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Abstract. We discuss multivariate multiple comparison procedure among
mean vectors. In general, it is difficult to find the exact critical value that is
used for this problem. So, some approximation procedures have been discussed
by many authors. In this paper, we review some results concerning the following
approximation procedures: (i) multivariate Tukey-Kramer type procedure and
(ii) approximation procedure based on Bonferroni’s inequality.

AMS 2010 Mathematics Subject Classification. 62H10, 62H15.

Key words and phrases. Asymptotic expansion, Bonferroni’s inequality, multiple
comparisons, multivariate Tukey-Kramer procedure, simultaneous confidence
intervals.

§1. Introduction

The study of the subjects of multiple comparisons under univariate and mul-
tivariate analysis has been done by many authors (for example, see Hochberg
and Tamhane [13] and Hsu [14]). This paper is concerned with multivariate
multiple comparisons among mean vectors and we will review some results of
this topic.

We first consider the simultaneous confidence intervals for multiple compar-
isons among mean vectors from the multivariate normal populations. When
we discuss multivariate multiple comparisons among mean vectors, we usu-
ally deal with the simultaneous confidence intervals. So, it is important to
construct the simultaneous confidence intervals among mean vectors. Let
µi be the mean vector from i-th population. Let M = [µ1, . . . ,µk] be the
unknown p × k matrix of k mean vectors corresponding to the k treatments
and let M̂ = [µ̂1, . . . , µ̂k] be the unbiased estimator of M such that vec(X)

is distributed as Nkp(0,V ⊗ Σ), where X = M̂ − M , V = [vij ] is a known
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k × k positive definite matrix and Σ is an unknown p × p positive definite
matrix, and vec(·) denotes the column vector formed by stacking the columns
of the matrix under each other. Also, let S be an unbiased estimator of Σ
such that νS is independent of M̂ and is distributed as a Wishart distribu-
tion Wp(Σ, ν). Then, in general, the simultaneous confidence intervals for
pairwise comparisons among mean vectors or comparisons with a control can
be written as the form:

(1.1) a′Mb ∈
[
a′M̂b± t(b′V b)1/2(a′Sa)1/2

]
, ∀a ∈ Rp, ∀b ∈ B,

where Rp is the set of any nonzero real p-dimensional vectors and B is a subset
in the k-dimensional space. We note that the value t2 in (1.1) is the upper
100α percentile of the T 2

max-type statistic,

(1.2) T 2
max = max

b∈B

{
(Xb)′S−1Xb

b′V b

}
,

where 0 < α < 1 and the coverage probability for (1.1) is 1 − α. In order to
construct actually simultaneous confidence intervals (1.1) with the confidence
level 1−α, it is necessary to find the value t. However, in general, it is difficult
to find the exact value t even the cases of pairwise comparisons and compar-
isons with a control. Then large sample approximations based on asymptotic
expansion for the upper percentiles of T 2

max-type statistic have been discussed
by Siotani [33], [34], [35], Krishnaiah [19], Siotani, Hayakawa and Fujikoshi
[36], Seo and Siotani [31], Seo [26] and so on. In particular, Siotani [33], Seo
and Siotani [31] and Seo [26] discussed the first order and the modified second
order Bonferroni approximation that are approximation procedures based on
Bonferroni’s inequality.

In the case of pairwise comparisons, a subset B is given by

B = C ≡ {c ∈ Rk : c = ei − ej , 1 ≤ i < j ≤ k},

where ei is a unit vector of the k-dimensional space having 1 at i-th component
and 0 at others. Therefore, we can also express (1.1) as

a′(µi − µj) ∈
[
a′(µ̂i − µ̂j)± tp·V (dija

′Sa)1/2
]
,∀a ∈ Rp, 1 ≤ i < j ≤ k,

where t2p·V is the upper 100α percentile of T 2
max ·p statistic,

T 2
max ·p = max

1≤i<j≤k
{(xi − xj)

′(dijS)
−1(xi − xj)},

and dij = vii − 2vij + vjj .
In the case of pairwise comparisons with V = I, T 2

max ·p statistic is re-
duced as the same as half of the multivariate Studentized range statistic R2

max
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(see, e.g., Seo and Siotani [31]). Seo, Mano and Fujikoshi [29] proposed the
multivariate Tukey-Kramer procedure (MTK procedure) which is a simple
procedure by replacing with the upper percentile of the R2

max statistic as
an approximation to the one of T 2

max-type statistic for any positive definite
matrix V . This procedure is an extension of Tukey-Kramer procedure (TK
procedure) (Tukey [42], Kramer [17], [18]). For the TK procedure, the general-
ized Tukey conjecture is known as the statement that the TK procedure yields
the conservative simultaneous confidence intervals for all pairwise comparisons
among means (see, e.g., Benjamini and Braun [2]). For the theoretical discus-
sion to prove the generalized Tukey conjecture, see, Hayter [10], [11], Brown
[3], Uusipaikka [43] and Spurrier and Isham [38]. For the MTK procedure, the
multivariate version of the generalized Tukey conjecture has been affirmatively
proved in the case of three correlated mean vectors by Seo, Mano and Fujikoshi
[29], and Nishiyama and Seo [23] gives the affirmative proof of the conjecture
in the case of four mean vectors. Further, relating to the conjecture, Seo [27]
and Nishiyama and Seo [23] gave the upper bound for conservativeness of the
MTK procedure. The related discussion for the univariate case is referred to
Somerville [37].

