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Abstract. The AIC and its modifications have been proposed for selecting
the degree in a polynomial growth curve model under a large-sample framework
and a high-dimensional framework by Satoh, Kobayashi and Fujikoshi [9] and
Fujikoshi, Enomoto and Sakurai [4], respectively. They note that the AIC
and its modifications have no consistency property. In this paper we consider
asymptotic properties of the AIC and its modification when the number q of
groups or explanatory variables and the sample size n are large. First we show
that the AIC has a consistency property under a large-(q, n) framework such
that q/n → d ∈ [0, 1), under a condition on the noncentrality matrix, but the
dimension p is fixed. Next we propose a modification of the AIC (denoted
by MAIC) which is an asymptotic unbiased estimator of the risk under the
asymptotic framework. It is shown that MAIC has a consistency property under
a condition on the noncentrality matrix. Our results are checked numerically
by conducting a Mote Carlo simulation.
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§1. Introduction

The growth curve model introduced by Potthoff and Roy [7] is written as

(1.1) Y = AΘX+ E,

where Y;n × p is an observation matrix, A;n × q is a design matrix across
individuals, X; k × p is a design matrix within individuals, Θ is an unknown
matrix, and each row of E is independent and identically distributed as a
p-dimensional normal distribution with mean 0 and an unknown covariance
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matrix Σ. We assume that n− p− k− 1 > 0 and rank(X) = k. If we consider
a polynomial regression of degree k − 1 on the time t with q groups, then

A =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...
0 0 · · · 1nq

 , X =


1 1 · · · 1
t1 t2 · · · tp
...

...
...

...

tk−1
1 tk−1

2 · · · tk−1
p

 .

Relating to the problem of deciding the degree in a polynomial growth curve
model, consider a set of candidate models M1, . . . ,Mk where Mj is defined by

(1.2) Mj ; Y = AΘjXj + E, j = 1, . . . , k,

where Θj is the q × j submatrix of Θ, and Xj is the j × p submatrix of X
defined by

Θ = (Θj ,Θj̄), X =

(
Xj

Xj̄

)
.

Here we note that the design matrix A may be also an observation matrix of
several explanatory variables. For such an application, see Satoh and Yanag-
ihara [8]. There are several criteria for selecting models including the AIC
(Akaike [1]). The AIC for Mj is given by

(1.3) AIC = n log |Σ̂j |+ np(log 2π + 1) + 2

{
qj +

1

2
p(p+ 1)

}
,

where Σ̂j is the MLE of Σ under Mj , which is given by

Σ̂j =
1

n
(Y −AΘ̂jXj)

′(Y −AΘ̂jXj),

where Θ̂j = (A′A)−1A′YS−1X′
j(XjS

−1X′
j)

−1, S = Y′(In − PA)Y/(n − q),
and PA = A(A′A)−1A′. The last term {qj + p(p + 1)/2} is the number of
independent parameters under Mj . In addition to AIC, some bias-corrected
criteria have been proposed. Satoh, Kobayashi and Fujikoshi [9] proposed
MAICLS which is a higher-order asymptotic unbiased estimator of the risk
function under a large-sample framework,

(1.4) p, q and k are fixed, n → ∞.

The MAICLS for Mj is given by

MAICLS = n log |Σ̂j |+ np(log 2π + 1) + bA1 + b̃A2,(1.5)
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where

bA1 = −np+
n2(p− j)

n− p+ j − 1
+

n(n+ q)(n− q − 1)j

(n− q − p− 1)(n− q − p+ j − 1)
,(1.6)

b̃A2 = (p− j + 1){2ξ̃1 − (p− j)} − ξ̃2.(1.7)

Here ξ̃1 and ξ̃2 are the estimators of ξ1 and ξ2 (for the definition of ξ1 and ξ2,
see (4.1)) given by

ξ̃1 =
n

n− q

{
tr(nΣj)

−1(n− q)S− j
}
,(1.8)

ξ̃2 = (ξ̃1)
2 +

(
n

n− q

)2 [
tr{(nΣ̂j)

−1(n− q)S}2 − j

]
.(1.9)

Recently, Fujikoshi, Enomoto and Sakurai [4] have proposed HAIC which
is a higher-order asymptotic estimator of the risk under a high-dimensional
asymptotic framework,

(1.10) q and k are fixed, p → ∞, n → ∞, p/n → c ∈ [0, 1).

