7] for different conventions).

Definition 8. Let (M ;F, ξ, η, g) be a contact Riemannian manifold. ThenM
is said to be a K-contact manifold if ξ is a Killing vector field with respect to
g.

Proposition 5. On a contact Riemannian manifold M , the Reeb vector field
is a Killing vector field if and only if g∇ξ = −F .

A smooth map φ : (M ;F, ξ, η, g) → (N ; F̃ , ξ̃, η̃, h) between almost contact
Riemannian manifolds is said to be a holomorphic map if it is f -holomorphic
with respect to F and F̃ , i.e., F̃ ◦ dφ = dφ ◦ F . Analogously, a smooth map
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φ : (M ;F, ξ, η, g) → (N ; F̃ , ξ̃, η̃, h) is said to be an anti holomorphic map if it
is anti f -holomorphic with respecto to F and F̃ .

The ± holomorphicity equation F̃ ◦ dφ = ±dφ ◦ F implies the following
result.

Lemma 6. Let φ : (M ;F, ξ, η, g) → (N ; F̃ , ξ̃, η̃, h) be a ± holomorphic map
between almost contact Riemannian manifolds. Then there exits a smooth
function λ on M such that φ∗ξ = λ ξ̃.

A holomorphic diffeomorphism φ : M → N between almost contact Rie-
mannian manifolds is called an almost contact isomorphism if

φ∗η̃ = η, φ∗h = g.

An almost contact automorphism φ is an almost contact isomorphism φ :
M →M on an almost contact Riemannian manifold.

Remark 3. A diffeomorphism on a contact manifold (M,η) is called a contact
transformation if φ∗η = λη for some non-vanishing function λ. In particular, a
diffeomorphism φ is said to be a strict contact transformation if φ∗η = η. On
a compact contact manifold, the group of all contact transformations admits
a structure of infinite dimensional Lie group (more precisely, ILH-Lie group
structure and Fréchet Lie group structure). See Omori [38, 39].

The set Aut(M) of all almost contact automorphisms is a finite dimensional
Lie group, since it is a subgroup of the isometry group of M ([48]).

As an odd-dimensional analogue of Kähler manifold, the notion of Sasakian
manifold is introduced in the following way:

Definition 9. Let (M ;F, ξ, η, g) be a contact Riemannian manifold. ThenM
is called a Sasakian manifold if it is normal.

Proposition 7. An almost contact Riemannian manifold (M ;F, ξ, η, g) is a
Sasakian manifold if and only if

(g∇XF )Y = g(X,Y )ξ − η(Y )X, X, Y ∈ X(M).

On a Sasakian manifold, the Reeb vector field is a Killing vector field.
Note that the fundamental 2-form of a Sasakian manifold is exact. The above
covariant derivative formula implies that Sasakian manifolds cannot satisfy
Rawnsley’s condition (A).

Sasakian manifolds cannot be of negative curvature. In fact, the sectional
curvature of planes tangent to the Reeb vector field are constant 1.

Blair introduced the notion of quasi-Sasakian manifold.
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Definition 10 ([4]). LetM be an almost contact Riemannian manifold. Then
M is said to be a quasi-Sasakian manifold ifM is normal and the fundamental
2-form is closed.

Remark 4. Quasi-Sasakian manifolds are CR-Kähler manifolds in the sense
of Burstall [9] and Eells-Lemaire [15].

More precisely, let D be a real 1-codimensional subbundle of TM of a man-
ifold M together with a bundle endomorphism J on D such that J2 = −I.
Thus (M,D, J) becomes an almost CR-manifold. The almost CR-manifold
(M,D, J) equipped with a Riemannian metric g is called an almost CR-
Hermitian manifold if g is J-invariant over D. On an almost CR-Hermitian
manifold, we define a 2-form ω by ω(X,Y ) = g(X,JY ), X, Y ∈ Γ (D) and
ω(V, ·) = 0, V ⊥ D. Then an almost CR-Hermitian manifold is said to be
almost CR-Kähler if ω is closed. An almost CR-Kähler manifold is called a
CR-Kähler manifold if its almost CR-structure is integrable.

According to this definition, quasi-Sasakian manifolds are CR-Kähler.
Let (M,J, g) be a Hermitian manifold and (N, D̃, J̃ , h) an almost CR-

Hermitian manifold. Then a smooth map ϕ : M → N is called a CR-map
if dφ(T (1,0)M) ⊂ D̃ and dφ ◦ J = J̃ ◦ dφ.

Proposition 8 ([9]). If two CR-maps φ1, φ2 : M → N agree on an open
subset of M , then φ1 = φ2.

Proposition 9. ([9], [41]) If (M, g, J) is an almost Hermitin cosymplectic
manifold and (N,h, J) an almost CR-Kähler, then any CR-map φ : M → N
is an energy-minimizing harmonic map.

Quasi-Sasakian maifolds are characterized by the rank of dη (see [4], [50]).
Sasakian manifolds are quasi-Sasakian manifolds whose dη is of full rank. In
general, quasi-Sasakian manifolds are non-contact.

Typical examples of quasi-Sasakian manifolds are homogeneous real hyper-
surfaces of type A2 in complex projective space (Okumura [35], Olszak [37],
see also [10]).

