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§1. Introduction

In this paper, we study the instability of solitary wave solutions for nonlinear
Schrödinger equations of the form

(1.1) i∂tu = −∂2xu− i|u|2∂xu− b|u|4u, (t, x) ∈ R× R,

where b ≥ 0 is a constant. Eq. (1.1) appears in various areas of physics such
as plasma physics, nonlinear optics, and so on (see, e.g., [12, 13] and also
Introduction of [16]). It is known that (1.1) has a two parameter family of
solitary wave solutions

(1.2) uω(t, x) = eiω0tϕω(x− ω1t),

where ω = (ω0, ω1) ∈ Ω := {(ω0, ω1) ∈ R2 : ω2
1 < 4ω0}, γ = 1 +

16

3
b,

ϕω(x) = ϕ̃ω(x) exp

(
i
ω1

2
x− i

4

∫ x

−∞
|ϕ̃ω(η)|2 dη

)
,(1.3)

ϕ̃ω(x) =

{
2(4ω0 − ω2

1)

−ω1 +
√
ω2
1 + γ(4ω0 − ω2

1) cosh(
√
4ω0 − ω2

1 x)

}1/2

.(1.4)
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Here, we note that ϕω(x) is a solution of

(1.5) −∂2xϕ+ ω0ϕ+ ω1i∂xϕ− i|ϕ|2∂xϕ− b|ϕ|4ϕ = 0, x ∈ R,

and ϕ̃ω(x) is a solution of

(1.6) −∂2xϕ+
4ω0 − ω2

1

4
ϕ+

ω1

2
|ϕ|2ϕ− 3

16
γ|ϕ|4ϕ = 0, x ∈ R.

For v, w ∈ L2(R) = L2(R,C), we define

(v, w)L2 = ℜ
∫
R
v(x)w(x) dx,

and regard L2(R) as a real Hilbert space. Similarly, H1(R) = H1(R,C) is
regarded as a real Hilbert space with inner product

(v, w)H1 = (v, w)L2 + (∂xv, ∂xw)L2 .

We define the energy E : H1(R) → R by

(1.7) E(v) =
1

2
∥∂xv∥2L2 −

1

4
(i|v|2∂xv, v)L2 −

b

6
∥v∥6L6 .

Then, we have
E′(v) = −∂2xv − i|v|2∂xv − b|v|4v,

and (1.1) can be written in a Hamiltonian form i∂tu = E′(u) in H−1(R).
For θ = (θ0, θ1) ∈ R2 and v ∈ H1(R), we define

(1.8) T (θ)v(x) = eiθ0v(x− θ1) (x ∈ R).

Note that the energy E is invariant under T , i.e.,

(1.9) E(T (θ)v) = E(v), θ ∈ R2, v ∈ H1(R),

and that the solitary wave solution (1.2) is written as uω(t) = T (ωt)ϕω.
The Cauchy problem for (1.1) is locally well-posed in the energy space

H1(R) (see [16] and also [7, 8, 9]). For any u0 ∈ H1(R), there exist Tmax ∈
(0,∞] and a unique solution u ∈ C([0, Tmax),H

1(R)) of (1.1) with u(0) = u0
such that either Tmax = ∞ or Tmax <∞ and lim

t→Tmax

∥u(t)∥H1 = ∞. Moreover,

the solution u(t) satisfies

E(u(t)) = E(u0), Q0(u(t)) = Q0(u0), Q1(u(t)) = Q1(u0)

for all t ∈ [0, Tmax), where Q0 and Q1 are defined by

(1.10) Q0(v) =
1

2
∥v∥2L2 , Q1(v) =

1

2
(i∂xv, v)L2 .
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For ε > 0, we define

Uε(ϕω) = {u ∈ H1(R) : inf
θ∈R2

∥u− T (θ)ϕω∥H1 < ε}.

Then, the stability and instability of solitary waves are defined as follows.

Definition 1. We say that the solitary wave solution T (ωt)ϕω of (1.1) is stable
if for any ε > 0 there exists δ > 0 such that if u0 ∈ Uδ(ϕω), then the solution
u(t) of (1.1) with u(0) = u0 exists for all t ≥ 0, and u(t) ∈ Uε(ϕω) for all t ≥ 0.
Otherwise, T (ωt)ϕω is said to be unstable.

For the case b = 0, Colin and Ohta [2] proved that the solitary wave solution
T (ωt)ϕω of (1.1) is stable for all ω ∈ Ω (see also [6, 20]). We remark that the
instability of solitary waves for (1.1) is not studied in previous papers [2, 6, 20].
For a recent result on a generalized derivative nonlinear Schrödinger equation,
see [10].

In this paper, we consider the case b > 0, and prove the following.

