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Abstract. The main focus of therapeutic confirmatory clinical trials, gener-
ally, is to demonstrate the efficacy of a new or experimental treatment in terms
of mean(s) of the primary endpoint(s). In some cases, however, variance(s)
of the endpoints also may be the focus of interest. For example, given two
treatments with equal efficacy in terms of the means, a treatment with smaller
variability, and thus more predictable efficacy, may be preferable. In this paper
we consider single and multiple comparison procedures for partial covariance
matrices of endpoints in clinical trials that can be used to demonstrate the su-
periority of a new treatment to an active comparator in terms of the variability.
First, we review and discuss the existing methods for comparing two covariance
matrices based on the union-intersection test procedure. Second, we propose
a single comparison procedure and a multiple comparison procedure for par-
tial covariance matrices that limits the number of comparisons and compare
its performance with the tests discussed in the first section, using Monte Carlo
simulations. The simulation results suggest that power of the proposed proce-
dure is generally higher than those of the previous methods, while keeping the
type I error rates nearly within the nominal level.
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§1. Introduction

We consider the following situation in a clinical development of an experi-
mental treatment. First, we assume that efficacy of the new or experimental
treatment has been established in a placebo-controlled trial. In addition, we
assume that non-inferiority of the new treatment to an active comparator has
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been established. Given these two pieces of evidence, we seek for differenti-
ation of the new treatment to the active comparator. Such differentiation is
important because it can provide additional benefit or mitigate unnecessary
risk for the patients. Possible differentiation to an active comparator is, for
example, better safety profile or greater convenience to use. Another possible
point of differentiation might be smaller variability.

For example, Rothwell et al. (2010) points out “Visit-to-visit variability
in systolic blood pressure (SBP) and maximum SBP are strong predictors
of stroke, independent of mean SBP. Increased residual variability in SBP in
patients with treated hypertension is associated with a high risk of vascular
events.”. In Danne et al. (2008), the within-subject variability of detemir
and insulin glargine in subjects with type 1 diabetes mellitus was evaluated
in a crossover clinical trial. In the statistical analyses of this study, “the
null hypothesis was that the within-subject variability was the same for the
two insulin preparations (i.e., the ratio between the variances was equal to
1)” (Danne et al. (2008)). Chow and Liu (2000) gives an example in which
variability of the PK parameter is compared between test and reference formu-
lations. Their reason is that “the safety of the test formulation may be of con-
cern, and the exchangeability between two formulations is questionable, even
when the two formulations are equivalent in average bioavailability” (Chow
and Liu (2000)).

In this paper, we focus on differentiation based on variability of effect. That
is, a treatment with smaller variability, and thus more predictable efficacy, is
preferable given two treatments with equal efficacy in terms of the means. For
the problem at hand, standard tests of difference of means or of location pa-
rameters (e.g. a t-test) clearly do not provide statistical power to differentiate
the two treatments. What we require is a test or a confidence interval of a
parameter that characterizes variability.

In the framework of a univariate k-sample problem, Hartley (1950) pro-
posed a procedure for the equality of variances in a one-way layout which
is based on the union-intersection principle. This test can be used to make
all pairwise comparisons among the variances. Also, O’Brien test, Brown-
Forsythe test, Levene test, and Bartlett test can be used for test of equality
of variances. According to Proust (2012), “The concept behind the first three
tests of equal variances is to perform an analysis of variance on a new response
variable constructed to measure the spread in each group. The fourth test is
the Bartlett’s test, which is similar to the likelihood-ratio test under normal
distributions” (Proust (2012)).

For the multivariate version of the k-sample problem, a likelihood ratio
test and a modified likelihood ratio test are available as tests for the equality
of variance-covariance matrices (see, e.g., Nagao (1973), Muirhead (1982)).
These tests are affected by larger elements of the covariance matrix because all
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variances are assumed to have the same weight. Another point is that variance
is not standardized as it is for the test of means. For example, if a covariance
matrix consist of endpoints with different units that are not interconvertible,
the former property may become an issue.

Specifically, for a multivariate two-sample problem, Siotani et al. (1985)
proposed a test of {H0 : (atΣ1a)/(a

tΣ2a) = 1, for all non-zero vector a ver-
sus H1 : (atΣ1a)/(a

tΣ2a) 6= 1, for at least one non-zero vector a} based on
the union-intersection principle, where Σi is a covariance matrix. This test
can assign separate weight to each element of covariance matrix with suitable
choice of a. They show that multiple comparisons can be conducted with any
non-zero vector a while maintaining the type I error rate within the nomi-
nal level. The test, however, has important practical shortcomings. One is
the computational inconvenience and another is the potentially low statistical
power due to an allowance for unlimited number of non-zero vector a, as in
the case of the Scheffe method for comparison of means in ANOVA.