On the other hand, quasi-Sasakian manifolds with vanishing dη are called
coKähler manifolds ([23]).

Proposition 10. Let M be an almost contact Riemannian manifold. Then
M is coKähler if and only if g∇F = 0. In this case, M is locally isomorphic
to a direct product of a Kähler manifold and the real line.

Proposition 11 ([37]). Let (M,F, ξ, η, g) be a quasi-Sasakian manifold. Then

1. ξ is Killing,

2. g∇FXξ = F (g∇Xξ), X ∈ X(M),
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3. (g∇XF )Y = −g(g∇Xξ, FY )ξ − η(Y )F (g∇Xξ).

Odd-dimensional unit sphere S2n+1 is a typical example of Sasakian mani-
fold. On the other hand, odd-dimensional unit hyperbolic space H2n+1 admits
non-contact normal almost contact structure compatible to the metric.

Definition 11 ([28]). An almost contact Riemannian manifold (M ;F, ξ, η, g)
is called a Kenmotsu manifold if

(g∇XF )Y = −g(X,FY )ξ − η(Y )FX, X, Y ∈ X(M).

From this formula we have

g∇Xξ = X − η(X)ξ, X ∈ X(M).

Proposition 12. A Kenmotsu manifold (M,F, ξ, η, g) has the following prop-
erties:

1. it is noncompact,

2. ξ is not Killing,

3. it is normal but not quasi-Sasakian,

4. it is locally isometric to the warped product R(t)×cet M whose fibre is a
Kähler manifold M . Here c is a real constant.

On a Kenmotsu manifoldM , D defines a foliation F of codimension 1. One
can check that F is Riemannian and tangentially Kähler.

For more details on almost contact metric manifolds, we refer to Blair’s
monographs [5, 6].

§6. Holomorphic maps between quasi-Sasakian manifolds

Ianus and Pastore showed that any holomorphic map between contact Rie-
mannian manifolds is harmonic [21]. In particular, every holomorphic map
between Sasakian manifold is harmonic. In this section we compute the ten-
sion field of holomorphic maps between quasi-Sasakian manifolds.

Theorem 1. Let (M ;F, ξ, η, g) and (N ; F̃ , ξ̃, η̃, h) be quasi-Sasakian mani-
folds. Then every holomorphic map φ :M → N satisfies

τ(φ) = dλ(ξ)ξ̃

Here the function λ is determined by the equation φ∗ξ = λ ξ.
Thus φ is harmonic if and only if dλ(ξ) = 0. In such a case λ is constant.
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Proof. Take a local orthonormal frame field of M of the form:

u1, u2, · · · , un, v1, v2, · · · , vn, ξ, vj = Fuj , j = 1, 2, · · · , n.

Then for a holomorphic map φ, we have

η̃(φ∗ui) = h(ξ̃, φ∗ui) = h(ξ̃,−φ∗Fvi) = −h(ξ̃, F̃φ∗vi) = 0, i = 1, 2, . . . , n.

Next by using the property F̃ ◦ h∇ξ̃ = h∇ξ̃ ◦ F̃ and the Killing property of ξ̃,
we have

h(h∇φ∗vi ξ̃, F̃φ∗ui) = h(h∇φ∗Fui ξ̃, F̃φ∗ui) = h(h∇F̃φ∗ui
ξ̃, F̃φ∗ui)

= h(F̃ (h∇φ∗ui ξ̃), F̃φ∗ui)

= h(h∇φ∗ui ξ̃, φ∗ui)− η̃(h∇φ∗ui ξ̃)η̃(φ∗ui)

= h(h∇φ∗ui ξ̃, φ∗ui) = h((h∇ξ̃)φ∗ui, φ∗ui) = 0.

Now let us compute the tension field of φ. Since φ is holomorphic,

h∇φ
viφ∗vi =

h∇φ
viF̃ (φ∗ui) = (h∇φ

viF̃ )φ∗ui + F̃ (h∇φ
viφ∗ui).

Using the covariant derivative formula of F̃ , we get

(h∇φ
viF̃ )φ∗ui = −h(h∇φ∗vi ξ̃, F̃φ∗ui)ξ̃ − η̃(φ∗ui)F̃ (

h∇φ∗viξ)

= −h(h∇φ∗vi ξ̃, F̃φ∗ui)ξ̃ = −h(h∇φ∗vi ξ̃, φ∗vi)ξ̃ = 0,

since ξ̃ is Killing. Thus we have h∇φ
viφ∗vi = F̃ (h∇φ

viφ∗ui). The right hand
side of this formula is computed as

F̃ (h∇φ
viφ∗ui) = F̃ (h∇φ

ui
φ∗vi + φ∗[vi, ui]) = F̃ (h∇φ

ui
φ∗Fui + φ∗[vi, ui])

= F̃ (h∇φ
ui
F̃φ∗ui + φ∗[vi, ui])

= F̃ ((h∇φ
ui
F̃ )φ∗ui + F̃ (h∇φ

ui
φ∗ui) + φ∗[vi, ui]).

Using the covariant derivative formula of F̃ again we get

(h∇φ
ui
F̃ )φ∗ui = −h(h∇φ∗ui ξ̃, F̃φ∗ui)ξ̃ − η̃(φ∗ui)F̃ (

h∇φ∗ui ξ̃) = 0.