Theorem 1. Let b > 0. Then there exists κ = κ(b) ∈ (0, 1) such that the
solitary wave solution T (ωt)ϕω of (1.1) is stable if −2

√
ω0 < ω1 < 2κ

√
ω0,

and unstable if 2κ
√
ω0 < ω1 < 2

√
ω0.

Remark 1. Let b > 0, γ = 1 +
16

3
b, and

(1.11) g(ξ) =
2(γ − 1)

ξ
tan−1 1 +

√
1 + ξ2

ξ
, ξ ∈ (0,∞).

Then, g : (0,∞) → (0,∞) is strictly decreasing and bijective. Thus, for any
b > 0, there exists a unique ξ̂ = ξ̂(b) ∈ (0,∞) such that g(ξ̂) = 1. The constant
κ in Theorem 1 is given by κ = (1 + ξ̂2/γ)−1/2 (see Lemma 1 below).

Remark 2. The sufficient condition −2
√
ω0 < ω1 < 2κ

√
ω0 for stability of

T (ωt)ϕω is equivalent to Q1(ϕω) > 0, and the sufficient condition 2κ
√
ω0 <

ω1 < 2
√
ω0 for instability is equivalent to Q1(ϕω) < 0 (see Lemma 1 and Proof

of Theorem 1 below). We also remark that E(ϕω) = −ω1

2
Q1(ϕω) for all ω ∈ Ω.

Remark 3. We do not study the borderline case ω1 = 2κ
√
ω0 in this paper,

and leave it as an open problem. Note that E(ϕω) = Q1(ϕω) = 0 in the case
ω1 = 2κ

√
ω0. For related results for one-parameter family of solitary waves in

borderline cases, see [1, 15, 14, 11].

Remark 4. It is not known whether (1.1) has finite time blowup solutions or
not. It will be interesting to study relations between unstable solitary wave
solutions obtained in Theorem 1 and the existence of blowup solutions for
(1.1). For a recent progress in this direction, see Wu [18, 19].
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For ω ∈ Ω, we define the action Sω : H1(R) → R by

Sω(v) = E(v) +

1∑
j=0

ωjQj(v),

where E, Q0 and Q1 are defined by (1.7) and (1.10). Note that Q′
0(v) = v,

Q′
1(v) = i∂xv, and that (1.5) is equivalent to S′

ω(ϕ) = 0.
We also define a function d : Ω → R by

d(ω) = Sω(ϕω) = E(ϕω) +

1∑
j=0

ωjQj(ϕω).

Then, we have

d′(ω) = (∂ω0d(ω), ∂ω1d(ω)) = (Q0(ϕω), Q1(ϕω)),

and the Hessian matrix d′′(ω) of d(ω) is given by

d′′(ω) =

[
∂2ω0

d(ω) ∂ω1∂ω0d(ω)
∂ω0∂ω1d(ω) ∂2ω1

d(ω)

]
=

[
∂ω0Q0(ϕω) ∂ω1Q0(ϕω)
∂ω0Q1(ϕω) ∂ω1Q1(ϕω)

]
.

To prove Theorem 1, we use the following sufficient conditions for stability
and instability in terms of the Hessian matrix d′′(ω) (see [5]).

Theorem 2. Let ω ∈ Ω. If the matrix d′′(ω) has a positive eigenvalue, then
the solitary wave solution T (ωt)ϕω of (1.1) is stable.

Theorem 3. Let ω ∈ Ω. If d′′(ω) is negative definite (all eigenvalues of d′′(ω)
are negative), then the solitary wave solution T (ωt)ϕω of (1.1) is unstable.

Theorem 2 can be proved in the same way as in Colin and Ohta [2], and
we omit the proof. We give the proof of Theorem 3 in Section 3 below. As we
stated above, the instability of solitary waves for (1.1) has not been studied
in previous papers [2, 6, 20].

Moreover, by the explicit form (1.3) with (1.4) of ϕω, and by elementary
computations, we have the following.

Lemma 1. Let b > 0 and γ = 1 +
16

3
b. For ω ∈ Ω, we have

Q0(ϕω) =
4
√
γ
tan−1 ω1 +

√
ω2
1 + γ(4ω0 − ω2

1)√
γ(4ω0 − ω2

1)
,

Q1(ϕω) =
1

γ3/2

{√
γ(4ω0 − ω2

1)

−2(γ − 1)ω1 tan
−1 ω1 +

√
ω2
1 + γ(4ω0 − ω2

1)√
γ(4ω0 − ω2

1)

}
,

det[d′′(ω)] =
−4Q1(ϕω)√

4ω0 − ω2
1 {ω2

1 + γ(4ω0 − ω2
1)}

.
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Theorem 1 follows from Theorems 2 and 3, Lemma 1 and Remark 1.