In this paper, we propose a weighted test for covariance matrices for a single
comparison, and for multiple comparisons, a procedure for partial covariance
matrices that limits the number of comparisons. Both procedures are com-
putationally simple to carryout. The performance of the proposed multiple
comparison procedure is compared with that of the existing methods using
Monte Carlo simulations. Discussions and concluding remarks are presented
at the end.

§2. Procedures for comparing two partial covariance matrices

In the first section, we briefly review previous methods for comparing partial
covariance matrices that do not limit the number of comparisons. In the
subsequent two sections, we present the proposed weighted test for covariance
matrices for a single comparison and a multiple comparison procedure for
partial covariance matrices that limits the number of comparisons.

We consider a clinical trial with two treatment groups: the control (group
1) and the test (group 2). Let n1 and n2 denote the number of subjects in the
respective treatment groups. We assume that the benefit (i.e. differentiation)
of the test over the control is demonstrated when the variance of the test
group is smaller than that of the control group. Let p denote the number of

endpoints or timepoints that define the dimension of the problem. Let x
(i)
j

denote a sample vector (p × 1) of the jth subject of the ith treatment group
(i = 1, 2; j = 1, · · · , ni) which is assumed to be independent and identically
distributed as normal random vector with a mean vector µi and a positive
definite covariance matrix Σi. Let x̄

(i) and Si denote the sample mean vector
and the sample covariance matrix of the ith treatment. We note that (ni−1)Si
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has as a Wishart distribution Wp(Σi, ni−1). Let a, aj, b, and bj be arbitrary
vectors (p × 1) which will be used to extract partial covariance matrix of
interest from Σi. We assume the above setting throughout the rest of this
paper.

2.1. Previous procedure for comparison of two covariance matrices

Siotani et al. (1985) proposed a test for multivariate two sample problems.
Their test is based on the union-intersection principle. Multiple comparisons
can be conducted with any non-zero vector a while keeping the type I error
rates within the nominal level. The hypotheses, test statistics and the associ-
ated critical values, and confidence interval are given as follows. The proof of
the critical values is referred from Siotani et al. (1985), Section 8.3.2.

(i) Hypotheses:

H0 :
atΣ1a

atΣ2a
= 1, for all non-zero vector a

H1 :
atΣ1a

atΣ2a
6= 1, for at least one non-zero vector a

(ii) Test:

Test statistics:

T1 = sup
a∈Rp−{0}

{

atS1a

atS2a

}

, T2 = inf
a∈Rp−{0}

{

atS1a

atS2a

}

Critical values:

If T1 > c(1−α/2)
max or T2 < c

(α/2)
min , then reject H0,

where c
(1−α/2)
max and c

(α/2)
min are the 100(1 − α/2)th and the 100(α/2)th per-

centiles, respectively, of the distribution of maximum and minimum

eigenvalue of S
−1/2t

2 S1S
−1/2
2 under H0.

(iii) 100(1 − α)% confidence interval for atΣ1a/a
tΣ2a:

[

atS1a

atS2a
· 1

c
(1−α/2)
max

,
atS1a

atS2a
· 1

c
(α/2)
min

]

, for the given non-zero vector a,

where c
(1−α/2)
max and c

(α/2)
min are as in (ii) above.
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Multiple dimensions can arise from, for example, multiple endpoints or
multiple timepoints in longitudinal data. It is noted that this test can be
used for a single comparison when specific weights are given to the endpoints
or timepoints of interest by choosing appropriate a. Giving differing level of
priority or weights to endpoints or timepoints is not unusual in practice.

Despite its flexibility to allow unlimited comparisons and its allowance for
a single weighted comparison, the test also has at least two shortcomings.
First, it is not easy to use in practice, since one needs to calculate the critical
values of the test from the distribution of maximum and minimum eigenvalues

of the S
−1/2t

2 S1S
−1/2
2 . Second, the test may have low power as the number

of comparisons is unlimited by its construction. The unlimited number of
comparisons allowed by the procedure is unnecessary in most practical appli-
cations arising in clinical trials, where the number of comparisons is limited
to only a few.

In the following sections, first, we propose a single weighted comparison
procedure whose critical values are easier to compute. Second, we expand the
idea to a multiple comparison procedure for partial covariance matrices that
limits the number of comparisons.

2.2. A weighted procedure for comparison of two covariance ma-
trices (single comparison)

The following is a weighted test for covariance matrices which involves a single
comparison. We derive the test statistics and its distribution in this section.
Let a be a single non-zero vector that is chosen a priori. The hypotheses, test,
and confidence interval are given below. Critical values can be obtain easily
from the standard F -distribution.
(i) Hypotheses:

H0 :
atΣ1a

atΣ2a
= 1, for all non-zero vector a

H1 :
atΣ1a

atΣ2a
6= 1, for at least one non-zero vector a

(ii) Test:
Test statistics:

T =
atS1a

atS2a
T ∼ Fn1−1,n2−1, under H0

If T is greater than the critical value from the standard F -distribution,
then reject H0.
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Detail:
From the definition of Wishart distribution,

(2.1) (ni − 1)Si =

ni−1
∑

j=1

yjy
t
j ,

where y1, · · · ,yni−1 are independent and identically distributed as Np(0,Σi).
Since at is a constant vector, we have

aty1, · · · ,atyni−1
i.i.d.∼ N(0,atΣia),

and

(atΣia)
−1/2aty1, · · · , (atΣia)

−1/2atyni−1
i.i.d.∼ N(0, 1)

where “i.i.d.” is a shorthand for “independent and identically distributed”.
Moreover, from a characterization of the Chi-square distribution, we obtain
the following.