Moreover we have

F̃ 2(h∇φ
ui
φ∗ui) = −h∇φ

ui
φ∗ui + η̃(h∇φ

ui
φ∗ui)ξ̃.

Here we note that

η̃(h∇φ
ui
φ∗ui) = h(ξ̃, h∇φ

ui
φ∗ui) = (φ∗ui) · η̃(φ∗ui)− h(h∇φ

ui
ξ̃, φ∗ui) = 0.
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Thus we obtain
h∇φ

viφ∗vi = −h∇φ
ui
φ∗ui + F̃φ∗[vi, ui].

Next we compute φ∗(
g∇vivi).

φ∗(
g∇vivi) = φ∗(

g∇viFui) = φ∗{(g∇viF )ui + F (g∇viui)}
= φ∗{−g(g∇viξ, Fui)ξ − η(ui)(F

g∇viξ) + F (g∇viui)}
= φ∗{−g(g∇viξ, vi)ξ + F (g∇viui)}
= φ∗F (

g∇uivi + [vi, ui])

= φ∗F (
g∇uiFui + [vi, ui])

= φ∗F ((
g∇uiF )ui + F (g∇uiui) + [vi, ui])

= φ∗F (−g(g∇uiξ, Fui)ξ − η(ui)F
g∇uiξ + F (g∇uiui) + [vi, ui])

= φ∗F
2(g∇uiui) + φ∗F [vi, ui]

= φ∗(− g∇uiui + η(g∇uiui)ξ) + φ∗F [vi, ui]

= −φ∗
g∇uiui + φ∗F [vi, ui].

Here we used a fact η(g∇uiui) = 0. From these computations we obtain

(6.1) h∇φ
viφ∗vi − φ∗(

g∇vivi) = −h∇φ
ui
φ∗ui + φ∗

g∇uiui.

Hence the tension field of φ is given by

τ(φ) =

n∑
i=1

{h∇φ
ui
φ∗ui − φ∗(

g∇uiui)}+
n∑

i=1

{h∇φ
viφ∗vi − φ∗(

g∇vivi)}

+ h∇φ
ξ φ∗ξ − φ∗(

g∇ξξ)

= h∇φ
ξ φ∗ξ.

From Lemma 6, there exists a smooth function λ such that φ∗ξ = λξ̃. Inserting
this into the formula of τ(φ), we get τ(φ) = dλ(ξ) ξ̃.

Next, since φ∗ξ = λ ξ̃, we get φ∗η̃ = λ η. Taking the exterior derivative of
this relation, we get

d(φ∗η̃) = d(λ η) = dλ ∧ η + λ dη.

Hence
d(φ∗η̃)(ξ,X) = dλ(ξ) η(X)− dλ(X), X ∈ X(M),

since dη(ξ, ·) = 0 on any quasi-Sasakian manifold (see [4]). On the other hand
we have

d(φ∗η̃)(ξ,X) = φ∗(dη̃)(ξ,X) = (dη̃)(φ∗ξ, φ∗X) = λ(dη̃)(ξ̃, φ∗X) = 0.

Thus we obtain dλ = dλ(ξ)η. Hence dλ(ξ) = 0 if and only if λ is constant.
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Corollary 1. Let φ : M → N be an isometric immersion from a quasi-
Sasakian manifold into quasi-Sasakian manifold. If φ is holomorphic and
φ∗η̃ = η, then it is minimal.

Urakawa obtained the following result.

Proposition 13. ([54]) LetM and N be strongly pseudo convex CR-manifolds.
Then every holomorphic map φ :M → N satisfies

τ(φ) = h∇φ
ξ φ∗ξ.

Here we recall the following Lemma essentially due to Tanno [47]. See also
Ianus and Pastore [21].

Lemma 14. ([21],[47]) Let φ : (M,F, ξ, η, g) → (N, F̃ , ξ̃, η̃, h) be a holomor-
phic map ( resp. anti holomorphic map ) between contact Riemannian mani-
folds. Then there exists a positive ( resp. negative ) constant α such that

φ∗ξ = αξ̃, φ∗η̃ = αη, φ∗h = αg + α(α− 1)η ⊗ η.

Olszak [36] obtained the following formula for contact Riemannian mani-
folds:

(g∇FXF )(FY ) + (g∇XF )Y = 2g(X,Y )ξ − η(Y ){(I + h)X + η(X)ξ}

for all X,Y ∈ X(M). Here the endomorphism field h is defined by h = £ξF/2.
Computing the tension field of a ± holomorphic map between contact Rie-

mannian manifold by using Olszak’s formula, Ianus and Pastore obtained

Proposition 15 ([21], see also [18]). Any ± holomorphic map between contact
Riemannian manifolds is harmonic.

Corollary 2. Any ± holomorphic map between strongly pseudo convex CR-
manifolds is harmonic.

Corollary 3 ([16]). Any holomorphic immersion of contact Riemannian man-
ifolds into contact Riemannian manifolds is minimal.

Corollary 4. Any ± holomorphic map between Sasakian manifolds is har-
monic.

Corollary 5 ([49, 60]). Any holomorphic isometric immersion of a Sasakian
manifold into a Sasakian manifold is minimal.