For the original AIC and two bias-corrected AICs, it was assumed that the
true model is included in the full model Mk. The assumption is also assumed
in this paper. So, without loss of generality, we may assume that the minimum
model including the true model is Mj0 , and then the true model is expressed
as

(1.11) Mj0 : Y ∼ Nn×p(AΘ0Xj0 ,Σ0 ⊗ In),

where Θ0 is a given q × j0 matrix, and Σ0 is a given positive definite matrix.
For simplicity, we write Xj0 as X0.

It was shown that the AIC, MAICLS and HAIC have no consistency prop-
erty under the large-sample framework and the high-dimensional framework
by Satoh, Kobayashi and Fujikoshi [9] and Fujikoshi, Enomoto and Sakurai
[4], respectively. A reason for such inconsistency is that the differences of bias
correction parts between the true model and the other candidate models are
not O(n), but O(1) in each of their asymptotic frameworks. In this paper
we study asymptotic properties of the AIC when the number q of groups or
explanatory variables and the sample size n are large, but the dimension p is
fixed. In general, it may be happen when the number q of explanatory vari-
ables is large. Further, the number q of groups will increase in the following
cases:
(1) The groups are based on many clusters.
(2) The groups are constructed by repeated measurements of each the sub-
jects.
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First we show that the AIC has a consistency property under a large-(q, n)
framework such that

(1.12) p and k are fixed, q → ∞, n → ∞, q/n → d ∈ [0, 1),

under a condition on the noncentrality matrix defined in Lemma 2.1. The fact
might be interesting, since the AIC has no consistency property under a large-
sample framework (1.4) and a high-dimensional framework (1.10). Next we
propose a modification of the AIC (denoted by MAIC) which is an asymptotic
unbiased estimator of the risk under (1.12). Further, it is shown that MAIC
has a consistency property under a condition on the noncentrality matrix. Our
results are checked numerically by conducting a Mote Carlo simulation. Some
future problems are discussed in the final section.

§2. Preliminaries

In this section we prepare some distributional results on the AIC itself and
its bias as an estimator of the risk. For a detail derivation, see Fujikoshi,
Enomoto and Sakurai [4]. Let

H
(j)
1 = (XjΣ

−1/2
0 )′(XjΣ

−1
0 X′

j)
−1/2; p× j, j = 1, . . . , k,

and consider a p× p orthogonal matrix

H = (h1, . . . ,hk; ∗),

satisfying h1 ∈ R[H
(1)
1 ], (h1,h2) ∈ R[H

(2)
1 ], . . . , (h1, . . . ,hk) ∈ R[H

(k)
1 ], and

the remainder p−k columns are any ones such that H is an orthogonal matrix.
We partition H as

H = (H
(j)
1 , H

(j)
2 ), H

(j)
1 ; p× j, j = 1, . . . , k.

Using the orthogonal matrix H, we define the random matrices W and B as
follows;

W = H′Σ
−1/2
0 (n− q)SΣ

−1/2
0 H,(2.1)

B = H′{(A′A)−1/2A′YΣ
−1/2
0 }′(A′A)−1/2A′YΣ

−1/2
0 H.(2.2)

Then W and B are independently distributed as Wp(n − q, Ip) and Wp(q, Ip;

Γ′Γ), where Γ = (A′A)1/2Θ0X0Σ
−1/2
0 H. We use the following result which

is obtained from (2.7) and (2.8) in Fujikoshi, Enomoto and Sakurai [4].
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Lemma 2.1. Let W and B be the random matrices defined by (2.1) and (2.2),
respectively. Then

(2.3)
|(n− q)S|
|nΣ̂j |

=
|W(j)|

|W(j) + B(j)|
,

where W(j) and B(j) are the last (p− j)× (p− j) submatrices of W and B by
respectively, that is

W =

(
∗ ∗
∗ W(j)

)
, B =

(
∗ ∗
∗ B(j)

)
.

Further

W(j) ∼ Wp−j(n− q, Ip−j), B(j) ∼ Wp−j(q, Ip−j ;Ωj),

where Ωj = Γ′
jΓj, and Γj = (A′A)1/2Θ0X0Σ

−1/2
0 H

(j)
2 .