(2.2) (atΣia)
−1

ni−1
∑

j=1

(atyj)
2 ∼ χ2

ni−1

On the other hand, atSia can be transformed using equation (2.1) as follows.

(atSia) =
1

ni − 1

[

at {(ni − 1)Si}a
]

=
1

ni − 1



at(

ni−1
∑

j=1

yjy
t
j)a





=
1

ni − 1

ni−1
∑

j=1

(atyj)
2

Moreover, we can transform the above equation as follows and confirm that
left-hand expression has a Chi-square distribution based on (2.2).

(ni − 1)(atSia)

atΣia
= (atΣia)

−1
ni−1
∑

j=1

(atyj)
2 ∼ χ2

ni−1

Since the ratio of two independent chi-squares, each divided by its degrees of
freedom, is known to have an F -distribution, we have

(n1 − 1)(atS1a)

atΣ1a
/(n1 − 1)

(n2 − 1)(atS2a)

atΣ2a
/(n2 − 1)

∼ Fn1−1,n2−1
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Finally, under the null hypothesis H0, i.e. a
tΣ1a = atΣ2a, we have

atS1a

atS2a
∼ Fn1−1,n2−1, under H0

(iii) 100(1 − α)% confidence interval for atΣ1a/a
tΣ2a:

Based on the distribution of the test statistics, we see that following con-
dition holds with probability (1−α)× 100%, where Fdf1,df2,α indicates 100αth

percentile of the F -distribution.
[

atS1a

atS2a
Fn2−1,n1−1,α/2,

atS1a

atS2a
Fn2−1,n1−1,1−α/2

]

As an illustrative example, consider a clinical trial with 5 visits, where the
measurement of interest is measured twice on each visit. We assume that
the number of the subjects who have second measurement is half that of the
first measurement. The following matrix is an example of covariance matrix
arising from such a scenario. We focus only on one visit (the last visit),
and the first measurement on last visit is given more weight than the second
measurement according to the number of subjects with measurements. If we
set at = (00000000

√
21), then we can extract the partial covariance matrix of

interest as shown by the underlined elements below with the indicated weights.
















s11 s12 · · · · · · s1,10
s21 s22
...

. . .
... s99 s9,10

s10,1 · · · · · · s10,9 s10,10

















We note that this method can be applied also to a situation where there
are two primary endpoints one of which is given more weight than the other.
Also, if we set at = (1111111111), then we can compare the entire covariance
matrix.

2.3. A weighted procedure for comparison of two covariance ma-
trices (multiple comparisons)

The last example in Section 2.2 considered only one visit, namely, the last
visit. When we are interested in multiple visits, however, we need to consider
multiplicity. In this case, we have multiple aℓ’s (ℓ = 1, · · · , k) of interest. The
hypotheses, test statistics and the associated critical values, and confidence
interval are given below.
(i) Hypotheses:
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H0 :
at
ℓΣ1aℓ

at
ℓΣ2aℓ

= 1, for non-zero vectors aℓ, ℓ = 1, · · · , k

H1 :
at
ℓΣ1aℓ

at
ℓΣ2aℓ

6= 1, for at least one non-zero vector aℓ, ℓ = 1, · · · , k

(ii) Test:
Test statistics:

T1 = max
ℓ=1,··· ,k

at
ℓS1aℓ

at
ℓS2aℓ

, T2 = min
ℓ=1,··· ,k

at
ℓS1aℓ

at
ℓS2aℓ

Critical values:

If T1 > c(1−α/2)
max or T2 < c

(α/2)
min , then reject H0,

where c
(1−α/2)
max and c

(α/2)
min are the 100(1 − α/2)th and the 100(α/2)th per-

centiles, respectively, of the distribution of T1 and T2 under H0.

Various methods to control multiplicity have been developed over the years
such as Bonferroni, Sidak, Holm, and Hochberg. And, methods to control
multiplicity based on the former methods are still a topic of research such as
that in Sarkar et al. (2012). In this paper, we calculated approximate cmaxs
and cmins based on Sidak and Bonferroni methods. Let us denote the approx-
imate cmaxs and cmins based on Sidak inequality and Bonferroni inequality as:

c
(1−α/2)
max,S , c

(α/2)
min,S and c

(1−α/2)
max,B , c

(α/2)
min,B, respectively.