Holomorphic isometric immersions of Sasakian manifolds into Sasakian
manifolds are called Sasakian immersions or invariant immersions ([19, 26,
27]).

Every holomorphic map between (compact) almost Kähler manifolds are
stable harmonic maps. On the other hand, harmonic maps from or into
Sasakian manifold S2n+1 are unstable (Xin [58]).
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Remark 5. In [43], Saotome studied J-holomorphic map in strongly pseudo
convex CR-manifolds.

Let (M ;F, ξ, η, g) be a Sasakian 3-manifold and (N ; F̃ , ξ̃, η̃, h) a strongly
pseudo convex CR-manifold. Denote by (D, J) and (D̃, J̃) the real expressions
of standard CR-structure S of M and S̃ of N , respectively.

A smooth map φ : M → N is said to be J-holomorphic (in the sense of
[43]) if

• dφ ◦ J = J̃ ◦ dφ on the contact distribution D of M .

• dφ(ξ) = λξ̃ for some positive function λ on M .

• φ∗η̃ = λη.

One can see that every J-holomorphic map in Saotome’s sense preserves the
CR-structure, i.e., dφ(S) ⊂ S̃ and hence it satisfies dφ ◦ F = F̃ ◦ dφ. Thus
J-holomorphic maps in the sense of [43] are harmonic maps.

§7. Holomorphic maps into Kenmotsu manifolds

Let (N,F, η, ξ, h) be a Kenmotsu manifold. As we have seen before, N is
locally isomorphic to a warped product. More precisely, for each point p ∈ N ,
there exists a neighbourhood U of p and a positive number ε such that U is
isomorphic to the warped product (−ε, ε)×f U , where U is a Kähler manifold
and f : (−ε, ε) −→ R is a smooth positive function. The natural projection
πU : U → (−ε, ε) is a Riemannian submersion. The vertical distribution V is

Vq = {X ∈ TqU | ηq(X) = 0}, q ∈ U.

Following the terminology of [57] explained in §2, we call a smooth map
φ : M → N from a Riemannian manifold M into a Kenmotsu manifold a
vertically harmonic map if τ(φ)− η(τ(φ))ξ = 0.

Now let (M,J, g) be a Kähler manifold and consider a holomorphic map
φ : M → N . We compute the tension field of φ. Take a local orthonormal
frame field of M of the form: {e1, · · · , em, f1, · · · , fm} such that fi = Jei.

Direct computations show that

(h∇dφ)(ei; ei) = −(φ∗h)(fi; fi)ξ + F 2(h∇dφ)(ei; ei),

(h∇dφ)(fi; fi) = −(φ∗h)(ei; ei)ξ + F 2(h∇dφ)(fi; fi).

Summing up these we get,

τ(φ) = −2e(φ)ξ.

This formula implies that every holomorphic map satisfies the vertical har-
monicity equation. Thus we obtain
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Theorem 2. Holomorphic maps from a Kähler manifold into a Kenmotsu
manifold are vertically harmonic.

Moreover, a holomorphic map φ : M → N is harmonic if and only if its
energy density vanishes. Namely we obtain

Corollary 6. Holomorphic maps from a Kähler manifold into a Kenmotsu
manifold are harmonic if and only if they are constants.

§8. Pluriharmonic maps

For a smooth map φ from a Riemannian 2-manifold (M, g) into a Riemannian
manifold (N,h), the energy functional E(φ) is invariant under the conformal
transformation of M . Thus the harmonicity makes sense for maps from a
2-manifold equipped with a conformal structure, i.e., Riemann surface into a
Riemannian manifold. More generally, harmonicity can be defined for maps
from Riemann surfaces (or Lorentz surfaces) into manifolds with linear con-
nection.

In dimension 2, conformal structure coincides with complex structure. The
notion of harmonic maps from Riemann surfaces into Riemannian manifolds
can be generalized to that of pluriharmonic maps from complex manifold (with
or without metric) into Riemannian manifolds. Here we recall fundamental
ingredients of pluriharmonic maps.

Let (M,J) be a complex manifold. With respect to the complex structure
J , we decompose the complexified tangent bundle TCM into the direct sum:
TCM = T (1,0)M ⊕ T (0,1)M with T (0,1)M = T (1,0)M .

Let us denote by ∂̄ the Cauchy-Riemann operator of M . Namely ∂̄ is an
operator

∂̄ : Γ (T (0,1)M)× Γ (T (1,0)M) → Γ (T (1,0)M)

such that

∂̄Z̄W =
∑

Zi
∂Wj

∂z̄i

∂

∂zj

for

Z =
∑

Zi
∂

∂zi
, W =

∑
Wj

∂

∂zj
∈ Γ (T (1,0)M).

Note that (T (1,0)M, ∂̄) is a holomorphic vector bundle over M and called the
holomorphic tangent bundle of M .

Let (N,h) be a Riemannian manifold with Levi-Civita connection h∇ and
φ : (M,J) → N a smooth map. By restricting the differential dφ to T (1,0)M
and T (0,1)M , we obtain vector bundle morphisms;

∂φ : T (1,0)M → φ∗TCN, ∂̄φ : T (0,1)M → φ∗TCN
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into the pulled-back bundle φ∗TCN . Then the (0, 1)-exterior derivative h∇′′∂φ
of ∂φ is defined by

(h∇′′
Z
∂φ)W := ∇φ

Z
(∂φ(W ))− ∂φ(∂̄ZW ), Z,W ∈ Γ (T (1,0)M).