In the case of comparisons with a control, we have

B = D ≡ {d ∈ Rk : d = ei − ek, 1 ≤ i ≤ k − 1},

where k-th population is the control. Then we can write (1.1) as

a′(µi − µk) ∈
[
a′(µ̂i − µ̂k)± tc·V (dika

′Sa)1/2
]
,

∀a ∈ Rp, 1 ≤ i ≤ k − 1,

where t2c·V is the upper 100α percentile of T 2
max ·c statistic,

T 2
max ·c = max

1≤i≤k−1
{(xi − xk)

′(dikS)
−1(xi − xk)},

and dik = vii − 2vik + vkk.
For comparisons with a control, concerning to the MTK procedure, Seo [26]

proposed a conservative approximate simultaneous confidence procedure. Its
conservativeness has been affirmatively proved by Seo [26] and Nishiyama [21]
in the case of three and four correlated mean vectors, respectively. In addition
Seo and Nishiyama [30] and Nishiyama [21] gave the upper bound for the
conservativeness of this procedure. For the univariate case of the comparisons
with a control, approximate procedures for unbalanced designs are discussed
by Dutt et al. [7], Dunnett [6] and so on.

Also, approximation procedures based on Bonferroni’s inequality for the
upper percentiles of T 2

max-type statistic have been proposed under class of el-
liptical distributions by Seo [28], Okamoto and Seo [25] and Okamoto [24], and
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they evaluated the effect of nonnormality. Besides, under general distributions,
Kakizawa [16] discussed these approximation procedures.

On the other hand, recently, in many practical applications of modern
multivariate statistics (e.g. DNA microarray data) the number of feature p
exceeds N , so that a straightforward use of T 2-type statistics is impossible due
to singularity of the sample covariance matrix. Thus, to cope with this high
dimensional situation, it would be desirable to develop new tests for N ≤ p,
and investigate their asymptotic properties when both N and p are going
to infinity; this asymptotic framework is also known as (N, p)-asymptotics
(see, e.g., Dempster [4], [5], Bai and Saradanasa [1], Fujikoshi, Himeno and
Wakaki [9] and Himeno [12]). For this problem, under multivariate normality,
Takahashi et al. [41] and Hyodo, Takahashi and Nishiyama [15] proposed a test
procedure for multiple comparisons among mean vectors based on Dempster
trace criterion by Dempster [4], [5].

The rest of the paper is organized as follows. Section 2 provides description
of the multivariate Tukey-Kramer procedure and similar conservative approx-
imate simultaneous confidence procedure for comparisons with a control. In
Section 3, we consider the approximation procedures based on Bonferroni’s
inequality. We describe some large sample approximations based on asymp-
totic expansion for the upper percentiles of T 2

max-type statistic under normality
and class of elliptical distributions. Also, we introduce some asymptotic re-
sults in high dimensional settings under normality. At last, we provide some
concluding remarks.

§2. Conservative approximate simultaneous confidence procedure

In this section, we describe the multivariate Tukey-Kramer procedure and
similar conservative approximate simultaneous confidence procedure for com-
parisons with a control. In addition we discuss their conservativeness.

2.1. The multivariate Tukey-Kramer procedure

In this subsection, we discuss the multivariate Tukey-Kramer procedure (MTK
procedure) and its properties.

The simultaneous confidence intervals for all pairwise comparisons by the
MTK procedure are given by

a′(µi − µj) ∈
[
a′(µ̂i − µ̂j)± tp·I

√
dija′Sa

]
,(2.1)

∀a ∈ Rp, 1 ≤ i < j ≤ k,
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where t2p·I is the upper 100α percentile of T 2
max ·p statistic with V = I, that

is, t2p·I = q2/2 and q2 ≡ q2p,k,ν(α) is the upper 100α percentile of the p-variate
Studentized range statistic with parameters k and ν. By a reduction of relating
to the coverage probability of (2.1), Seo, Mano and Fujikoshi [29] proved that
the coverage probability in the case k = 3 is equal or greater than 1 − α for
any positive definite matrix V . Using the same reduction, Seo [27] discussed
the bound of conservative simultaneous confidence levels.

Consider the probability

(2.2) Q(t,V ,B) = Pr{ (Xb)′(νS)−1(Xb) ≤ t(b′V b), ∀b ∈ B },

where t is any fixed constant. Without loss of generality, we may assume
Σ = Ip when we consider the probability (2.2).

When t = t∗p(≡ t2p·I/ν) and B = C, the coverage probability (2.2) is the same
as the coverage probability of (2.1). The conservativeness of the simultaneous
confidence intervals (2.1) means that Q(t∗p,V ,C) ≥ Q(t∗p, I,C) = 1 − α. The
inequality is known as the multivariate generalized Tukey conjecture. Then
Seo and Nishiyama [30] gave the following theorem for the upper bound of
coverage probability by using same line of the proof of Theorem 3.2 in Seo,
Mano and Fujikoshi [29].

Theorem 2.1. (Seo and Nishiyama [30]) Let Q(t,V ,B) be the coverage
probability (2.2) with a known matrix V for the case k = 3. Then, for any
positive definite matrix V , it holds that

1− α = Q(t∗p, I,C) ≤ Q(t∗p,V ,C) < Q(t∗p,V 0,C),

where t∗p = t2p·I/ν, C = {c ∈ Rk : c = ei − ej , 1 ≤ i < j ≤ k} and V 0

has the condition such that
√
d12 =

√
d13 +

√
d23 or

√
d13 =

√
d12 +

√
d23 or√

d23 =
√
d12 +

√
d13.

Also, in the case k = 4, Nishiyama and Seo [23] gave the following theorem
for conservativeness of the simultaneous confidence intervals and upper bound
of coverage probability.