Based on the Sidak inequality:

Pr

{

at
ℓS1aℓ

at
ℓS2aℓ

> c
(1−α/2)
max,S

}

= Pr

{

at
ℓS1aℓ

at
ℓS2aℓ

< c
(α/2)
min,S

}

= 1 − (1 − α

2
)1/k, ℓ =

1, · · · , k

Based on the Bonferroni inequality:

Pr

{

at
ℓS1aℓ

at
ℓS2aℓ

> c
(1−α/2)
max,B

}

= Pr

{

at
ℓS1aℓ

at
ℓS2aℓ

< c
(α/2)
min,B

}

=
1

k
· α
2
, ℓ = 1, · · · , k

(iii) 100(1 − α)% confidence interval for at
ℓΣ1aℓ/a

t
ℓΣ2aℓ:

We can construct an approximate confidence interval by using the critical
values based on Sidak or Bonferroni inequality.

[

at
ℓS1aℓ

at
ℓS2aℓ

· 1

c
(1−α/2)
max

,
at
ℓS1aℓ

at
ℓS2aℓ

· 1

c
(α/2)
min

]

, ℓ = 1, · · · , k,

where c
(1−α/2)
max and c

(α/2)
min are as in (ii) above.
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The Bonferroni method is generally applicable. For the Sidak method,
however, the family-wise error rate is strongly controlled only when the statis-
tics are independent or follows multivariate normal distribution (see, e.g.,
Dmitrienko et al. (2005)). Thus the critical values and confidence interval
given above do not hold exactly. However, the Sidak method does have the
following property.

Consider two statistics, (at
1S1a1)/(a

t
1S2a1) and (at

2S1a2)/(a
t
2S2a2). We

focus on the numerators, and calculate the covariance of at
1S1a1 and at

2S1a2

by using Gupta and Nagar (2000), Theorem 3.3.15.

Cov(at
1S1a1,a

t
2S1a2)

= E[tr(a1a
t
1S1)tr(a2a

t
2S1)]− E[tr(a1a

t
1S1)]E[tr(a2a

t
2S1)]

=
1

n1 − 1

[

tr(a1a
t
1Σ1a2a

t
2Σ1) + tr{(a1a

t
1)

tΣ1a2a
t
2Σ1}

]

=
2

n1 − 1
(at

1Σ1a2)
2

This shows that, although not independent, the numerators are asymp-
totically independent. Similarly, we obtain Cov(at

1S2a1,a
t
2S2a2) = 2(n2 −

1)−1(at
1Σ2a2)

2 for the denominators, thus the denominators are also asymp-
totically independent. Furthermore, because the numerators and the de-
nominators are independent, (at

1S1a1)/(a
t
1S2a1) and (at

2S1a2)/(a
t
2S2a2) are

asymptotically independent.

§3. Simulations

We conducted simulations to compare the performance of the proposed test
and the Siotani test, and to assess the impact of non-independence. Monte
Carlo simulation consisting of one million random samplings was carried out
for each setting.

We considered the following set-up. Number of visits was 5 and the number
of measurements at each visit was 2. Sample sizes considered were n1 = n2 =

25, 50, or 100. Let σ
(i)
11 , · · · , σ

(i)
10,10 be the diagonal elements of Σi, ρ1 be the

between-visit correlation, and ρ2 be the within-visit correlation. Since it is
likely that the within-visit correlation is equal to or higher than the between-
visit correlation, we set (ρ1, ρ2) to be (0, 0), (0.4, 0.4), (0.8, 0.8), or (0.4, 0.7).

We focused on the four timepoints (visits), and we gave the first measure-
ment on each visit more weight than the second measurement. In particu-
lar, aj ’s were set to the following four vectors, at

1 = (0 0
√
2 1 0 0 0 0 0 0),

at
2 = (0000

√
210000), at

3 = (000000
√
2100), and at

4 = (00000000
√
21).

We assumed (x
(i)
1 , · · · ,x(i)

ni
) to be independently distributed as N10(0,Σi),

where
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Σi =























σ
(i)
11 ρ2

√

σ
(i)
11 σ

(i)
22 ρ1

√

σ
(i)
11 σ

(i)
33 · · · · · ·

ρ2

√

σ
(i)
11 σ

(i)
22 σ

(i)
22 ρ2

√

σ
(i)
22 σ

(i)
33 · · · · · ·

ρ1

√

σ
(i)
11 σ

(i)
33 ρ2

√

σ
(i)
22 σ

(i)
33 σ

(i)
33 ρ2

√

σ
(i)
33 σ

(i)
44

...
... ρ2

√

σ
(i)
33 σ

(i)
44 σ

(i)
44

...
...

. . .























Settings of σ
(i)
11 , · · · , σ

(i)
10,10 are shown in each table.

Table 1 displays the 97.5% critical values of each test statistics under the
null hypothesis for the four scenarios. The true critical values and the critical
values for the Siotani test in Section 2.1 were based on simulations. Specifi-
cally, the true critical values were calculated from the 97.5th percentiles of the
statistics, max

j=1,··· ,4
at
jS1aj/a

t
jS2aj , based on simulations. Similarly, the critical

values for Siotani method were calculated from the 97.5th percentiles of the

distribution of maximum eigenvalue of S
−1/2t

2 S1S
−1/2
2 . The critical values for

the Sidak and Bonferroni method were from analytic calculations. The main
message from Table 1 is that the critical values for the Siotani test are larger
than those of the other tests.