Proof of Theorem 1. Let ω ∈ Ω. If ω1 ≤ 0, then by Lemma 1, we have
Q1(ϕω) > 0 and det[d′′(ω)] < 0. Thus, the matrix d′′(ω) has one positive
eigenvalue and one negative eigenvalue. Therefore, by Theorem 2, T (ωt)ϕω is
stable.

Next, we consider the case ω1 > 0. We put ξ =

√
γ

(
4ω0

ω2
1

− 1

)
. Then, by

Lemma 1, we have

Q1(ϕω) =
1

γ

√
4ω0 − ω2

1 {1− g(ξ)} ,

where g(ξ) is defined by (1.11) in Remark 1.
If g(ξ) < 1, then Q1(ϕω) > 0 and det[d′′(ω)] < 0. Thus, d′′(ω) has a positive

eigenvalue, and by Theorem 2, T (ωt)ϕω is stable.
On the other hand, if g(ξ) > 1, then Q1(ϕω) < 0 and det[d′′(ω)] > 0.

Moreover, since

∂2ω0
d(ω) = ∂ω0Q0(ϕω) =

−4ω1√
4ω0 − ω2

1{γ(4ω0 − ω2
1) + ω2

1}
< 0,

we see that d′′(ω) is negative definite. Thus, it follows from Theorem 3 that
T (ωt)ϕω is unstable.

Finally, by Remark 1, we see that g(ξ) < 1 is equivalent to ω1 < 2κ
√
ω0,

and that g(ξ) > 1 is equivalent to ω1 > 2κ
√
ω0.

The rest of the paper is organized as follows. In Section 2, we give a
variational characterization of ϕω. This part is essentially the same as Section
3 of [2], so we omit the details. In Section 3, we give the proof of Theorem 3.
We divide the proof into two parts. In Subsection 3.1, we prove that if d′′(ω)
is negative definite, then there exists an unstable direction ψ. In Subsection
3.2, we prove the instability of T (ωt)ϕω using the variational characterization
of ϕω and the unstable direction ψ.

§2. Variational characterization

In this section, we give a variational characterization of ϕω. Although ϕω is
given by (1.3) and (1.4) explicitly, we need such a variational characterization
to prove stability and instability of solitary wave solutions T (ωt)ϕω.

Throughout this section, we assume that b > 0. The case b = 0 is studied
in Section 3 of [2], and the proof for the case b > 0 is almost the same as that
for b = 0, so we will omit the details.
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For ω ∈ Ω, we define

Lω(v) = ∥∂xv∥2L2 + ω0∥v∥2L2 + ω1(i∂xv, v)L2 ,

Sω(v) =
1

2
Lω(v)−

1

4
(i|v|2∂xv, v)L2 −

b

6
∥v∥6L6 ,

Kω(v) = Lω(v)− (i|v|2∂xv, v)L2 − b∥v∥6L6 ,

and consider the following minimization problem:

(2.1) µ(ω) = inf{Sω(v) : v ∈ H1(R) \ {0}, Kω(v) = 0}.

Note that (1.5) is equivalent to S′
ω(ϕ) = 0 and that Kω(v) = ∂λSω(λv)|λ=1.

We also define

S̃ω(v) = Sω(v)−
1

4
Kω(v) =

1

4
Lω(v) +

b

12
∥v∥6L6 .

Lemma 2. Let ω ∈ Ω.

(1) There exists a constant C1 = C1(ω) > 0 such that Lω(v) ≥ C1∥v∥2H1 for
all v ∈ H1(R).

(2) µ(ω) > 0.

(3) If v ∈ H1(R) satisfies Kω(v) < 0, then µ(ω) < S̃ω(v).

Proof. (1) See Lemma 7 (1) of [2].
(2) Let v ∈ H1(R) \ {0} satisfy Kω(v) = 0. Then, by (1) and the Sobolev
inequality, there exists C2 > 0 such that

C1∥v∥2H1 ≤ Lω(v) = (i|v|2∂xv, v)L2 + b∥v∥6L6

≤ ∥∂xv∥L2∥v∥3L6 + b∥v∥6L6 ≤ C1

2
∥v∥2H1 + C2∥v∥6H1 .

Since v ̸= 0, we have ∥v∥4H1 ≥ C1
2C2

. Thus, we have

µ(ω) = inf{S̃ω(v) : v ∈ H1(R) \ {0}, Kω(v) = 0}

≥ 1

4
inf{Lω(v) : v ∈ H1(R) \ {0}, Kω(v) = 0} ≥ C1

4

√
C1

2C2
> 0.

(3) Let v ∈ H1(R) \ {0} satisfy Kω(v) < 0. Then, there exists λ1 ∈ (0, 1)
such that

Kω(λ1v) = λ21Lω(v)− λ41(i|v|2∂xv, v)L2 − λ61b∥v∥6L6 = 0.