The matrix Ωj is simply called a noncentrality matrix. As is well known,
the AIC was proposed as an approximately unbiased estimator of the risk
defined by the expected −2×log-predictive likelihood. Let f(Y;Θj ,Σj) be
the density function of Y under Mj . Then the expected −2×log-predictive
likelihood of Mj is defined by

(2.4) RA = E∗
YE

∗
YF

[−2 log f(YF ; Θ̂j , Σ̂j)],

where Σ̂j and Θ̂j are the maximum likelihood estimators of Σ and Θ under
Mj , respectively. Here YF ;n× p may be regarded as a future random matrix
that has the same distribution as Y and is independent of Y, and E∗ denotes
the expectation with respect to the true model. The risk is expressed as

(2.5) RA = E∗
YE

∗
YF

[−2 log f(Y; Θ̂j , Σ̂j)] + bA,

where

(2.6) bA = E∗
YE

∗
YF

[−2 log f(YF ; Θ̂j , Σ̂j) + 2 log f(Y; Θ̂j , Σ̂j)].

The AIC and its modifications have been proposed by regarding bA as the bias
term when we estimate RA by

−2 log f(Y; Θ̂j , Σ̂j) = n log |Σ̂j |+ np(log 2π + 1),

and by evaluating the bias term bA. The bias for Mj is expressed as in the
following Lemma 2.2.
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Lemma 2.2. Suppose that the true model is given by (1.11). Then, the bias
bA for model Mj in (2.5) or (2.6) is expressed in terms of W(j) and B(j) in
Lemma 2.1 as follows:

(2.7) bA = bA1 + bA2,

where bA1 is given by (1.6) and

bA2 = E

[
n2tr(W(j) + B(j))

−1

(
I+

1

n
Ωj

)]
− n2(p− j)

n− p+ j − 1
.(2.8)

§3. Consistency of AIC

In this section we show that the asymptotic probability of selecting the true
model by the AIC goes to 1 as the number q and the sample size n approaching
to ∞ as in (1.12), under the several assumptions. We denote the AIC for Mj

by AICj . The best model chosen by minimizing the AIC is written as

ĵA = arg min
j=1,...,k

AICj .

Our main assumptions are summarized as follows:

A1 (The true model M0): j0 ∈ {1, . . . , k}.
A2 (The asymptotic framework): q → ∞, n → ∞, q/n → d ∈ [0, 1).

A3 (The noncentrality matrix): For j < j0,

Ωj = n∆j = Og(n) and lim
q/n→d

∆j = ∆∗
j .

Here Og(n
i) denotes the term of i-th order with respect to n under (1.12).

Theorem 3.1. Suppose that the assumptions A1, A2 and A3 are satisfied.
Let da (≈ 0.797) be the constant satisfying log(1 − da) + 2da = 0. Further,
assume that d ∈ [0, da), and

A4: For any j < j0,

log |Ip−j +∆∗
j | > (j0 − j){2d+ log(1− d)}.

Then, the asymptotic probability of selecting the true model j0 by the AIC
tends to 1, i.e.

lim
q/n→d

P (ĵA = j0) = 1.
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Proof. Using Lemma 2.1 we have

AICj −AICj0 = −n log
|(n− q)S|
|nΣ̂j |

−

(
−n log

|(n− q)S|
|nΣ̂j0 |

)
+ 2q(j − j0)

= −n log
|W(j)|

|W(j) + B(j)|
−
{
−n log

|W(j0)|
|W(j0) + B(j0)|

}
(3.1)

+ 2q(j − j0).

Let V(j) and U(j) be defined by

V(j) =
√
n− q

(
1

n− q
W(j) − Ip−j

)
, and

U(j) =
√
q

(
1

q
B(j) − Ip−j −

n

q
∆j

)
,

respectively. Then, V(j) and U(j) converge to normal distributions, and we
have

1

n
W(j) =

n− q

n
· 1

n− q
W(j)

p→ (1− d)Ip−j ,(3.2)

1

n
B(j) =

q

n

1

q
U(j)

p→ d

(
Ip−j +

1

d
∆∗

j

)
= dIp−j +∆∗

j .(3.3)

Therefore

− log
|W(j)|

|W(j) + B(j)|
p→− log

|(1− d)Ip−j |
|(1− d)Ip−j + dIp−j +∆∗

j |
= log |Ip−j +∆∗

j | − (p− j) log(1− d).