Table 2 displays the actual type I error rates corresponding to the critical
values in Table 1. The type I error rates for the Siotani test are much lower
than the others. The type I error rates for the Sidak and Bonferroni methods
are conservative when there are high positive correlations.

Table 3 shows the powers of the tests for sample size of 100 under the four
settings of Σ and (ρ1, ρ2). The results show properties similar to that of the
type I error rates. The powers for the Siotani test are much lower than the
others. The powers of the Sidak and Bonferroni methods are low when there
are high positive correlations.
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Table 1: 97.5% critical values for p = 4

(ρ1, ρ2) Subjects True Sidak Bonferroni Siotani

ρ1 = ρ2 = 0 n1 = n2 = 25 2.862 2.862 2.866 13.800
n1 = n2 = 50 2.061 2.063 2.065 4.944
n1 = n2 = 100 1.657 1.657 1.659 2.895

ρ1 = ρ2 = 0.4 n1 = n2 = 25 2.837 2.862 2.866 13.806
n1 = n2 = 50 2.048 2.063 2.065 4.941
n1 = n2 = 100 1.650 1.657 1.659 2.897

ρ1 = ρ2 = 0.8 n1 = n2 = 25 2.684 2.862 2.866 13.830
n1 = n2 = 50 1.971 2.063 2.065 4.946
n1 = n2 = 100 1.604 1.657 1.659 2.895

ρ1 = 0.4, ρ2 = 0.7 n1 = n2 = 25 2.850 2.862 2.866 13.803
n1 = n2 = 50 2.057 2.063 2.065 4.949
n1 = n2 = 100 1.653 1.657 1.659 2.897

σ
(i)
11 = · · · = σ

(i)
10,10 = 1 are set for i = 1, 2.

Table 2: Type I error rates with 97.5% critical values from simulations for
p = 4

(ρ1, ρ2) Subjects True Sidak Bonferroni Siotani

ρ1 = ρ2 = 0 n1 = n2 = 25 2.50% 2.50% 2.48% <0.01%
n1 = n2 = 50 2.50% 2.49% 2.47% <0.01%
n1 = n2 = 100 2.50% 2.49% 2.46% <0.01%

ρ1 = ρ2 = 0.4 n1 = n2 = 25 2.50% 2.36% 2.34% <0.01%
n1 = n2 = 50 2.50% 2.35% 2.33% <0.01%
n1 = n2 = 100 2.50% 2.35% 2.33% <0.01%

ρ1 = ρ2 = 0.8 n1 = n2 = 25 2.50% 1.72% 1.71% <0.01%
n1 = n2 = 50 2.50% 1.69% 1.68% <0.01%
n1 = n2 = 100 2.50% 1.66% 1.65% <0.01%

ρ1 = 0.4, ρ2 = 0.7 n1 = n2 = 25 2.50% 2.43% 2.41% <0.01%
n1 = n2 = 50 2.50% 2.44% 2.42% <0.01%
n1 = n2 = 100 2.50% 2.41% 2.39% <0.01%

σ
(i)
11 = · · · = σ

(i)
10,10 = 1 are set for i = 1, 2.
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Table 3: Powers with 97.5% critical values from simulations for p = 4 and
n1 = n2 = 100

Diagonal elements
for Σ1

(ρ1, ρ2) True Sidak
Bonfe
rroni Siotani

σ11 = · · · = σ88 = 1, ρ1 = ρ2 = 0 82.8 82.7 82.6 3.4
σ99 = σ10,10 = 2 ρ1 = ρ2 = 0.4 83.0 82.5 82.4 3.3

ρ1 = ρ2 = 0.8 86.3 82.4 82.3 3.3
ρ1 = 0.4, ρ2 = 0.7 82.9 82.6 82.5 3.3

σ11 = · · · = σ88 = 1, ρ1 = ρ2 = 0 32.4 32.3 32.2 0.1
σ99 = σ10,10 = 1.5 ρ1 = ρ2 = 0.4 32.5 31.7 31.5 0.1

ρ1 = ρ2 = 0.8 37.0 31.0 30.9 0.1
ρ1 = 0.4, ρ2 = 0.7 32.3 31.8 31.7 0.1

σ11 = · · · = σ44 = 1, ρ1 = ρ2 = 0 67.4 67.4 67.2 0.2
σ55 = · · · = σ10,10 ρ1 = ρ2 = 0.4 60.2 59.1 59.0 0.2
= 1.5 ρ1 = ρ2 = 0.8 52.5 45.6 45.5 0.2

ρ1 = 0.4, ρ2 = 0.7 62.4 61.7 61.6 0.2

σ11 = 1, σ22 = 1, ρ1 = ρ2 = 0 77.7 77.6 77.5 0.7
σ33 = 1.2, σ44 = 1, ρ1 = ρ2 = 0.4 70.4 69.5 69.4 0.6
σ55 = 1.4, σ66 = 1.2, ρ1 = ρ2 = 0.8 66.0 59.7 59.6 0.5
σ77 = 1.6, σ88 = 1.4, ρ1 = 0.4, ρ2 = 0.7 71.5 70.9 70.8 0.6
σ99 = 1.8, σ10,10 = 1.6

σ
(2)
11 = · · · = σ

(2)
10,10 = 1 are set for Σ2.