Since v ̸= 0, we have

µ(ω) ≤ S̃ω(λ1v) =
λ21
4
Lω(v) +

λ61b

12
∥v∥6L6 < S̃ω(v).

This completes the proof.
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Let Mω be the set of all minimizers for (2.1), i.e.,

Mω = {φ ∈ H1(R) \ {0} : Sω(φ) = µ(ω), Kω(φ) = 0}.

Then, we obtain the following.

Lemma 3. For any ω ∈ Ω, we have Mω = {T (θ)ϕω : θ ∈ R2}. In particular,
if v ∈ H1(R) satisfies Kω(v) = 0 and v ̸= 0, then Sω(ϕω) ≤ Sω(v).

The proof of Lemma 3 is almost the same as that of Lemma 10 of [2], so
we omit it.

The following lemma plays an important role in the proof of Lemma 12.

Lemma 4. If v ∈ H1(R) satisfies ⟨K ′
ω(ϕω), v⟩ = 0, then ⟨S′′

ω(ϕω)v, v⟩ ≥ 0.

Proof. Let v ∈ H1(R) satisfy ⟨K ′
ω(ϕω), v⟩ = 0. Since Kω(ϕω) = 0 and

⟨K ′
ω(ϕω), ϕω⟩ ̸= 0, by the implicit function theorem, there exist a constant

δ > 0 and a C2-function γ : (−δ, δ) → R such that γ(0) = 0 and

(2.2) Kω(ϕω + sv + γ(s)ϕω) = 0, s ∈ (−δ, δ).

Taking δ smaller if necessary, we also have ϕω+sv+γ(s)ϕω ̸= 0 for s ∈ (−δ, δ).
Differentiating (2.2) at s = 0, we have

0 = ⟨K ′
ω(ϕω), v⟩+ γ′(0)⟨K ′

ω(ϕω), ϕω⟩.

Since ⟨K ′
ω(ϕω), v⟩ = 0 and ⟨K ′

ω(ϕω), ϕω⟩ ̸= 0, we have γ′(0) = 0.
Moreover, since ϕω ∈ Mω by Lemma 3, it follows from (2.2) that the

function s 7→ Sω(ϕω + sv + γ(s)ϕω) has a local minimum at s = 0. Thus, we
have

0 ≤ d2

ds2
Sω(ϕω + sv + γ(s)ϕω)

∣∣
s=0

= ⟨S′′
ω(ϕω)(v + γ′(0)ϕω), v + γ′(0)ϕω⟩+ ⟨S′

ω(ϕω), γ
′′(0)ϕω⟩

= ⟨S′′
ω(ϕω)v, v⟩.

This completes the proof.

§3. Proof of Theorem 3

In this section, we give the proof of Theorem 3. We divide the proof into two
parts. In Subsection 3.1, we prove that if d′′(ω) is negative definite, then there
exists an unstable direction ψ (see Lemma 6). In Subsection 3.2, we prove
the instability of T (ωt)ϕω using the variational characterization of ϕω and the
unstable direction ψ (see Proposition 1). Theorem 3 follows from Lemma 6
and Proposition 1.
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3.1. Existence of unstable direction

Lemma 5. ⟨S′′
ω(ϕω)ϕω, ϕω⟩ < 0.

Proof. Since the function

(0,∞) ∋ λ 7→ Sω(λϕω) =
λ2

2
Lω(ϕω)−

λ4

4
(i|ϕω|2∂xϕω, ϕω)L2 −

λ6 b

6
∥ϕω∥6L6

has a strictly local maximum at λ = 1, we have

0 >
d2

dλ2
Sω(λϕω)

∣∣
λ=1

= ⟨S′′
ω(ϕω)ϕω, ϕω⟩.

This completes the proof.

Lemma 6. Assume that d′′(ω̂) is negative definite. Then there exists ψ ∈
H1(R) such that

⟨Q′
0(ϕω̂), ψ⟩ = ⟨Q′

1(ϕω̂), ψ⟩ = 0, ⟨S′′
ω̂(ϕω̂)ψ,ψ⟩ < 0.

Proof. For (s, ω) near (0, ω̂) in R× Ω, we define

F (s, ω) :=

[
Q0(sϕω̂ + ϕω)−Q0(ϕω̂)
Q1(sϕω̂ + ϕω)−Q1(ϕω̂)

]
.

Then, we have F (0, ω̂) = 0. Moreover, since DωF (0, ω̂) = d′′(ω̂) is negative
definite and invertible, by the implicit function theorem, there exist a constant
δ > 0 and a C1-function γ : (−δ, δ) → Ω such that γ(0) = ω̂ and

Q0(sϕω̂ + ϕγ(s)) = Q0(ϕω̂), Q1(sϕω̂ + ϕγ(s)) = Q1(ϕω̂)

for s ∈ (−δ, δ). We define φs := sϕω̂ + ϕγ(s) for s ∈ (−δ, δ), and

wj := ∂ωjϕω|ω=ω̂ (j = 0, 1), ψ := ∂sφs|s=0 = ϕω̂ +

1∑
j=0

γ′j(0)wj .