Theorem 2.2. (Nishiyama and Seo [23]) Let Q(t,V ,B) be the coverage
probability (2.2) with a known matrix V for the case k = 4. Then in the case
of k = 4,

1− α = Q(t∗p, I,C) ≤ Q(t∗p,V ,C) < Q(t∗p,V 1,C),

holds for any positive definite matrix V where t∗p = t2p·I/ν, V 1 satisfies with

two equations in six patterns; “
√
dij =

√
diℓ+

√
djℓ and

√
dij =

√
dim+

√
djm”

and i, j, ℓ, m take another value each other.
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We note that the condition of V 0 in Theorem 2.1 is an extension of the
result in Seo [27] and the condition of V 1 in Theorem 2.2 is a matrix with one
of the following six patterns:

(i)
√
d12 =

√
d13 +

√
d23 and

√
d12 =

√
d14 +

√
d24

(ii)
√
d13 =

√
d12 +

√
d23 and

√
d13 =

√
d14 +

√
d34

(iii)
√
d14 =

√
d12 +

√
d24 and

√
d14 =

√
d13 +

√
d34

(iv)
√
d23 =

√
d12 +

√
d13 and

√
d23 =

√
d24 +

√
d34

(v)
√
d24 =

√
d12 +

√
d14 and

√
d24 =

√
d23 +

√
d34

(vi)
√
d34 =

√
d13 +

√
d14 and

√
d34 =

√
d23 +

√
d24.

Also we note that there does not exist V 0 and V 1 as a positive definite matrix.
However, we can find V 0 and V 1 as a positive semi-definite matrix. For
example one of such matrices are given by

V 0 =

 4 0 2
0 4 2
2 2 2

 , V 1 =


3 0 1 2
0 6 4 2
1 4 3 2
2 2 2 2

 .
In connection with above Theorems, we have the following conjecture for

the case k ≥ 5.

Conjecture 2.3. (Nishiyama and Seo [23]) Let Q(t,V ,B) be the cover-
age probability for (2.2) with a known matrix V . Then

1− α = Q(t∗p, I,C) ≤ Q(t∗p,V ,C) < Q(t∗p,V p,C)

holds for any positive definite matrix V , where t∗p = t2p·I/ν and V p satisfies

with (k − 2) equations in k(k − 1)/2 patterns: “
√
dij =

√
diℓ1 +

√
djℓ1 and√

dij =
√
diℓ2 +

√
djℓ2 and . . . and

√
dij =

√
diℓk−2

+
√
djℓk−2

” , i, j, ℓ1, ℓ2,
. . ., ℓk−3 and ℓk−2 take another value each other.

2.2. A conservative approximate procedure for comparisons with
a control

In this subsection, concerning to the MTK procedure, we discuss a conservative
approximate simultaneous confidence procedure for comparisons with a control
and its conservativeness.
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Seo [26] proposed following conservative approximate simultaneous confi-
dence procedure:

a′(µi − µk) ∈
[
a′(µ̂i − µ̂k)± tc·Vc1

√
dika′Sa

]
,(2.3)

∀a ∈ Rp, 1 ≤ i ≤ k − 1,

where tc·Vc1 is the upper 100α percentile of T 2
max ·c statistic with V = V c1, and

V c1 satisfies with dij = dik+djk, 1 ≤ i < j ≤ k−1. Further, Seo [26] gave the
conjecture that the simultaneous confidence intervals for this procedure (2.3)
are always conservative. For this conjecture, its proof for the case of k = 3 is
given by Seo [26].

Since the coverage probability (2.2) with t = t2c·V /ν and B = D is the same
as the coverage probability of (2.3), we obtain the following theorems for the
upper bound of coverage probability by the similar derivation of Theorem 2.1
and Theorem 2.2.

Theorem 2.4. (Seo and Nishiyama [30]) Let Q(t,V ,B) be the coverage
probability (2.2) with a known matrix V for the case k = 3. Then, for any
positive definite matrix V , it holds that

1− α = Q(t∗c ,V 2,D) ≤ Q(t∗c ,V ,D) < Q(t∗c ,V 3,D),

where t∗c = t2c·V2
/ν, D = {d ∈ Rk : d = ei−ek, 1 ≤ i ≤ k−1} and V 2 satisfies

with d12 = d13 + d23 and V 3 satisfies with
√
d12 = |

√
d13 −

√
d23|.

Theorem 2.5. (Nishiyama [21]) Let Q(q,V ,B) be the coverage probability
for (2.2) with a known matrix V for the case k = 4. Then

1− α = Q(t∗c ,V 4,D) ≤ Q(t∗c ,V ,D) < Q(t∗c ,V 5,D)

holds for any positive definite matrix V , where t∗c = t2c·V4
/ν, V 4 satisfies with

d12 = d14 + d24, d13 = d14 + d34 and d23 = d24 + d34, and V 5 satisfies with√
d12 = |

√
d14 −

√
d24|,

√
d13 = |

√
d14 −

√
d34| and

√
d23 = |

√
d24 −

√
d34|.

We note that there does not exist V 3 in Theorem 2.4 and V 5 in Theorem
2.5 as a positive definite matrix. However, we can find V 3 and V 5 as a positive
semi-definite matrix. For example one of such matrices are given by

V 3 =

 4 2 0
2 2 2
0 2 4

 , V 5 =


4 2 2 0
2 2 2 2
2 2 2 2
0 2 2 4

 .
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Also, we can find one of V 2 in Theorem 2.4 and V 4 in Theorem 2.5 as follows:

V 2 =

 1 0 0.5
0 1 0.5
0.5 0.5 1

 , V 4 =


1 0 0 0.5
0 1 0 0.5
0 0 1 0.5
0.5 0.5 0.5 1

 .
In connection with above theorems, we have the following conjecture for

the case k ≥ 5.