Each power is shown as a percentage.
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§4. An example of application

We applied our test (single comparison) to a four-period crossover bioavail-
ability study described in Example 4.3 of Patterson and Jones. (1985). The
data are from a trial with four periods that used the sequence groups RTTR
(Group 1) and TRRT (Group 2) with 8 subjects and 9 subjects, respectively
(R: Reference, T: Test). One subject in Group 2 has a missing observation in
period 4. In this application, we conducted a complete-case analysis to assess
the within-subject variability. Values of AUC and Cmax were log-transformed
prior to analysis, as it is a standard practice for these pharmacokinetic param-
eters. The data for each sequence are shown in Figure 1.
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Figure 1: Subject profile plots of the log-transformed AUC and the log-
transformed Cmax

Although the test as shown in Section 2.2 applies only to independent sam-
ples, the test can be adapted to data arising from a crossover study such as
the one described above. The proof for the extension follows the arguments of

Chow and Liu (2000), Theorem 9.4.1. Let the vector Y jqi =
(

Y AUC
jqi , Y Cmax

jqi

)t

denote log-transformed data for the period q of the jth subject in the se-
quence group i [j = 1, · · · , ni; q = 1, · · · , 4; i = 1(= Group 1), 2(= Group 2)].
Define D1i = ((Y 11i − Y 14i)| · · · |(Y ni1i − Y ni4i))

t and D2i = ((Y 12i −
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Y 13i)| · · · |(Y ni2i−Y ni3i))
t; that is, D1i and D2i are ni×2 matrices of period

1-4 differences and period 2-3 differences, respectively. Under the model as-
sumption described in Appendix A, the vector ((Y j1i−Y j4i)

t, (Y j2i−Y j3i)
t)t

follows a multivariate normal distribution with the following mean and the co-
variance matrix.

Mean:
i = 1 : (µAUC,R, µCmax,R, µAUC,T , µCmax,T )

t,
i = 2 : (µAUC,T , µCmax,T , µAUC,R, µCmax,R)

t

Covariance matrix:

i = 1 :

(

2ΣR 0
0 2ΣT

)

, i = 2 :

(

2ΣT 0
0 2ΣR

)

,

where Σz =

(

σ2
AUC,z τz
τz σ2

Cmax,z

)

, z = TorR,

σ2
AUC,z and σ2

Cmax,z are within-subject error variances,
and τz is the within-subject error covariance described in Appendix A.

Let

ST =
1

2(n1 + n2 − 2)
[(D21 − Jn1

D̄21)
t(D21 − Jn1

D̄21)

+ (D12 − Jn2
D̄12)

t(D12 − Jn2
D̄12)],

and

SR =
1

2(n1 + n2 − 2)
[(D11 − Jn1

D̄11)
t(D11 − Jn1

D̄11)

+ (D22 − Jn2
D̄22)

t(D22 − Jn2
D̄22)],

where D̄1i and D̄2i are sample mean vectors of D1i and D2i, respectively;
and Jni

is the ni × 1 matrix of 1’s.
ST and SR are the estimators of ΣT and ΣR, respectively. Then, owing to

the normality of the vector ((Y j1i−Y j4i)
t, (Y j2i−Y j3i)

t)t, (n1+n2−2)ST and
(n1+n2−2)SR have Wp(ΣT , n1+n2−2) andWp(ΣR, n1+n2−2) distributions,
respectively. The proof of the independence between ST and SR are shown
in Appendix A. As (n1 + n2 − 2)ST and (n1 + n2 − 2)SR are independent
and have Wishart distribution, the proposed method can be applied to this
example.

Estimated ST and SR in this example were

(

0.0117 −0.0015
−0.0015 0.0697

)

and
(

0.0069 0.0066
0.0066 0.0433

)

, respectively. We set a = (1, 1)t to compare the above

covariance matrices. The value of statistics (= atSTa/a
tSRa) and its P-

value were 0.8087 and 0.6517, respectively. The result of our test was not
statistically significant at 5% level.



COMPARISON PROCEDURES FOR PARTIAL COVARIANCE MATRICES 61

Note that we can set a as a weight defined from a priori scientific consider-
ations. For example, we can select a based on conversion factor between two
different units, e.g., mg/dL and ng/dL. Also, we may be able to set a based
on historical data.