Since ∆∗
j0 = 0, we have

1

n
(AICj −AICj0)

p→ log |Ip−j +∆∗
j |+ (j − j0){2d+ log(1− d)}.

By the way it is easily checked that if 0 < d < da, 2d + log(1 − d) > 0.
Therefore, for j = j0 + 1, . . . , k, we have

1

n
(AICj −AICj0)

p→ (j − j0){2d+ log(1− d)} > 0.

Further, for j = 1, . . . , j0 − 1, from A4 we have

1

n
(AICj −AICj0)

p→ log |Ip−j +∆∗
j | − (j0 − j){2d+ log(1− d)} > 0.

For the case d = 0, we can prove by considering the limit of (1/q)(AICj −
AICj0) in stead of (1/n)(AICj −AICj0). These complete the proof.
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§4. Modification of AIC

In this section we first obtain an asymptotic expansion of bA, assuming A1,
A2 and A3. Then, using the expansion we obtain an asymptotic unbiased
estimator of bA.

Note that W(j)+B(j) ∼ Wp−j(n, Ip−j ;Ωj). Therefore, from an asymptotic
result (see, e.g., Fujikoshi [2]) we have

bA2 = −n(p− j)(p− j + 1)

n− p+ j − 1
+ 2(p− j + 1)ξ1 − ξ2 +Og(n

−1),

where

ξ1 = tr

(
Ip−j +

1

n
Ωj

)−1

, ξ2 = ξ21 + tr

(
Ip−j +

1

n
Ωj

)−2

.(4.1)

In the special caseΩj = 0, we can see that bA2 = 0 since E[tr(W(j)+B(j))
−1] =

(p− j)/(n− p+ j − 1). These results are summarized as follows:

bA2 =

0, Ωj = 0,

−n(p− j)(p− j + 1)

n− p+ j − 1
+ 2(p− j + 1)ξ1 − ξ2 +Og(n

−1), Ωj ̸= 0.

Now we look for an estimator b̂A in the following form:

(4.2) b̂A = bA1 −
n(p− j)(p− j + 1)

n− p+ j − 1
+ 2(p− j + 1)ξ̂1 − ξ̂2.

We wish to determine ξ̂1 and ξ̂2 satisfying the following properties:

(1) When Ωj = 0, E[b̂A] = bA.

(2) When Ωj ̸= 0, E[b̂A] = bA +Og(n
−1).

It is known (see, e.g., Fujikoshi, Enomoto and Sakurai [4]) that

tr(nΣ̂j)
−1(n− q)S = j + trQj ,

tr
{
(nΣ̂j)

−1(n− q)S
}2

= j + trQ2
j ,

where Qj = W(j)(W(j) + B(j))
−1. Using (3.2) and (3.3) we have

Qj
p→ (1− d)

(
Ip−j +∆∗

j

)−1
.

Based on these results, let us consider the estimators ξ̃1 and ξ̃2 defined by
(1.8) and (1.9) as the native estimators. Then we can see that

ξ̃1
p→ ξ10 = tr(I+∆∗

j )
−1,

ξ̃2
p→ ξ20 =

{
tr(I+∆∗

j )
−1
}2

+ tr(I+∆∗
j )

−2.
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WhenΩj = 0, Qj is distributed as a multivariate beta distribution Bp−j((n
−q)/2, q/2) (see, e.g., Muirhead [6], Fujikoshi, Ulyanov and Shimizu [5]). Us-
ing the moment formulas (see, e.g., Fujikoshi and Satoh [3]) on Qj we have

E0[ξ̃1] =

(
n

n− q

)
E0[trQj ] = p− j,

E0[ξ̃2] =

(
n

n− q

)2

E0[(trQj)
2 + trQ2

j ]

=
n(p− j)

3(n− q)

{
2(n− q + 2)(p− j + 2)

n+ 2
+

(n− q − 1)(p− j − 1)

n− 1

}
.

Here E0 means the expectation when Ωj = 0. Now we modify ξ̃1 and ξ̃2 as

ξ̂1 = ξ̃1, and ξ̂2 = f ξ̃2,

where f is a constant satisfying that f = 1 + Og(n
−1). Our purpose is to

determine f such that b̂A is an exact biased estimator of bA when Ωj = 0.
This is equivalent to determine f such that

2(p− j + 1)E0[ξ̃1]− fE0[ξ̃2] =
n(p− j)(p− j + 1)

n− p+ j − 1
.