Conjecture 2.6. (Nishiyama [21]) Let Q(t,V ,B) be the coverage proba-
bility for (2.2) with a known matrix V . Then

1− α = Q(t∗c ,V c1,D) ≤ Q(t∗c ,V ,D) < Q(t∗c ,V c2,D)

holds for any positive definite matrix V , where t∗c = t2c·Vc1
/ν and V c1 satisfies

with dij = dik + djk for all i, j (1 ≤ i < j ≤ k − 1) and V c2 satisfies with√
dij = |

√
dik −

√
djk| for all i, j (1 ≤ i < j ≤ k − 1).

§3. Approximation procedures based on Bonferroni’s inequality

In this section, we discuss approximation procedures based on Bonferroni’s
inequality, that is, the first order Bonferroni approximation and the modified
second order Bonferroni approximation (see, e.g., Siotani [33], Seo and Siotani
[31], [32] and Seo [26]). At first, we describe the first and modified second
order Bonferroni approximations, and introduce a result of asymptotic expan-
sion under multivariate normal distribution. Also, we review some asymptotic
results in high dimensional settings. At last, some results of asymptotic ex-
pansions under elliptical distributions are described.

3.1. Asymptotic expansion under normality

In this subsection, we discribe the first order Bonferroni approximation and
the modified second order Bonferroni approximation. Also, we introduce a
result of asymptotic expansion under normality.

Put zi = (b′iV bi)
−1/2Xbi, i = 1, . . . , r, where bi’s are given vectors. Let

Bk = {b1, . . . , br}, and let t2 be the exact upper 100α percentile of generalized
T 2
max-type statistic (1.2). Then zi has the p-dimensional normal distribution

with mean vector 0 and covariance matrix Σ.
By the first order Bonferroni’s inequality for Pr

{
T 2
max > t2

}
;

r∑
i=1

Pr{z′
iS

−1zi > t2} − β(t2) < Pr{T 2
max > t2} <

r∑
i=1

Pr{z′
iS

−1zi > t2},
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where

β(t2) =

k−1∑
i=1

k∑
j=i+1

Pr
{
z′
iS

−1zi > t2, z′
jS

−1zj > t2
}
.

Then the first order approximation t21 is given as a critical value that satisfies
the equality

r∑
i=1

Pr{z′
iS

−1zi > t21} = α.

We note that t21 is overestimated, and the statistic z′
iS

−1zi is reduced to the
Hotelling’s T 2 statistic with ν degrees of freedom (d.f.); that is,

t21 =
νp

ν − p+ 1
Fp,ν−p+1

(α
r

)
,

where Fp,ν−p+1(α/r) is the upper α/r percentile of F -distribution with p and
ν − p + 1 d.f.’s. Also, the modified second order approximation t2M by the
modified second order Bonferroni procedure is defined as a critical value that
satisfies the equality

r∑
i=1

Pr
{
z′
iS

−1zi > t2M
}
−

k−1∑
i=1

k∑
j=i+1

Pr
{
z′
iS

−1zi > t21 , z
′
jS

−1zj > t21
}
= α.

We note that t22 < t2M < t21 (see, Figure 1), where t22 is a second order approx-
imation defined as a critical value that satisfies the equality

r∑
i=1

Pr
{
z′
iS

−1zi > t22
}
−

k−1∑
i=1

k∑
j=i+1

Pr
{
z′
iS

−1zi > t22 , z
′
jS

−1zj > t22
}
= α.

Hence the modified second order approximation t2M can be written as

t2M =
νp

ν − p+ 1
Fp,ν−p+1

(
α+ β(t21)

r

)
.

Though we have to evaluate β(t21) in order to obtain the modified second
order approximation t2M , it is difficult to obtain the exact evaluation. As the
large sample approximations, however when V = I, an asymptotic expansion
formula was given by Siotani [33] and its simplified and practical formula was
obtained in Seo and Siotani [31]. Also, for any positive definite matrix V ,
asymptotic expansion formula up to the term of order ν−2 was derived by Seo
[26].
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Theorem 3.1. (Seo [26]) With the notations

ηij =
χ2

2(1− ρ2ij)
,

ga(ηij) =
1

Γ(a)
ηa−1
ij e−ηij (a > 0), Ga(ηij) =

∫ ∞

ηij

ga(t)dt

gp/2−1(ηij) ≡ − 1

2
√
π
η
−3/2
ij e−ηij for p = 1; ≡ 0 for p = 2,(

1

2
p

)
m

=
p

2
·
(p
2
+ 1

)
· · ·

(p
2
+m− 1

)
,

it holds that

Pr{z′
iS

−1zi > t21, z
′
jS

−1zj > t21}
= A0(ρij) + ν−1A1(ρij) + ν−2A2(ρij) +O(ν−3),

where χ ≡ χp(α/r) is the upper α/r percentile of the χ2 distribution with p
d.f. and

ρij =
b′iV bj

(b′iV bi)1/2(b
′
jV bj)1/2

,

A0(ρij) = (1− ρij)
p/2

∞∑
m=0

(12p)m

m!
ρ2mij G

2
p/2+m(ηij),

A1(ρij) =
1

2
(1− ρ2ij)

p/2−2χ2
∞∑

m=0

(12p)m

m!
ρ2mij gp/2+m(ηij)

×
[
{ρ2ij(χ2 + 2m)− 2m}Gp/2+m(ηij) +

2m+ 1

p+ 2m
χ2gp/2+m(ηij)

]
,

A2(ρij) =
1

48
(1− ρ2ij)

p/2−4χ2
∞∑

m=0

(12p)m

m!
ρ2mij

[
a1(ρij)gp/2−1+m(ηij)Gp/2+m(ηij)

+a2(ρij)gp/2+m(ηij)Gp/2+m(ηij) + a3(ρij)g
2
p/2+m(ηij)

]
.