Then, for j = 0, 1, we have

0 =
d

ds
Qj(φs)|s=0 = ⟨Q′

j(ϕω̂), ψ⟩(3.1)

= ⟨Q′
j(ϕω̂), ϕω̂⟩+

1∑
k=0

γ′k(0)⟨Q′
j(ϕω̂), wk⟩.

Moreover, differentiating

0 = S′
ω(ϕω) = E′(ϕω) +

1∑
k=0

ωkQ
′
k(ϕω),
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with respect to ωj for j = 0, 1, we have

0 = E′′(ϕω)(∂ωjϕω) +
1∑

k=0

ωkQ
′′
k(ϕω)(∂ωjϕω) +Q′

j(ϕω)(3.2)

= S′′
ω(ϕω)(∂ωjϕω) +Q′

j(ϕω).

By (3.1) and (3.2), we have

⟨S′′
ω̂(ϕω̂)ψ,ψ⟩ = ⟨S′′

ω̂(ϕω̂)ϕω̂, ϕω̂⟩+ 2

1∑
j=0

γ′j(0)⟨S′′
ω̂(ϕω̂)wj , ϕω̂⟩

+
1∑

j,k=0

γ′j(0)γ
′
k(0)⟨S′′

ω̂(ϕω̂)wj , wk⟩

= ⟨S′′
ω̂(ϕω̂)ϕω̂, ϕω̂⟩ − 2

1∑
j=0

γ′j(0)⟨Q′
j(ϕω̂), ϕω̂⟩ −

1∑
j,k=0

γ′j(0)γ
′
k(0)⟨Q′

j(ϕω̂), wk⟩

= ⟨S′′
ω̂(ϕω̂)ϕω̂, ϕω̂⟩+

1∑
j,k=0

γ′j(0)γ
′
k(0)⟨Q′

j(ϕω̂), wk⟩

= ⟨S′′
ω̂(ϕω̂)ϕω̂, ϕω̂⟩+

1∑
j,k=0

γ′j(0)γ
′
k(0) ∂ωj∂ωk

d(ω̂).

Since d′′(ω̂) is negative definite, it follows from Lemma 5 that

⟨S′′
ω̂(ϕω̂)ψ,ψ⟩ ≤ ⟨S′′

ω̂(ϕω̂)ϕω̂, ϕω̂⟩ < 0.

This completes the proof.

3.2. Proof of instability

In this subsection, we prove the following.

Proposition 1. Let ω ∈ Ω, and assume that there exists ψ ∈ H1(R) such that

(3.3) ⟨Q′
0(ϕω), ψ⟩ = ⟨Q′

1(ϕω), ψ⟩ = 0, ⟨S′′
ω(ϕω)ψ,ψ⟩ < 0.

Then, the solitary wave solution T (ωt)ϕω of (1.1) is unstable.

To prove Proposition 1, we use the argument of Gonçalves Ribeiro [3] (see
also [17, 4]) with some modifications. Throughout this subsection, we fix
ω ∈ Ω, and assume that ψ ∈ H1(R) satisfies (3.3).
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Lemma 7. There exists a constant λ0 > 0 such that

Sω(ϕω + λψ) < Sω(ϕω)

for all λ ∈ (−λ0, 0) ∪ (0, λ0).

Proof. By Taylor’s expansion, for λ ∈ R, we have

Sω(ϕω + λψ)

= Sω(ϕω) + λ⟨S′
ω(ϕω), ψ⟩+ λ2

∫ 1

0
(1− s)⟨S′′

ω(ϕω + sλψ)ψ,ψ⟩ ds

= Sω(ϕω) + λ2
∫ 1

0
(1− s)⟨S′′

ω(ϕω + sλψ)ψ,ψ⟩ ds.

Since ⟨S′′
ω(ϕω)ψ,ψ⟩ < 0, by the continuity of λ 7→ ⟨S′′

ω(ϕω + λψ)ψ,ψ⟩, there
exists λ0 > 0 such that

⟨S′′
ω(ϕω + λψ)ψ,ψ⟩ ≤ 1

2
⟨S′′

ω(ϕω)ψ,ψ⟩

for all λ ∈ (−λ0, λ0). Thus, for λ ∈ (−λ0, 0) ∪ (0, λ0), we have

Sω(ϕω + λψ) ≤ Sω(ϕω) +
λ2

4
⟨S′′

ω(ϕω)ψ,ψ⟩ < Sω(ϕω).

This completes the proof.