Definition 12. A smooth map φ : (M,J) → (N,h) is said to be a plurihar-
monic map if h∇′′∂φ = 0.

By using the complex structure J , the complexification of second funda-
mental form is decomposed as

h∇dφ = (h∇dφ)(2,0) + (h∇dφ)(1,1) + (h∇dφ)(0,2).

It is easy to see that (h∇dφ)(1,1)(W ;Z) = (h∇′′
Z
∂φ)(W ). Thus we have

Lemma 16. Let (M,J) be a complex manifold and (N,h) a Riemannian man-
ifold. Then a map φ :M → N is pluriharmonic if and only if (h∇dφ)(1,1) = 0.

Remark 6. The partial differential equation (h∇dφ)(1,1) = 0 makes sense for
maps from a complex manifold into a manifold with a linear connection.

Let Σ be a Riemann surface, (M,J) a complex manifold and φ : M →
(N,h) a map into a Riemannian manifold. Assume that (M,J) admits a
Kähler metric g compatible to J . Take a map ψ : Σ → M . Then the second
fundamental form of the composition map φ ◦ ψ is given by

h∇d(φ ◦ ψ) = dφ(g∇dψ) + (h∇dφ)(dψ; dψ).

Here we take any Kähler metric in the conformal class of Σ to define the second
fundamental form g∇dψ. This composition formula implies the following well
known result (We can take a Kähler metric on a small neighborhood of (M,J)).

Proposition 17. Let (M,J) be complex manifold and (N,h) a Riemannian
manifold. Then a map φ : M → N is pluriharmonic if and only if for any
holomorphic curve ι : Σ →M , the composite φ ◦ ι is harmonic.

Let φ : M → N be a pluriharmonic map. If M admits Kähler metrics,
then φ is harmonic with respect to any Kähler metrics on M .

Take Z = X −
√
−1JX, W = Y −

√
−1JY ∈ Γ (T (1,0)M). Then we have

(h∇′′
W̄∂φ)Z = {(h∇dφ)(X;Y ) + (h∇dφ)(JX; JY )}

+
√
−1{(h∇dφ)(X;JY )− (h∇dφ)(JX;Y )}.

The following result is easily verified.
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Lemma 18. For a smooth map φ : (M,J, g) → (N,h) from a Kähler manifold
into a Riemannian manifold, the following properties are mutually equivalent.

• φ is pluriharmonic,

• (h∇dφ)(X;Y ) + (h∇dφ)(JX; JY ) = 0 on TM ,

• (h∇dφ)(X; JY )− (h∇dφ)(JX;Y ) = 0 on TM .

Based on these observations, we arrive at the following definition.

Definition 13. Let (M,J) be an almost Hermitian manifold and (N,N∇) a
manifold with a linear connection. Then a map φ : M → N is said to be an
affine (1, 1)-harmonic map if (N∇dφ)(1,1) = 0.

When N is a Riemannian manifold and N∇ is the Levi-Civita connec-
tion, (1, 1)-harmonic map have been called (1, 1)-geodesics maps (see [41]). In
[13], a loop group method for constructing all (1, 1)-harmonic maps from non
compact simply connected Riemannn surfaces into Lie groups equipped with
bi-invariant affine connection is established.

In general, for maps between Kähler manifolds, pluriharmonicity is weaker
than holomorphicity and stronger than harmonicity. Under some differential
geometric conditions, harmonicity implies pluriharmonicity and also plurihar-
monicity implies holomorphicity. For more informations on pluriharmonic
maps we refer to Udagawa [52] and references therein.

§9. (1, 1)-harmonic maps

In this section we extend the notion of affine (1, 1)-harmonic maps to more
general target spaces. Rawnsley showed the following result.

Proposition 19 ([41]). Let (M,J, g) be a (1, 2)-symplectic almost Hermitian
manifold and (N,F, h) a Riemannian f-manifold satisfying the condition (A).
Then every f -holomorphic map φ :M → N is a (1, 1)-harmonic map.

On the other hand Black obtained the following result.

Proposition 20 ([3]). Let (M,J, g) be a cosymplectic almost Hermitian man-
ifold and (N,F, h) a Riemannian f-manifold satisfying (d∇F )(1,1) = 0. Then
every f -holomorphic map φ :M → N is a (1, 1)-harmonic map.

Iwamatsu generalized above results due to Rawnsley and Black.

Proposition 21 ([22]). Let (M,J, g) be a (1, 2)-symplectic almost Hermitian
manifold and (N,F, h) a Riemannian f -manifold satisfying (d∇F )(1,1) = 0.
Then every f -holomorphic map φ :M → N is a (1, 1)-harmonic map.
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There exist Riemannian f -manifolds satisfying (d∇F )(1,1) = 0 but do not
satisfy the condition (A). In fact, one easily check that quasi-Sasakian mani-
folds, especially Sasakian manifolds satisfy (d∇F )(1,1) = 0 but do not satisfy
the condition (A). Iwamatsu exhibited examples of partial flag manifolds sat-
isfying these properties [22].