For details of coefficients a1(ρij), a2(ρij) and a3(ρij), see Seo [26].
From Theorem 3.1, the modified second order Bonferroni approximation to

the generalized T 2
max statistic is given by

t2M =
νp

ν − p+ 1
Fp,ν−p+1

(
α+ β(t21)

r

)
,(3.1)

where

β(t21) =
k−1∑
i=1

k∑
j=i+1

{
A0(ρij) + ν−1A1(ρij) + ν−2A2(ρij)

}
+O(ν−3).
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P

t2

∑
Pr{z′

iS
−1zi > t2}

Pr{T 2
max > t2}

∑
Pr{z′

iS
−1zi > t2} − β(t2)

t21t2Mt2t22

β(t21)

β(t21)

α

Figure 1: Illustration of the modified second order approximation

In the case of pairwise comparisons, we note that

B = C ≡ {c ∈ Rk : c = ei − ej , 1 ≤ i < j ≤ k},

and r = k(k − 1)/2.

Theorem 3.2. (Seo [26]) The modified second order approximation t2M ·p
for pairwise comparisons among the correlated mean vectors is given by (3.1)
with r = k(k − 1)/2 and

ρij =
c′iV cj

(c′iV ci)1/2(c′jV cj)1/2
,

and then the approximate simultaneous confidence intervals are given by

a′(µi − µj) ∈
[
a′(µ̂i − µ̂j)± tM ·p (dija

′Sa)1/2
]
,∀a ∈ Rp, 1 ≤ i < j ≤ k,

where dij = vii − 2vij + vjj.
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When V = I, the result in Theorem 3.2 can be reduced to the one in Seo
and Siotani [31].

Next, in the case of comparisons with a control, we note that

B = D ≡ {d ∈ Rk : d = ei − ek, 1 ≤ i ≤ k − 1},

and r = k − 1.

Theorem 3.3. (Seo [26]) The modified second order approximation t2M ·c
for comparisons among the correlated mean vectors with a control is given by
(3.1) with r = k − 1 and

ρij =
d′
iV dj

(d′
iV di)1/2(d

′
jV dj)1/2

,

and then the approximate simultaneous confidence intervals are given by

a′(µi − µk) ∈
[
a′(µ̂i − µ̂k)± tM ·c (dika

′Sa)1/2
]
,∀a ∈ Rp, 1 ≤ i ≤ k − 1,

where dik = vii − 2vik + vkk.

When V = I, the result in Theorem 3.3 can be reduced to the one in Seo
and Siotani [32].

3.2. Multiple comparisons for high dimensional data

In this subsection, we will present the results for pairwise comparisons and
comparisons with a control in high dimensional settings under k independent
multivariate normal populations. It is well known that when the dimension
is larger than the total sample size, the sample covariance matrix becomes
singular, and hence it will be impossible to define Hotelling’s T 2-type statistic.
To tackle this problem efficiently, the Dempster trace criterion (D-criterion)
for one and two samples can be used. The technique considered in the current
study develops results derived in Dempster [4], [5]. A similar approach for
multivariate linear hypotheses has been also discussed by Fujikoshi, Himeno
and Wakaki [9], Himeno [12], Nishiyama et al. [22] and many other authors.

Let x
(i)
j (j = 1, 2, . . . , Ni, i = 1, 2, . . . , k) be independently distributed

as the p-dimensional normal distribution with mean vector µi and common
covariance matrix Σ. Let the i-th sample mean vector and the pooled sample
covariance matrix be

x(i) =
1

Ni

Ni∑
j=1

x
(i)
j , S =

1

n

k∑
i=1

Ni∑
j=1

(x
(i)
j − x(i))(x

(i)
j − x(i))′,
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respectively, where n =
∑k

i=1Ni − k. To adjust the high-dimensional setting
to the unbalanced case, we consider the following asymptotic frameworks:

(A1) N1, . . . , Nk, p→ ∞, Ni ≍ p (i = 1, . . . , k),

(A2) trΣi ≍ p (i = 1, 2, . . . , 8),

where the notation “a ≍ b” means that a = O(b) and b = O(a). Now consider
an example of Σ which satisfies the assumption (A2). The eigenvalues λ1 ≥
· · · ≥ λp of covariance matrix Σ are assumed to obey the following model:

(M1) λj = αjp
δj (j = 1, · · · ,m) and λℓ = cℓ (ℓ = m+ 1, . . . , p).

Here, αj (> 0), δj (1/8 ≥ δ1 ≥ · · · ≥ δk > 0) and cℓ (> 0) are unknown
constants preserving the ordering that λ1 ≥ · · · ≥ λp, and m is an unknown
positive integer.

In high dimensional case, for pairwise comparisons, the following Dmax-
type test statistic based on D-criterion was proposed by Hyodo, Takahashi
and Nishiyama [15]:

Dmax ·p = max
1≤i<j≤k

{
Dij

}
,

where

Dij =
p

σ̂

{
(y(i) − y(j))′(y(i) − y(j))

dij trS
− 1

}
.(3.2)

Here, dij = 1/Ni +1/Nj , y
(ℓ) = x(ℓ) −µℓ (ℓ = 1, 2, . . . , k), σ̂ =

√
2pâ2/â21 and

âi’s are the consistent estimators of ai = trΣi/p. Further, for comparisons
with a control, the following statistic

Dmax ·c = max
1≤i≤k−1

{
Dik

}
,

where

Dik =
p

σ̂

{
(y(i) − y(k))′(y(i) − y(k))

dik trS
− 1

}
(3.3)

was considered.
In Hyodo, Takahashi and Nishiyama [15], they derived the approximations

for the upper percentiles of these statistics using the first order Bonferroni
approximation procedure. After that Takahashi, et al. [41] gave an exten-
sion of the results by Hyodo, Takahashi and Nishiyama [15] to the unbalanced
case. They also investigate the robustness of the extended multiple compar-
ison procedures under non-normality. Their simulation results indicate that
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the extended procedures appear to perform well for a number of non-normal
distributions with high dimensional settings. We can thereby recommend the
use of Dmax-type statistics for both pairwise comparisons and comparisons
with a control for the unbalanced case with very small sample sizes and very
high-dimensionality.