§5. Discussion and conclusion

Demonstration of efficacy and safety with appropriate risk-benefit balance
may be sufficient for regulatory approval of a drug; however, this may not be
enough for all customers. In particular, differentiating features of a test drug
with respect to comparators can provide valuable information to physicians
and patients. One such point of differentiation is smaller variability of effect.
A drug or a formulation with smaller variability, which implies larger number
of patients would be more likely to experience clinical effect near the central
value, is expected to be easier for a physician to use.

In this paper, firstly, we introduced a single comparison procedure for
variance-covariance matrices in a form of hypothesis test and confidence in-
terval. This procedure can be applied in a situation where there is a single
endpoint measured at multiple timepoints or a multiple endpoints measured
at a single timepoint. The procedure is characterized by weighting of the
variance-covariance matrix elements in the comparison. This procedure can
be thought of as an extension of the F -test, and in fact, the test statistic has
an exact F -distribution under the null hypothesis.

Secondly, we introduced a multiple comparison procedure for partial covari-
ance matrices that limits the number of comparisons. The simulation results
suggest that powers of the proposed procedure are higher than those of the
Siotani method, while keeping the type I error rates within the nominal level.
As can be seen from Table 1, the critical values for the Siotani test are larger
than those of the Bonferroni method. In particular, when n1 = n2 = 100,
ρ1 = ρ2 = 0, and the number of comparison p = 4, the critical value for the
Siotani test is 2.895 compared to 1.659 for the Bonferroni method. In fact,
even when p = 1000, the critical value for Bonferroni is 2.290 which is still
smaller than the critical value for the Siotani test when p = 4. Thus when the
number of comparisons is small, as often is the case in clinical trials, utiliza-
tion of a common method for multiplicity adjustment (e.g. Bonferroni or Sidak
method) is recommended compared to the Siotani method. Although there
was no apparent impact of ”non-independence” between statistics under our
simulation settings, it may have a noticeable impact in other situations (e.g.
when there are many comparisons.). Thus, it is recommended that impact
of non-independence be assessed under settings close to the actual problem
before choosing the method of multiplicity adjustment.
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Before actual implementation, it is important to investigate the robustness
of the test and assess the impact to cases of non-normality of the data. In
the special case of univariate data, our test reduces to the F test for equal
variances, which is known to be non-robust. This suggests that our test may
also lack robustness. Regarding non-normal data, the impact of non-normality
may be mitigated, if a transformation such as the log-transformation is applied.

The proposed method is recommended for multiple comparisons of variance-
covariance matrices when the number of comparisons is small, as often is the
case in clinical trials. Future considerations include investigation of other ap-
plication areas for the method. Some possible areas might be problems in
drug resistance, assessment of stability of drug effect overtime, and assess-
ment of medical devices. Another consideration for the future is extention of
the method to a within-subject variance-covariance matrix estimated from a
longitudinal model fitted to data arising from a parallel group study.
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§A. Proof of the independence to two covariance matrices in a
2× 4 crossover study

Settings follows that of the section 4. Assume that log-transformed AUC
values follows the model.

Y AUC
jqi = µAUC,qi + SAUC,ji + εAUC,jqi,

where j = 1, · · · , ni; q = 1, · · · , 4; and i = 1(= Group 1), 2(= Group 2)
µAUC,qi denotes a mean that depends on the period q and the sequence group
i. SAUC,ji denotes the between-subject variability which follows N(0, σ2

AUC,s).
εAUC,jqi denotes the within-subject error term which follows,

N(0, σ2
AUC,T ) for i = 1 and q = 2 or 3; or i = 2 and q = 1 or 4

N(0, σ2
AUC,R) for i = 1 and q = 1 or 4; or i = 2 and q = 2 or 3.

εAUC,jqi for q = 1, · · · , 4 are assumed to be mutually independent. Also,
any combination of εAUC,jqi and SAUC,ji are assumed to be independent.

Similar assumption are made for, Y Cmax
jqi = µCmax,qi +SCmax,ji + εCmax,jqi

for Cmax. Furthermore, we set τ1i and τ2i to be the within-subject error
covariance, and ξi to be the between-subject covariance.

Note that (σ2
AUC,T , σ

2
Cmax,T ) and (σ2

AUC,R, σ
2
Cmax,R) are diagonal element

of ΣT and ΣR of Section 4, respectively.
Let Y ji = (Y AUC

j1i , Y AUC
j2i , Y AUC

j3i , Y AUC
j4i , Y Cmax

j1i , Y Cmax
j2i , Y Cmax

j3i , Y Cmax
j4i )t

and Y i = (Y t
1i,Y

t
2i, · · · ,Y t

nii)
t. The covariance matrix of Y i is given by

V i ≡ Cov(Y i) = Ini
⊗Σi,

where Σi =

(

ΣAUC,i Covi

Covi ΣCmax,i

)