For u ∈ H1(R), we define

T ′
0 u = iu, T ′

1 u = −∂xu.

Then, by (1.8) and (1.10), we have

(3.4) ∂θjT (θ)u = T (θ)T ′
j u = T ′

j T (θ)u, ⟨Q′
j(u), v⟩ = (T ′

j u, iv)L2

for θ = (θ0, θ1) ∈ R2, u, v ∈ H1(R) and j = 0, 1. We denote T = R/2πZ.

Lemma 8. There exist a constant ε0 > 0 and a C1-function

α = (α0, α1) : Uε0(ϕω) → T× R

such that α(ϕω) = 0, and

(1) α(T (ξ)u) = α(u) + ξ for all u ∈ Uε0(ϕω) and ξ ∈ T× R.

(2) (T ′
j u, T (α(u))ϕω)L2 = 0 for all u ∈ Uε0(ϕω) and j = 0, 1.



INSTABILITY OF SOLITARY WAVES 409

(3) There exists ρ > 0 such that

1∑
j,k=0

(T ′
j u, T (α(u))T

′
k ϕω)L2ζjζk ≥ ρ|ζ|2

for all u ∈ Uε0(ϕω) and ζ = (ζ0, ζ1) ∈ R2.

Proof. See Section 3 of [3].

For u ∈ Uε0(ϕω), we define

H(u) = [hjk(u)]j,k=0,1, hjk(u) = (T ′
j u, T (α(u))T

′
k ϕω)L2 .

Then, by Lemma 8 (1), we have

(3.5) hjk(T (ξ)u) = (T (ξ)T ′
j u, T (α(u) + ξ)T ′

k ϕω)L2 = hjk(u)

for u ∈ Uε0(ϕω) and ξ ∈ T× R.
Moreover, differentiating Lemma 8 (2) with respect to u, we have

(3.6)

1∑
k=0

hjk(u)⟨α′
k(u), w⟩ = (T (α(u))T ′

j ϕω, w)L2

for u ∈ Uε0(ϕω), w ∈ H1(R) and j = 0, 1. By Lemma 8 (3), the matrix H(u)
is invertible, and we denote the inverse H(u)−1 by G(u) = [gjk(u)]. Then,
there exists a constant C > 0 such that

(3.7) |gjk(u)| ≤ C for all u ∈ Uε0(ϕω), j, k = 0, 1.

For j = 0, 1 and u ∈ Uε0(ϕω), we define

aj(u) :=

1∑
k=0

gjk(u)T (α(u))T
′
k ϕω.

Since ϕω ∈ H2(R), we see that aj(u) ∈ H1(R), it follows from (3.6) that

⟨α′
j(u), w⟩ = (aj(u), w)L2 , w ∈ H1(R).

By (3.5) and Lemma 8 (1), for j = 0, 1, we have

(3.8) aj(T (ξ)u) = T (ξ)aj(u) for all u ∈ Uε0(ϕω), ξ ∈ T× R.

Moreover, by (3.7), there exists a constant C > 0 such that

(3.9) ∥aj(u)∥H1 ≤ C for all u ∈ Uε0(ϕω), j = 0, 1.
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Next, for u ∈ Uε0(ϕω), we define

A(u) = (iu, T (α(u))ψ)L2 ,(3.10)

q(u) = T (α(u))ψ +

1∑
j=0

(
iu, T (α(u))T ′

j ψ
)
L2 iaj(u).(3.11)

Then, since ψ, a0(u), a1(u) ∈ H1(R), we see that q(u) ∈ H1(R).

Lemma 9. For u ∈ Uε0(ϕω),

(1) A(T (ξ)u) = A(u), q(T (ξ)u) = T (ξ)q(u) for all ξ ∈ T× R.

(2) ⟨A′(u), w⟩ = (q(u), iw)L2 for w ∈ H1(R).

(3) q(ϕω) = ψ.

(4) ⟨Q′
j(u), q(u)⟩ = 0 for j = 0, 1.

Proof. (1) By Lemma 8 (1), we have

A(T (ξ)u) = (iT (ξ)u, T (α(u) + ξ)ψ)L2

= (iT (ξ)u, T (ξ)T (α(u))ψ)L2 = A(u).

Moreover, by (3.8), we have

q(T (ξ)u) = T (ξ)T (α(u))ψ +

1∑
j=0

(
iT (ξ)u, T (ξ)T (α(u))T ′

j ψ
)
L2 iaj(T (ξ)u)

= T (ξ)q(u).

(2) For u ∈ Uε0(ϕω) and w ∈ H1(R), we have

⟨A′(u), w⟩ = (iw, T (α(u))ψ)L2 +
1∑

j=0

⟨α′
j(u), w⟩

(
iu, T (α(u))T ′

j ψ
)
L2

= (iw, T (α(u))ψ)L2 +

1∑
j=0

(
iu, T (α(u))T ′

j ψ
)
L2 (aj(u), w)L2

= (q(u), iw)L2 .