Consider the following simultaneous confidence intervals for mean vectors:

a′(µi − µj) ∈
[
a′(x(i) − x(j))± dp

√
dij(trS)a′a

]
,

∀a ∈ Rp, 1 ≤ i < j ≤ k,

where d2p = 1 + (σ̂/p)zp and zp ≡ zp(α) is the upper 100α percentile of the
Dmax ·p statistic. However, it is difficult to give the exact value of zp. By
applying Bonferroni’s inequality to Pr{Dmax ·p > zp}, we get

Pr{Dmax ·p > zp} <
k−1∑
i=1

k∑
j=i+1

Pr{Dij > zp}.

We then define the firsr order Bonferroni approximation for zp as such z1·p
which satisfies

k−1∑
i=1

k∑
j=i+1

Pr{Dij > z1·p} = α

for a given α. The approximation of z1·p is established based on the following
results.

Theorem 3.4. (Hyodo, Takahashi and Nishiyama [15]) We assume
(A1) and (A2). Then Cornish-Fisher expansion of the upper 100α percentile
of Dij is derived as

z(α, a1, a2, a3, a4) = zα +
1
√
p

√
2a3

3
√
a32

(z2α − 1) +
1

p

{ a4
2a22

zα(z
2
α − 3)

−2a23
9a32

zα(2z
2
α − 5)

}
+

1

2n
zα + o(p−1),

where zα is the upper 100α percentile of the standard normal distribution.

In practice, ai’s are unknown. Hence, to use the result of in Theorem 3.4, we
need their estimators that are expected to be good in high-dimension setting.
As sample counterparts of ai’s, we use their consistent estimators derived in
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Srivastava [39], Srivastava and Yanagihara [40] and Hyodo, Takahashi and
Nishiyama [15] as

â1 =
trS

p
, â2 =

n2

(n+ 2)(n− 1)p

{
trS2 − (trS)2

n

}
,

â3 =
n4

(n+ 4)(n+ 2)(n− 1)(n− 2)p

{
trS3 − 3

n
trS2 trS +

2

n2
(trS)3

}
,

â4 =
n3

(n+ 6)(n+ 4)(n+ 2)(n+ 1)(n− 1)(n− 2)(n− 3)p

×
[
b1 trS

4 + b2 trS
3 trS + b3(trS

2)2 + b4 trS
2(trS)2 + b5(trS)

4
]

where

b1 = n2(n2 + n+ 2), b2 = −4n(n2 + n+ 2), b3 = −n(2n2 + 3n− 6),

b4 = 2n(5n+ 6), b5 = −(5n+ 6).

The consistency of these estimators is guaranteed by the following theorem.

Theorem 3.5. We assume (A1) and (A2). Then it holds that âi
P−→ ai (i =

1, 2, 3, 4).

By using Theorem 3.4 and consistent estimator of ai’s, we can obtain the
approximation of z1·p as ẑ1·p = z(αp, â1, â2, â3, â4), αp = α/K and K =
k(k − 1)/2.

Also the simultaneous confidence intervals for comparisons with a control
are given by

a′(µi − µk) ∈
[
a′(x(i) − x(k))± dc

√
dik(trS)a′a

]
,

∀a ∈ Rp, 1 ≤ i ≤ k − 1,

where d2c = 1 + (σ̂/p)zc and zc ≡ zc(α) is the upper 100α percentile of the
Dmax ·c statistic. Using Theorem 3.4 again, the estimator of zc can be obtained
as ẑ1·c = z(αc, â1, â2, â3, â4), where αc = α/(k − 1).

3.3. Multiple comparisons in elliptical populations

In this subsection, we will present the results for pairwise multiple compar-
isons and comparisons with a control among mean vectors under k independent
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elliptical populations. For this case, in order to obtain conservative approx-
imate simultaneous confidence intervals, Bonferroni’s inequality is applied to
T 2
max-type statistic. In previous studies (Seo [28], Okamoto and Seo [25] and

Okamoto [24]), two approximations based on Bonferroni’s inequality have been
proposed. The first order Bonferroni approximation becomes conservative too
much when the number of populations or the kurtosis parameter is large.
In such cases, we recommend to use the modified second order Bonferroni
approximation instead of the first order Bonferroni approximation. Under el-
liptical populations with equal sample size, the first and the modified second
order Bonferroni approximations are discussed by Seo [28]. For unequal sam-
ple sizes, the first order Bonferroni approximation is discussed by Okamoto
and Seo [25]. In addition, Okamoto [24] proposed the modified second order
Bonferroni approximation.