,

Σendp,1 =










σ2
endp,R + σ2

endp,s σ2
endp,s σ2

endp,s σ2
endp,s

σ2
endp,s σ2

endp,T + σ2
endp,s σ2

endp,s σ2
endp,s

σ2
endp,s σ2

endp,s σ2
endp,T + σ2

endp,s σ2
endp,s

σ2
endp,s σ2

endp,s σ2
endp,s σ2

endp,R + σ2
endp,s











,

Σendp,2 =










σ2
endp,T + σ2

endp,s σ2
endp,s σ2

endp,s σ2
endp,s

σ2
endp,s σ2

endp,R + σ2
endp,s σ2

endp,s σ2
endp,s

σ2
endp,s σ2

endp,s σ2
endp,R + σ2

endp,s σ2
endp,s

σ2
endp,s σ2

endp,s σ2
endp,s σ2

endp,T + σ2
endp,s











,

Covi =









τ1i + ξi ξi ξi ξi
ξi τ2i + ξi ξi ξi
ξi ξi τ2i + ξi ξi
ξi ξi ξi τ1i + ξi









,
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and τ21 = τ12(≡ τT ) and τ11 = τ22(≡ τR); endp = AUC or Cmax; i = 1, 2.
Now we consider the sum of squares SSDwi = (Dwi − Jni

D̄wi)
t(Dwi −

Jni
D̄wi), i = 1, 2; w = 1, 2, which are the component of ST and SR in the Sec-

tion 4. Each element of the SSDwi can be expressed by using s(i,C1,C2) =
Y t

i[Ini
⊗ C1][Ini

− n−1
i J∗

ni
][Ini

⊗ Ct
2]Y i, where Ini

is the ni × ni identity
matrix, J∗

ni
is the ni × ni matrix of 1’s. C1 and C2 are selected from fol-

lowing the four comparison vectors, CAU,1 = (1, 0, 0,−1, 0, 0, 0, 0)t , CAU,2 =
(0, 1,−1, 0, 0, 0, 0, 0)t , CCm,1 = (0, 0, 0, 0, 1, 0, 0,−1)t , or
CCm,2 = (0, 0, 0, 0, 0, 1,−1, 0)t .
Therefore,
2(n1 + n2 − 2)ST = SSD21 + SSD12 =
(

s(1,CAU,2,CAU,2) s(1,CAU,2,CCm,2)
s(1,CAU,2,CCm,2) s(1,CCm,2,CCm,2)

)

+

(

s(2,CAU,1,CAU,1) s(2,CAU,1,CCm,1)
s(2,CAU,1,CCm,1) s(2,CCm,1,CCm,1)

)

2(n1 + n2 − 2)SR = SSD11 + SSD22 =
(

s(1,CAU,1,CAU,1) s(1,CAU,1,CCm,1)
s(1,CAU,1,CCm,1) s(1,CCm,1,CCm,1)

)

+

(

s(2,CAUC,2,CAU,2) s(2,CAU,2,CCm,2)
s(2,CAUC,2,CCm,2) s(2,CCm,2,CCm,2)

)

SSDw1 and SSDw2 are independent since subjects in two groups are
distinct. To show the indenpendence between ST and SR, we show that each
element of SSD1i and each element of SSD2i are mutually independent as
follows.

Generally, covariance of the quadratic forms Y tAY and Y tBY has the
following property. Cov(Y tAY , Y tBY ) = 2tr(AΣBΣ) + 4µtAΣBµ, when
Y is distributed as N (µ,Σ) (see for example Khuri (2009)). It is known that
Y tAY and Y tBY are independent if and only if AΣB = 0 (see for example
Muirhead (1982)).

Now we set A = [Ini
⊗ C1][Ini

− n−1
i J∗

ni
][Ini

⊗ Ct
2] and B = [Ini

⊗
C1∗][Ini

− n−1
i J∗

ni
][Ini

⊗Ct
2∗]. Then, we have

AV iB

= [Ini
⊗C1][Ini

− n−1
i J∗

ni
][Ini

⊗Ct
2]Cov(Y i)

[Ini
⊗C1∗][Ini

− n−1
i J∗

ni
][Ini

⊗Ct
2∗]

= [Ini
⊗C1][Ini

− n−1
i J∗

ni
][Ini

⊗Ct
2](Ini

⊗Σi)

[Ini
⊗C1∗][Ini

− n−1
i J∗

ni
][Ini

⊗Ct
2∗]

= [Ini
⊗C1][Ini

− n−1
i J∗

ni
](Ini

⊗Ct
2ΣiC1∗)[Ini

− n−1
i J∗

ni
][Ini

⊗Ct
2∗],

where C1∗ and C2∗ are selected from CAU,1,CAU,2,CCm,1, or CCm,2.
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The last line above follows from the following property of kronecker product:
(A⊗B)(C⊗D)(E⊗F ) = ACE⊗BDF . When we consider each element of
SSD1i and each element of SSD2i, C

t
2ΣiC1∗ = 0. Therefore, (n1+n2−2)ST

and (n1 + n2 − 2)SR are independent.
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