Corollary 7. Let (M,J, g) be a (1, 2)-symplectic almost Hermitian manifold
and N a quasi-Sasakian manifold, then every holomorphic map φ : M → N
is a (1, 1)-harmonic map.

Note that Kenmotsu manifolds never satisfy the condition (d∇F )(1,1) = 0.
More generally, for maps from Riemannian f -manifolds, Bejan and Beny-

ounes considered the following properties.

Definition 14 ([2]). Let (M,F, g) be a Riemannian f -manifold and (N,h) a
Riemannian manifold. A map φ :M → N is said to be

1. f -(1, 1)-harmonic if

(9.1) (h∇dφ)(X;Y ) + (h∇dφ)(FX;FY ) = 0, X, Y ∈ Γ (TM).

2. f -pluriharmonic if

(9.2) (D+
Wd−φ)(Z̄) := h∇φ

W (d−φ)(Z)− (d−φ)(Π−(
g∇WZ)) = 0

and

(9.3) (h∇dφ)(ν,X) = 0, X ∈ Γ (TM), ν ∈ Γ (F).

Note that f -(1, 1)-harmonic maps are called f -(1, 1)-geodesic maps in [2].

Proposition 22. A map φ : (M,F, g) → (N,h) is f -(1, 1)-harmonic if and
only if it satisfies (9.3) and its restriction to any holomorphic curve is har-
monic.

Here we introduce the following notion.

Definition 15. Let (M,F, g) be a Riemannian f -manifold with associated
almost CR-structure S. Denote by (P, J) the real expression of S. Then a
map φ : (M,F, g) → (N,h) into a Riemannian manifold is said to be S-(1, 1)-
harmonic if

(9.4) (h∇dφ)(X;Y ) + (h∇dφ)(FX;FY ) = 0, X, Y ∈ Γ (P ).

Obviously, S-(1, 1)-harmonic property is weaker than f -(1, 1)-harmonic prop-
erty.
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Proposition 23. A map φ : (M,F, g) → (N,h) is f -(1, 1)-harmonic if and
only if it is S-(1, 1)-harmonic and satisfies (9.3).

Direct computation shows the formula

(D+
Wd−φ)(Z̄) = (h∇dφ)(Z̄;W ) + dφ(Π̂(g∇W Z̄)).

Hence we obtain

Proposition 24. ([2]) Any two of the following conditions imply the third
one:

• φ is f -(1, 1)-harmonic,

• φ is f -pluriharmonic,

• φ satisfies (h∇dφ)(ν,X) = 0 and

dφ(Π̂(g∇WZ)) = 0, Z,W ∈ Γ (S).

Here Π̂ : TCM → T̂ (M) = S ⊕ F is the projection.

Remark 7. A Riemannian f -manifold (M,F, g) satisfies condition (A) if and
only if Π̂(g∇W Z̄) = 0 for any Z,W ∈ Γ (S). Hence for maps from a Rieman-
nian f -manifold satisfying condition (A), then the notion of f -(1,1)-harmonic
map coincides with that of f -pluriharmonic map.

9.1. (1, 1)-harmonic maps in contact geometry

Let (M ;F, ξ, η, g) be an almost contact Riemannian manifold and φ : M →
(N,h) a map into a Riemannian manifold. Then the tension field of φ is
computed as

τ(φ) =

n∑
i=1

{(h∇dφ)(ei; ei) + (h∇dφ)(Fei;Fei)}+ (h∇dφ)(ξ; ξ).

Here we take a local orthonormal frame field on M of the form
{e1, e2, · · · , en;Fe1, F e2, · · · , F en, ξ}.

Corollary 8. Every f -(1, 1)-harmonic map from an almost contact Rieman-
nian manifold into a Riemannian manifold is harmonic.

Proposition 25 ([21]). Let M and N be Sasakian manifolds and φ :M → N
a ± holomorphic map. Then φ is S-(1, 1)-harmonic. Moreover, a holomorphic
map is f -(1, 1)-harmonic if and only if φ is an isometric immersion.

One can check that this proposition is still valid for ± holomorphic maps
between quasi-Sasakian manifolds (see (6.1) ).
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9.2. CR-pluriharmonic maps

Let M be a strongly pseudo convex CR-manifold, i.e., integrable contact Rie-
mannian manifold. The Tanaka-Webster connection ∇̂ on M is defined by

∇̂XY = g∇XY + η(X)FY − η(Y )g∇Xξ + {(g∇Xη)Y }ξ.

One can see that ∇̂F = 0, ∇̂ξ = 0, ∇̂η = 0 and ∇̂g = 0 (Tanaka [46], Webster
[55, 56]).

The complexified tangent bundle TCM is decomposed as

TCM = S ⊕ S ⊕ F , F =
∪
x∈M

C ξx.

Hereafter in this subsection we assume thatM is a normal strongly pseudo
convex CR manifold. According to Tanaka [46], a strongly pseudo convex CR
manifold M = (M ;F, ξ, η, g) is said to be normal if [ξ, Γ (S)] ⊂ Γ (S) and
[X, JY ] = J [X,Y ] for all X, Y ∈ Γ (D). It is known that a strongly pseudo
convex CR-manifold M is normal if and only if it is a Sasakian manifold.