Therefore, the constant f may be determined as

f =
1

E[ξ̃2]
(p− j)(p− j + 1)

{
2− n

n− p+ j − 1

}
=

3(n− q)(p− j + 1)(n− 2p+ 2j − 2)

n(n− p+ j − 1)
(4.3)

×
{
2(n− q + 2)(p− j + 2)

n+ 2
+

(n− q − 1)(p− j − 1)

n− 1

}−1

,

which is 1 + Og(n
−1). Consequently, as a modification of AIC we propose

(4.4) MAIC = n log |Σ̂j |+ np(log 2π + 1) + b̂A,

where

b̂A = bA1 + b̂A2

= bA1 −
n(p− j)(p− j + 1)

n− p+ j − 1
+ 2(p− j + 1)ξ̂1 − ξ̂2.

Here bA1 is given by (1.6). The ξ̂1 and ξ̂2 are given by

ξ̂1 =
n

n− q

{
tr(nΣ̂j)

−1(n− q)S− j
}
,

ξ̂2 = f

[
ξ̂21 +

(
n

n− q

)2 [
tr{(nΣ̂j)

−1(n− q)S}2 − j

]]
,
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where f is defined by (4.3).
From our results and Satoh, Kobayashi and Fujikoshi [9], the biases of AIC,

MAICLS and MAIC are summarized as in Table 1.

Table 1. Biases of AIC, MAICLS and MAIC

AIC MAICLS MAIC

Ωj = O(n) or Ωj = Og(n) O(1) O(n−1) Og(n
−1)

Ωj = 0 O(n−1) O(n−2) 0

Here O(ni) denotes the term of i-th order with respect to n under (1.4).

§5. Consistency of MAIC

In this section we examine a consistency property of MAIC proposed by (4.4).
We denote the MAIC forMj by MAICj . The best model chosen by minimizing
the AIC is written as

ĵMA = arg min
j=1,...,k

MAICj .

Further, we denote bA and b̂A for model Mj by bA;j and b̂A;j , respectively.

Similar notations are used for ξ̂1, ξ̂2, ξ10, ξ20, etc. Then we have seen in Section
4 that

ξ̂1;j
p→ ξ10;j , ξ̂2;j

p→ ξ20;j .

Therefore, it is easily seen that

1

n
b̂A;j =

2q

n− q
j +Og(n

−1).

This implies that
1

n
(b̂A;j − b̂A;j0)

p→ 2d

1− d
(j − j0).

Using asymptotic results on AIC in Section 3 we have

1

n
(MAICj −MAICj0)

p→ log |Ip−j +∆∗
j |

+ (j − j0)

{
2d

1− d
+ log(1− d)

}
.(5.1)

Note that f(d) = 2d(1 − d)−1 + log(1 − d) is positive for 0 < d < 1. In fact,
put f(x) = 2x(1 − x)−1 + log(1 − x) for 0 < x < 1. Then limx→+0 f(x) = 0,
and f ′(x) = (1 + x)(1− x)−2 > 0. This implies f(d) > 0 for 0 < d < 1. Using
(5.1), we have a Theorem similar to Theorem 3.1.
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Theorem 5.2. Suppose that the assumptions A1, A2 and A3 in Theorem 3.1
are satisfied. Further, suppose that

A5: For any j < j0,

log |Ip−j +∆∗
j | > (j0 − j)

{
2d

1− d
+ log(1− d)

}
.

Then, the asymptotic probability of selecting the true model j0 by the MAIC
tends to 1, i.e.

lim
q/n→d

P (ĵMA = j0) = 1.

For Theorem 5.2, the assumption d ∈ [0, da) in Theorem 3.1 is not necessary.
However, Assumption A5 is required instead of Assumption A4.

§6. Simulation study

In this section, we numerically examine the validity of our claims. The five
candidate models M1, . . . ,M5, with several different values of n and q = dn,
were considered for Monte Carlo simulations, where p = 5, n = 50, 100, 200,
n1 = · · · = nq = n/q and d = 0.1, 0.2. We constructed a 5 × 5 matrix X
of explanatory variables with ti = 1 + (i − 1)(p − 1)−1. The true model was
determined by Θ0 = 1q1

′
2 and Σ0 whose (i, j)th element was defined by ρ|i−j|,

where ρ = 0.2, 0.8. Thus, M2 was the true model, the true model were included
in M3,M4,M5, the true model was not included in M1. Therefore, Ωj = 0
when M2,M3,M4,M5 and Ωj ̸= 0 when M1.