(3) By (3.4) and the assumption (3.3), we have

(iϕω, T
′
j ψ)L2 = (T ′

j ϕω, iψ)L2 = ⟨Q′
j(ϕω), ψ⟩ = 0.

Moreover, since α(ϕω) = 0, by (3.11), we have q(ϕω) = ψ.
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(4) For u ∈ H2(R) ∩ Uε0(ϕω), by (1) and (2), we have

0 = ∂ξjA(T (ξ)u)
∣∣
ξ=0

= ⟨A′(u), T ′
j u⟩ = (q(u), iT ′

j u)L2 .

By density argument, we have (q(u), iT ′
j u)L2 = 0 for all u ∈ Uε0(ϕω).

Thus, we have ⟨Q′
j(u), q(u)⟩ = (T ′

j u, iq(u))L2 = 0 for u ∈ Uε0(ϕω).

For u ∈ Uε0(ϕω), we define

P (u) := ⟨E′(u), q(u)⟩.

We remark that by Lemma 9 (4), we have

(3.12) P (u) = ⟨S′
ω(u), q(u)⟩, u ∈ Uε0(ϕω).

Lemma 10. Let I be an interval of R. Let u ∈ C(I,H1(R))∩C1(I,H−1(R))
be a solution of (1.1), and assume that u(t) ∈ Uε0(ϕω) for all t ∈ I. Then,

d

dt
A(u(t)) = P (u(t))

for all t ∈ I.

Proof. By Lemma 4.6 of [4] and Lemma 9 (2), we see that t 7→ A(u(t)) is a
C1-function on I, and

d

dt
A(u(t)) = ⟨i∂tu(t), q(u(t))⟩

for all t ∈ I. Since u(t) is a solution of (1.1), we have

⟨i∂tu(t), q(u(t))⟩ = ⟨E′(u(t)), q(u(t))⟩ = P (u(t))

for all t ∈ I. This completes the proof.

Lemma 11. There exist constants λ1 > 0 and ε1 ∈ (0, ε0) such that

Sω(u+ λq(u)) ≤ Sω(u) + λP (u)

for all λ ∈ (−λ1, λ1) and u ∈ Uε1(ϕω).

Proof. For u ∈ Uε0(ϕω) and λ ∈ R, by Taylor’s expansion, we have

(3.13) Sω(u+ λq(u)) = Sω(u) + λP (u) + λ2
∫ 1

0
(1− s)R(λs, u) ds,

where we used (3.12) and put

R(λ, u) := ⟨S′′
ω(u+ λq(u))q(u), q(u)⟩.
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Here, we remark that

P (T (ξ)u) = ⟨S′
ω(T (ξ)u), T (ξ)q(u)⟩ = P (u),

R(λ, T (ξ)u) = ⟨S′′
ω(T (ξ)(u+ λq(u)))T (ξ)q(u), T (ξ)q(u)⟩ = R(λ, u)

for ξ ∈ T× R, λ ∈ R and u ∈ H1(R). Moreover, since

R(0, ϕω) = ⟨S′′
ω(ϕω)q(ϕω), q(ϕω)⟩ = ⟨S′′

ω(ϕω)ψ,ψ⟩ < 0,

by the continuity of R(λ, u) with respect to λ and u, there exist constants
λ1 > 0 and ε1 ∈ (0, ε0) such that R(λ, u) < 0 for all λ ∈ (−λ1, λ1) and
u ∈ Uε1(ϕω). Thus, by (3.13), we have

Sω(u+ λq(u)) ≤ Sω(u) + λP (u)

for all λ ∈ (−λ1, λ1) and u ∈ Uε1(ϕω).

Lemma 12. There exist constants ε2 ∈ (0, ε1) and λ2 ∈ (0, λ1) that satisfy
the following. For any u ∈ Uε2(ϕω), there exists Λ(u) ∈ (−λ2, λ2) such that

Kω (u+ Λ(u)q(u)) = 0, u+ Λ(u)q(u) ̸= 0.

Proof. First, since ⟨S′′
ω(ϕω)ψ,ψ⟩ < 0, by Lemma 4, we have ⟨K ′

ω(ϕω), ψ⟩ ̸= 0.
Thus, without loss of generality, we may assume that ⟨K ′

ω(ϕω), ψ⟩ > 0.
For u ∈ Uε0(ϕω) and λ ∈ R, we have

(3.14) Kω(u+ λq(u)) = Kω(u) + λ

∫ 1

0
⟨K ′

ω(u+ sλq(u)), q(u)⟩ ds.