On a normal strongly pseudo convex CR-manifold, i.e., Sasakian manifold,
the Tanaka-Webster connection has the form

∇̂XY = g∇XY + η(X)FY + η(Y )FX + g(X,FY )ξ.

In particular the torsion tensor field T̂ of ∇̂ satisfies F (T̂ (X,Y )) = 0 for all
X, Y ∈ X(M).

The Tanaka-Webster connection ∇̂ induces a holomorphic structure on the
bundle S. In fact, the Cauchy-Riemann operator ∂̄ is defined by

∂̄WZ = ∇̂WZ, Z,W ∈ Γ (S).

Hence the pair (S, ∂̄) is a holomorphic vector bundle over M .
Now let φ : M → (N,h) be a map from a Sasakian manifold M into a

Riemannian manifold. Then as in the case of complex manifolds, the (0, 1)-
exterior derivative D′′∂φ can be defined by

(D′′
W
∂φ)Z := h∇φ

W
(∂φ(Z))− ∂φ(∂̄WZ), Z,W ∈ Γ (S).

Here we used the notation ∂φ := d+φ. We call a map φ a CR-pluriharmonic
map if it has vanishing (0, 1)-exterior derivative. We note that the equation
D′′∂φ = 0 makes sense for maps into a manifold with a linear connection.
This motivates us to give the following definition.

Definition 16. Let (M,S) be a normal strongly pseudo convex CR-manifold
and φ :M → (N,N∇) a smooth map into a manifold with a linear connection.
Then φ is said to be CR-pluriharmonic if D′′∂φ = 0.
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Here we recall the notion of pseudo-second fundamental form introduced
by Petit [40].

Let (M ;F, ξ, η, g) be a strongly pseudo convex CR-manifold with Tanaka-
Webster connection ∇̂ and (N,N∇) a manifold with a linear connection. For
a smooth map φ : M → N , the pseudo-second fundamental form N∇̂dφ of φ
with respect to N∇ is defined by

(9.5) (N∇̂dφ)(Y ;X) = N∇φ
Xdφ(Y )− dφ(∇̂XY ).

Here ∇̂ is the Tanaka-Webster connection of M . In case the target mani-
fold N is a Riemannian manifold and choose N∇ = h∇ as the Levi-Civita
connection, then we denote the pseudo-second fundamental form by h∇̂dφ.
When we consider a map φ : M → N between strongly pseudo convex CR-
manifolds M = (M ;F, ξ, η, g, ∇̂) and N = (N ; F̃ , ξ̃, η̃, h, ∇̂) equipped with
Tanaka-Webster connection, we denote the pseudo-second fundamental form
of φ with respect to ∇̂ by ∇̂dφ.

Here we rewrite the CR-pluriharmonicity equation in terms of the pseudo-
second fundamental form as follows:

Proposition 26. Let (D, J) denote the real expression of a normal strongly
pseudo convex CR-manifold (M,S). Then a smooth map φ : (M,S) → (N,h)
into a Riemannian manifold is CR-pluriharmonic if and only if

(9.6) (h∇̂dφ)(X;Y ) + (h∇̂dφ)(JX; JY ) = 0, X, Y ∈ Γ (D).

Proof. Take Z = X −
√
−1JX, W = Y −

√
−1Y ∈ Γ (D). Then the (0, 1)-

exterior derivative of ∂φ is computed as

(D′′
W
∂φ)Z =

{
(h∇̂dφ)(X;Y ) + (h∇̂dφ)(JX; JY )

}
−
√
−1

{
(h∇̂dφ)(X; JY )− (h∇̂dφ)(JX;Y )

}
.

This shows the required result.

Note that the condition (9.6) is different from S-(1, 1)-harmonic condition.
Because, we used the Tanaka-Webster connection ∇̂ instead of Levi-Civita
connection g∇.

Proposition 27. A smooth map φ : (M,S) → (N,h) of a normal strongly
pseudo convex CR-manifold is CR-pluriharmonic if and only if its restriction
to any holomorphic curve is harmonic.

Proof. Let Σ = (Σ, JΣ) be a Riemann surface with complex structure JΣ and
ι : Σ →M be a holomorphic immersion. Then we have

h∇dψ = (h∇dφ)(dι; dι) + dφ(∇̂dι)
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for the composite ψ = φ ◦ ι. Take a local complex coordinate z on Σ, the
above composition law implies

(h∇′′∂ψ)(∂z; ∂z̄) = (D′′∂φ)(ι∗∂z; ι∗∂z̄) + dφ((∇̂dι)(∂z; ∂z̄)).

Next, from the holomorphicity dι ◦ JΣ = F ◦ dι and the normality of M ,
one can check that (∇̂dι)(∂z; ∂z̄) = 0. Thus if φ is CR-pluriharmonic, then ψ
satisfies h∇′′∂ψ = 0, that is, ψ is harmonic.

Unfortunately, strongly pseudo convex CR-manifolds do not admit non-
constant holomorphic curves. On the other hand, Bryant studied the space
of holomorphic curves in Lorentzian CR-manifolds (nondegenerate pseudo-
Hermitian manifolds whose Levi-form have Lorentzian signature) [8]. Note
that (UH3, F1) equipped with the Killing metric is a Lorentzian CR-manifold.