Let x
(j)
1 , . . . ,x

(j)
Nj

(j = 1, . . . , k) be Nj independent observations on x(j)

that has an elliptical distribution with parameters µj(p× 1) and Λ(j)(p× p),

i.e., Ep(µj ,Λ
(j)) (see, e.g., Muirhead [20] and Fang, Kotz and Ng [8]). Here,

its density function and characteristic function are

f(x(j)) = c(j)p |Λ(j)|−
1
2 gj((x

(j) − µj)
′Λ(j)−1

(x(j) − µj))

for some non-negative function gj , where c
(j)
p is a normalizing constant and

Λ(j) is a positive definite matrix, and

ϕ(t) = exp(it′µj)ψ(t
′Λ(j)t)

for some function ψ, where i =
√
−1, respectively. Note that E[x(j)] = µj

and Cov[x(j)] = Σ(j) = −2ψ′(0)Λ(j). We also define the kurtosis parameter
by κ =

{
ψ′′(0)/(ψ′(0))2

}
− 1. Elliptical distributions include the multivariate

normal, the multivariate t, the contaminated normal distributions and so on.
We assume that the following conditions:

(C1) Σ = Σ(1) = · · · = Σ(k),

(C2) E[∥x(j)∥8] <∞ (j = 1, . . . , k),

(C3) lim sup
∥t∥→∞

|E[exp(it′d(j))]| < 1 (j = 1, . . . , k),

where d(j) =
(
x
(j)
1 , . . . , x

(j)
p , x

(j)2

1 , . . . , x
(j)2

p

)
(j = 1, . . . , k). Now consider

simultaneous confidence intervals for pairwise multiple comparisons among
mean vectors with the confidence level 1− α:

a′(µi − µj) ∈
[
a′(x(i) − x(j))± tp

√
dija′Sa

]
,∀a ∈ Rp, 1 ≤ i < j ≤ k,
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where dij = 1/Ni+1/Nj and t
2
p ≡ t2p(α) is the upper 100α percentile of T 2

max ·p
statistic defined by

T 2
max ·p = max

1≤i<j≤k

{
T 2
ij

}
,

where

T 2
ij = d−1

ij (y(i) − y(j))′S−1(y(i) − y(j)),

and y(ℓ) = x(ℓ) − µℓ (ℓ = 1, . . . , k). In order to construct simultaneous con-
fidence intervals, it is required to obtain the upper percentiles of T 2

max-type
statistic, i.e. tp. At first we will introduce the first order Bonferroni approx-
imation. We note that the statistic T 2

ij is reduced to the Hotelling’s T 2-type
statistic (F statistic) under normality. However, under the class of the ellip-
tical distributions, T 2

ij is no longer an F statistic, and hence the first order
approximation cannot be exactly expressed as the upper percentiles of F dis-
tribution. Therefore Okamoto and Seo [25] derived an asymptotic expansion
for the first order Bonferroni approximations of tp:

t21·χ2(α) = χ2
p

( α
K

)
− 1

2NK
χ2
p

( α
K

)
×

k−1∑
ℓ=1

k∑
m=ℓ+1

{
1

p
c
(0)
ℓm − 1

p(p+ 2)
c
(2)
ℓmχ

2
p

( α
K

)}
,

t21·F (α) =
np

n− p+ 1
Fp,n−p+1

( α
K

)
− 1

2NK
χ2
p

( α
K

)
×

k−1∑
ℓ=1

k∑
m=ℓ+1

{(
1

p
c
(0)
ℓm + sp

)
−

(
1

p(p+ 2)
c
(2)
ℓm − s

)
χ2
p

( α
K

)}
,

where N = max{N1, . . . , Nk}, K = k(k − 1)/2, s = 1/(
∑k

ℓ=1 rℓ) and rℓ =
Nℓ/N . Also, χp(α) denotes upper 100α percentile of chi-square distribution
with p d.f. and Fp,n−p+1 (α) denotes upper 100α percentile of F distribution

with p and n−p+1 d.f.’s. For details of coefficients c
(0)
ℓm and c

(2)
ℓm, see Okamoto

and Seo [25].
Next, we will introduce the modified second order Bonferroni approxima-

tion. Letting z(ℓ) =
√
Nℓ(x

(ℓ) − µℓ) for ℓ = 1, . . . , k and wij =
√
rj/(ri + rj).

And let y1 = w12z
(1)−w21z

(2), y2 = w13z
(1)−w31z

(3), . . ., yK = wk−1,kz
(k−1)

−wk,k−1z
(k). Then the modified second order Bonferroni approximation t2M is

defined as a critical value that satisfies the equality

K∑
i=1

Pr(y′
iS

−1yi > t2M ) = α+ β(t21).
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In order to derive the modified second order Bonferroni approximation, two
cases of joint probabilities:

β1·ijℓm(t21) = Pr(T 2
ij > t21, T

2
ℓm > t21),

β2·ijℓ(t
2
1) = Pr(T 2

iℓ > t21, T
2
jℓ > t21)

are needed to evaluate under the elliptical populations. Here, index i, j,
ℓ, m are all distinct. In general, it is difficult to obtain the exact value of
these probabilities. Okamoto [24] derived asymptotic expansions for these
probabilities.

Theorem 3.6. (Okamoto [24]) Assume that (C1)-(C3). Then it holds that

β1·ijkl(t
2
1) = G2

p
2
(η1) +

1

N

(
c1g p

2
(η1)G p

2
(η1) + c2g

2
p
2
(η1)

)
+ o(N−1),

β2·ijk(t
2
1) = (1− v0)

p
2

∞∑
m=0

(12p)m

m!
vm0

×
{
G p

2
+m (η2) +

1

N

(
d1g p

2
+m(η2)G p

2
+m(η2) + d2g

2
p
2
+m(η2)

)}
+ o(N−1),

where

η1 =
1

2
t21, η2 =

1

2(1− v0)
t21,

G p
2
(η1) =

∫ ∞

η1

g p
2
(t)dt, G p

2
+m (η2) =

∫ ∞

η2

g p
2
+m(t)dt,

g p
2
(t) =

1

Γ(p2)
t
p
2
−1e−t, g p

2
+m(t) =

1

Γ(p2 +m)
t
p
2
+m−1e−t.