In the above simulation model, we shall check whether the assumptions A3,
A4 and A5 are satisfied. The noncentrality matrix Ωj defined by Lemma 2.1
is expressed as

Ωj = H
(j)
2

′
Σ

−1/2
0

′
X′

0Θ
′
0A

′AΘ0X0Σ
−1/2
0 H

(j)
2

= H
(j)
2

′
Σ

−1/2
0

′
X′

0121
′
q


n1 0 · · · 0
0 n2 · · · 0
...

...
. . .

...
0 0 · · · nq

1q1
′
2X0Σ

−1/2
0 H

(j)
2

= H
(j)
2

′
Σ

−1/2
0

′
X′

0

(
n n
n n

)
X0Σ

−1/2
0 H

(j)
2 .

Further, X0, Σ
−1/2
0 and H

(j)
2 do not depend on n and q. Therefore, Ωj =

Oq(n). Moreover, the convergent values in A4 and A5 for consistency are
calculated as follows:
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ρ d log |Ip−j +∆∗
j | 2d+ log(1− d) 2d/(1− d) + log(1− d)

0.2 0.1 0.440 0.095 0.117
0.2 0.440 0.177 0.277

0.8 0.1 0.614 0.095 0.117
0.2 0.614 0.177 0.277

First, we studied performances of AIC and MAIC as estimators of the
AIC-type risk RA. For each of M1, . . . ,M5, we computed the averages of
RA, AIC and MAIC by Monte Carlo simulations with 104 replications. Table
2 shows the risk RA and the biases of AIC and MAIC to RA, defined by
“RA − (the expectation of the information criterion)”. In Table 2, j means
the model Mj and the bold face denotes the true model. From Table 2,
we can see that the biases of MAIC were smaller than the ones of AIC. In
general, there is a tendency that the biases become large as q increases. But
the tendency of MAIC is very small in the comparison with AIC. Further,
AIC has a tendency of underestimating the risk.

Table 2. Risks and biases of AIC and MAIC

ρ = 0.2 RA AIC MAIC RA AIC MAIC RA AIC MAIC
d = 0.1 (n, q) = (50, 5) (n, q) = (100, 10) (n, q) = (200, 20)

1 751.84 10.11 0.94 1477.63 7.38 -0.36 2935.55 8.96 0.14
2 738.90 15.05 0.66 1448.24 13.03 -0.51 2873.64 16.54 -0.07

j 3 746.98 18.77 0.78 1461.70 17.35 -0.72 2898.93 23.26 -0.02
4 754.20 21.54 0.84 1474.74 21.10 -0.70 2923.63 29.28 0.09
5 760.72 23.48 0.91 1487.13 24.18 -0.58 2947.58 34.33 -0.04

d = 0.2 (n, q) = (50, 10) (n, q) = (100, 20) (n, q) = (200, 40)
1 765.45 20.26 0.32 1499.82 22.63 1.20 2971.86 29.87 -0.03
2 764.77 33.97 -0.25 1490.22 40.45 0.82 2945.65 57.18 -0.43

j 3 784.01 45.16 -0.24 1523.03 56.44 1.13 3005.79 82.85 -0.22
4 801.12 53.92 -0.40 1553.92 70.14 1.13 3064.21 106.39 -0.28
5 816.56 60.78 -0.39 1583.22 81.95 1.14 3121.08 128.14 -0.30

ρ = 0.8 RA AIC MAIC RA AIC MAIC RA AIC MAIC
d = 0.1 (n, q) = (50, 5) (n, q) = (100, 10) (n, q) = (200, 20)