Since ⟨K ′
ω(ϕω), q(ϕω)⟩ = ⟨K ′

ω(ϕω), ψ⟩ > 0, by the continuity of the function
⟨K ′

ω(u+λq(u)), q(u)⟩ with respect to λ and u, there exist constants λ2 ∈ (0, λ1)
and ε2 ∈ (0, ε1) such that

(3.15) ⟨K ′
ω(u+ λq(u)), q(u)⟩ ≥ 1

2
⟨K ′

ω(ϕω), ψ⟩

for all λ ∈ [−λ2, λ2] and u ∈ Uε2(ϕω). Moreover, since Kω(ϕω) = 0, taking ε2
smaller if necessary, we have

(3.16) |Kω(u)| <
λ2
2
⟨K ′

ω(ϕω), ψ⟩, u ∈ Uε2(ϕω).

Let u ∈ Uε2(ϕω). If Kω(u) < 0, then it follows from (3.14)–(3.16) that

Kω(u+ λ2q(u)) = Kω(u) + λ2

∫ 1

0
⟨K ′

ω(u+ sλ2q(u)), q(u)⟩ ds

> −λ2
2
⟨K ′

ω(ϕω), ψ⟩+
λ2
2
⟨K ′

ω(ϕω), ψ⟩ = 0.
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Since the function λ 7→ Kω(u+λq(u)) is continuous, there exists Λ(u) ∈ (0, λ2)
such that

(3.17) Kω(u+ Λ(u)q(u)) = 0.

Similarly, if Kω(u) > 0, then we have

Kω(u− λ2q(u)) = Kω(u)− λ2

∫ 1

0
⟨K ′

ω(u− sλ2q(u)), q(u)⟩ ds

<
λ2
2
⟨K ′

ω(ϕω), ψ⟩ −
λ2
2
⟨K ′

ω(ϕω), ψ⟩ = 0.

Thus, there exists Λ(u) ∈ (−λ2, 0) such that (3.17). If Kω(u) = 0, taking
Λ(u) = 0, (3.17) is satisfied.

Finally, by (3.9) and (3.11), taking λ2 and ε2 smaller if necessary, we have
u+ Λ(u)q(u) ̸= 0 for all u ∈ Uε2(ϕω). This completes the proof.

Lemma 13. Let λ2 and ε2 be the positive constants given in Lemma 12. Then,

Sω(ϕω) ≤ Sω(u) + λ2|P (u)|

for all u ∈ Uε2(ϕω).

Proof. By Lemma 12, for any u ∈ Uε2(ϕω), there exists Λ(u) ∈ (−λ2, λ2) such
that Kω(u + Λ(u)q(u)) = 0 and u + Λ(u)q(u) ̸= 0. Then, it follows from
Lemma 3 that

(3.18) Sω(ϕω) ≤ Sω(u+ Λ(u)q(u)), u ∈ Uε2(ϕω).

Thus, by Lemma 11 and (3.18), for u ∈ Uε2(ϕω), we have

Sω(ϕω) ≤ Sω (u+ Λ(u)q(u)) ≤ Sω(u) + Λ(u)P (u)

≤ Sω(u) + |Λ(u)||P (u)| ≤ Sω(u) + λ2|P (u)|.

This completes the proof.

We are now in a position to give the Proof of Proposition 1.

Proof of Proposition 1. Suppose that T (ωt)ϕω is stable. For λ close to 0, let
uλ(t) be the solution of (1.1) with uλ(0) = ϕω + λψ. Since T (ωt)ϕω is stable,
there exists λ3 ∈ (0, λ0) such that if |λ| < λ3, then uλ(t) ∈ Uε2(ϕω) for all
t ≥ 0. Moreover, by the definition (3.10) of A, there exists C1 > 0 such that
|A(v)| ≤ C1 for all v ∈ Uε2(ϕω).

Let λ ∈ (−λ3, 0) ∪ (0, λ3). Then, by Lemma 7, we have

δλ := Sω(ϕω)− Sω(uλ(0)) > 0.
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Moreover, by Lemma 13 and the conservation of Sω, we have

0 < δλ = Sω(ϕω)− Sω(uλ(t)) ≤ λ2|P (uλ(t))|, t ≥ 0.

Since t 7→ P (uλ(t)) is continuous, we see that either (i) P (uλ(t)) ≥ δλ/λ2 for
all t ≥ 0, or (ii) P (uλ(t)) ≤ −δλ/λ2 for all t ≥ 0. Moreover, by Lemma 10, we
have

d

dt
A(uλ(t)) = P (uλ(t)), t ≥ 0.

Therefore, we see that A(uλ(t)) → ∞ as t → ∞ for the case (i), and
A(uλ(t)) → −∞ as t → ∞ for the case (ii). This contradicts the fact that
|A(uλ(t))| ≤ C1 for all t ≥ 0. Hence, T (ωt)ϕω is unstable.
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