For details of coefficients c1, c2, d1, d2 and v0, see Okamoto [24]. We note that,
when sample sizes are all same, the result in Theorem 3.6 can be reduced to
the one in Seo [28].

By using Theorem 3.6, Okamoto [24] proposed the modified second order
Bonferroni approximations which are obtained as following form:

t2M ·χ2(α) = χ2
p(γ)−

1

2NK
χ2
p(γ)

×
k−1∑
ℓ=1

k∑
m=ℓ+1

(
1

p
c
(0)
ℓm − 1

p(p+ 2)
c
(2)
ℓmχ

2
p(γ)

)
,

t2M ·F (α) =
np

n− p+ 1
Fp,n−p+1(γ)−

1

2NK
χ2
p(γ)

×
k−1∑
ℓ=1

k∑
m=ℓ+1

{(
1

p
c
(0)
ℓm + sp

)
−

(
1

p(p+ 2)
c
(2)
ℓm − s

)
χ2
p(γ)

}
,
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where

γ =
1

K

α+
k∑

i ̸=j ̸=ℓ̸=m,
i ̸=ℓ,i ̸=m,j ̸=m

β1·ijℓm(t21) +
k∑

i̸=j ̸=ℓ,i̸=ℓ

β2·ijℓ(t
2
1)

 .

In the case of comparisons with a control, letting the k-th population be a
control, the simultaneous confidence intervals are given by

a′(µi − µk) ∈
[
a′(x(i) − x(k))± tc

√
dika′Sa

]
,∀a ∈ Rp, 1 ≤ i ≤ k − 1,

and the value t2c ≡ t2c(α) is chosen to satisfy

Pr
{
T 2
max ·c > t2c

}
= α,

where

T 2
max ·c = max

1≤i≤k−1

{
T 2
ik

}
,

T 2
ik = d−1

ik (y(i) − y(k))′S−1(y(i) − y(k)).

The approximate simultaneous confidence intervals for comparisons with
a control are also given based on the same principle. Okamoto and Seo [25]
derived the first order Bonferroni approximation of tc:

t21·χ2·c(α) = χ2
p

(
α

k − 1

)
− 1

2N(k − 1)
χ2
p

(
α

k − 1

)
×

k−1∑
ℓ=1

{
1

p
c
(0)
ℓk − 1

p(p+ 2)
c
(2)
ℓk χ

2
p

(
α

k − 1

)}
,

t21·F ·c(α) =
np

n− p+ 1
Fp,n−p+1

(
α

k − 1

)
− 1

2N(k − 1)
χ2
p

(
α

k − 1

)
×

k−1∑
ℓ=1

{(
1

p
c
(0)
ℓk + sp

)
−

(
1

p(p+ 2)
c
(2)
ℓk − s

)
χ2
p

(
α

k − 1

)}
.

In addition, Okamoto [24] proposed the modified second order Bonferroni ap-



266 T. NISHIYAMA, M. HYODO AND T. SEO

proximation of tc:

t2M ·χ2·c(α) = χ2
p(γc)−

1

2N(k − 1)
χ2
p(γc)

×
k−1∑
ℓ=1

(
1

p
c
(0)
ℓk − 1

p(p+ 2)
c
(2)
ℓk χ

2
p(γc)

)
,

t2M ·F ·c(α) =
np

n− p+ 1
Fp,n−p+1(γc)−

1

2N(k − 1)
χ2
p(γc)

×
k−1∑
ℓ=1

{(
1

p
c
(0)
ℓk + sp

)
−

(
1

p(p+ 2)
c
(2)
ℓk − s

)
χ2
p(γc)

}
,

where γc =

α+

k∑
i̸=j ̸=ℓ,i̸=ℓ

β2·ijℓ(t
2
1)

 / (k − 1).

§4. Concluding remarks

In this paper, we concerned with multivariate multiple comparisons among
mean vectors and introduced some results of this topic.

It is well known that, in general, finding the exact value of the upper
100α percentile of T 2

max-type statistic is difficult even the cases of pairwise
comparisons and comparisons with a control. Then Siotani [33], Seo and
Siotani [31], [32] and Seo [26] proposed approximation procedures based on
Bonferroni’s inequality and they gave large sample approximations based on
asymptotic expansion for the upper percentiles of T 2

max-type statistic under
normality. Also, these approximation procedures have been discussed under
class of elliptical distributions by Seo [28], Okamoto and Seo [25] and Okamoto
[24], and under general distributions discussed by Kakizawa [16]. Recently,
for high-dimensional data, Takahashi et al. [41] and Hyodo, Takahashi and
Nishiyama [15] proposed a test procedure for multiple comparisons among
mean vectors under multivariate normality.

On the other hand, Seo, Mano and Fujikoshi [29] proposed the multivari-
ate Tukey-Kramer procedure (MTK procedure) which is a simple procedure
by replacing with the upper percentile of the R2

max statistic as an approxima-
tion to the one of T 2

max type statistic for any positive definite matrix V . For
the MTK procedure, the multivariate version of the generalized Tukey con-
jecture has been affirmatively proved in the case of three and four correlated
mean vectors by Seo, Mano and Fujikoshi [29] and Nishiyama and Seo [23],
respectively. Further, relating to the conjecture, Seo [27], Seo and Nishiyama
[30] and Nishiyama and Seo [23] gave the upper bound for conservativeness
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of the MTK procedure. In the case of comparisons with a control, concerning
to the MTK procedure, similar conservative approximate simultaneous confi-
dence procedure has been proposed and discussed its properties (see, Seo [26],
Seo and Nishiyama [30] and Nishiyama [21]). It is important to prove these
conjectures. However, it is difficult to prove completely. So, we left as a future
problem.

For details of proofs of theorems and numerical results for the procedures
which introduced in this paper, see each article.
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