1 563.77 9.18 0.25 1103.82 8.53 1.00 2185.42 9.25 0.61
2 542.07 14.10 -0.28 1057.17 14.36 0.82 2088.67 16.80 0.19

j 3 549.96 17.59 -0.40 1070.82 18.87 0.79 2113.99 23.48 0.20
4 557.31 20.50 -0.20 1083.64 22.41 0.61 2138.59 29.30 0.10
5 563.88 22.51 -0.06 1095.99 25.36 0.60 2162.47 34.32 -0.04

d = 0.2 (n, q) = (50, 10) (n, q) = (100, 20) (n, q) = (200, 40)
1 578.14 20.37 0.68 1124.34 21.27 0.04 2221.89 29.57 -0.14
2 569.38 34.81 0.58 1097.56 39.38 -0.25 2161.18 57.53 -0.08

j 3 588.43 45.75 0.35 1130.35 55.23 -0.07 2221.19 82.78 -0.29
4 605.49 54.46 0.14 1161.15 68.91 -0.09 2279.43 106.20 -0.46
5 621.25 61.68 0.51 1190.20 80.49 -0.32 2336.38 128.15 -0.29

Table 3 gives the selection probabilities of AIC and MAIC based on the sim-
ulation experiment. When q increases, the probabilities of selecting the true
model by AIC and MAIC are near to 1. Further, we can see that when (n, q) is
relatively small and d = 0.2, MAIC has a tendency of selecting underspecified
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models, but such tenancy is not seen for AIC.

Table 3. Selection probabilities (%) of AIC and MAIC

ρ = 0.2 AIC MAIC AIC MAIC AIC MAIC
d = 0.1 (n, q) = (50, 5) (n, q) = (100, 10) (n, q) = (200, 20)

1 0.6 5.3 0.1 0.3 0.0 0.0
2 84.6 90.8 94.7 98.5 98.8 99.9

j 3 10.5 3.4 4.4 1.1 1.1 0.1
4 3.3 0.5 0.7 0.1 0.0 0.0
5 1.1 0.1 0.1 0.0 0.0 0.0

d = 0.2 (n, q) = (50, 10) (n, q) = (100, 20) (n, q) = (200, 40)
1 5.2 52.1 1.1 24.4 0.1 7.2
2 86.0 47.7 96.5 75.6 99.7 92.8

j 3 7.0 0.2 2.2 0.0 0.2 0.0
4 1.4 0.0 0.1 0.0 0.0 0.0
5 0.4 0.0 0.0 0.0 0.0 0.0

ρ = 0.8 AIC MAIC AIC MAIC AIC MAIC
d = 0.1 (n, q) = (50, 5) (n, q) = (100, 10) (n, q) = (200, 20)

1 0.0 0.4 0.0 0.0 0.0 0.0
2 86.2 96.1 94.8 98.8 98.9 99.9

j 3 9.8 2.9 4.7 1.2 1.1 0.2
4 2.9 0.5 0.5 0.0 0.0 0.0
5 1.1 0.2 0.1 0.0 0.0 0.0

d = 0.2 (n, q) = (50, 10) (n, q) = (100, 20) (n, q) = (200, 40)
1 0.5 19.9 0.0 2.2 0.0 0.0
2 90.4 79.9 97.5 97.8 99.7 100.0

j 3 7.4 0.2 2.3 0.0 0.3 0.0
4 1.4 0.0 0.2 0.0 0.0 0.0
5 0.3 0.0 0.0 0.0 0.0 0.0

§7. Concluding remarks

This paper discusses with the AIC and its modification for selecting the degrees
in the growth curve model (1.1) under a large-(q, n) framework (1.12). It was
shown that the AIC has a consistency property under the assumptions A1,
A2, A3, A4 and d ∈ [0, da), where da is the solution of log(1 − d) + 2d = 0
and da is approximately 0.797. Next we proposed a modified AIC (denoted
by MAIC), which is a higher-order asymptotic unbiased estimator of the risk
of AIC. Further, it was shown that MAIC has a consistency property under
A1, A2, A3 and A5 without the assumption of d ∈ [0, da).

It is interesting to study similar properties of Cp and MCp which were
proposed by Satoh, Kobayashi and Fujikoshi [9]. For the noncentrality matrix
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Ωj , we assumed that Ωj = O(n). It is also important to study asymptotic
properties of AIC, MAIC, Cp and MCp under Ωj = Og(nq). The works of
these directions are ongoing.

In the traditional growth curve model it is assumed that the dimension p
is small or moderate. However, it is also important to analysis the data such
that p is large. This suggests to study asymptotic properties of AIC and Cp

under a high-dimensional framework such that

(7.1) p → ∞, q → ∞, n → ∞, p/n → c ∈ [0, 1), q/n → d ∈ [0, 1).

Modifications of AIC and Cp and their properties should be also studied.
These works are left as a future subject.
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