§10. Pseudo-harmonic maps

The notion of pseudo-harmonicity was introduced by Barletta, Dragomir and
Urakawa.

Definition 17 ([1]). Let φ : (M ;F, ξ, η, g) → (N,N∇) be a map from a
strongly pseudo convex CR-manifold into a manifold with a linear connection.
The pseudo-tension field τ̂(φ) of φ is defined by

τ̂(φ) = trg{ΠD(
N∇̂dφ)}.

Here ΠD(
N∇̂dφ) is the restriction of the pseudo-second fundamental form

N∇̂dφ to Γ (D)×Γ (D). A smooth map φ is said to be pseudo-harmonic if its
pseudo-tension field vanishes.

Barletta, Dragomir and Urakawa [1] have given a variational characteriza-
tion of pseudo-harmonicity.

Now we obtain the following result.

Proposition 28. Let (M ;F, ξ, η, g) be a normal strongly pseudo convex CR-
manifold and φ : M → (N,N∇) a smooth map into a manifold with a linear
connection. If φ is CR-pluriharmonic, then φ is pseudo-harmonic.

Proof. Let us compute the pseudo-tension field of a map φ : (M,S) → (N,N∇).
Take a local orthonormal frame field {e1, e2, . . . , en; Je1, Je2, . . . , Jen} of D.
Then we have

τ̂(φ) =
m∑
i=1

{(N∇̂dφ)(ei; ei) + (N∇̂dφ)(Jei; Jei)}.

This formula implies that if φ is CR-pluriharmonic then τ̂(φ) = 0.
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Now let us investigate CR-pluriharmonicity of holomorphic maps between
normal strongly pseudo convex CR-manifolds equipped with Tanaka-Webster
connections. For a holomorphic map φ : (M ;F, ξ, η, g, ∇̂) → (N ; F̃ , ξ̃, η̃, h, ∇̂)
between normal strongly pseudo-convex CR-manifolds equipped with Tanaka-
Webster connection and X, Y ∈ Γ (D), we have

∇̂φ∗(FX)φ∗(FY ) = ∇̂φ∗(FX)F̃ (φ∗Y ) = F̃ ∇̂φ∗(FX)(φ∗Y )

= F̃
(
∇̂φ∗Y φ∗(FX) + [φ∗FX,φ∗Y ] + T̂ (φ∗FX,φ∗Y )

)
= F̃

(
∇̂φ∗Y F̃ (φ∗X) + [φ∗FX,φ∗Y ]

)
= F̃ 2∇̂φ∗Y (φ∗X) + F̃ [φ∗FX,φ∗Y ]

= −∇̂φ∗Y (φ∗X) + η̃(∇̂φ∗Y (φ∗X))ξ̃ + F̃ [φ∗FX,φ∗Y ]

= −∇̂φ∗Y (φ∗X) + F̃ [φ∗FX,φ∗Y ],

since dφ(Γ (D)) ⊂ Γ (D̃). From this we get

∇̂φ∗(FX)φ∗(FY ) = −∇̂φ∗Y (φ∗X) + F̃ [φ∗FX,φ∗Y ]

= −
(
∇̂φ∗X(φ∗Y ) + [φ∗Y, φ∗X] + T̂ (φ∗Y, φ∗X)

)
+ F̃ [φ∗FX,φ∗Y ].

On the other hand,

∇̂FX(FY ) = F ∇̂FXY

= F
(
∇̂Y (FX) + [FX, Y ] + T̂ (FX, Y )

)
= F 2(∇̂YX) + F [FX, Y ]

= −∇̂YX + η(∇̂YX)ξ + F [FX, Y ]

= −∇̂YX + F [FX, Y ]

= −
(
∇̂XY + [Y,X] + T̂ (Y,X)

)
+ F [FX, Y ].

From these computations, one obtains

(∇̂dφ)(FY ;FX) = −(∇̂dφ)(Y ;X).

Namely φ is CR-pluriharmonic with respect to Tanaka-Webster connection.

Proposition 29. Let M = (M ;F, ξ, η, g, ∇̂) and (N ; F̃ , ξ̃, η̃, h, ∇̂) be normal
strongly pseudo convex CR-manifolds equipped with Tanaka-Webster connec-
tion. Then every holomorphic map φ : M → N is CR-pluriharmonic with
respect to Tanaka-Webster connection.
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Analogues to Kähler geometry, for smooth maps between Sasakian man-
ifolds, CR-pluriharmonicity is stronger than pseudo-harmonicity and weaker
than holomorphicity.

Remark 8. S. D. Jung and M. J. Jung [25] showed that any transversally
holomorphic map between Kähler foliations is transversally harmonic with
the minimum transversal fk-energy in its foliated homotopy class. It would be
interesting to introduce the notion of transversally pluiharmonic maps from
Riemannian manifolds equipped with Kähler-foliation to foliated Riemannian
manifolds.
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Tôhoku Math. J. 21 (1969), 21–38.

[49] S. Tanno, Isometric immersions of Sasakian manifolds in spheres, Kōdai Math.
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