Consistency of AIC and its modification in the growth curve model under a large- (q, n) framework

Rie Enomoto, Tetsuro Sakurai and Yasunori Fujikoshi

(Received August 7, 2013; December 2, 2013)

Abstract

The AIC and its modifications have been proposed for selecting the degree in a polynomial growth curve model under a large-sample framework and a high-dimensional framework by Satoh, Kobayashi and Fujikoshi [9] and Fujikoshi, Enomoto and Sakurai [4], respectively. They note that the AIC and its modifications have no consistency property. In this paper we consider asymptotic properties of the AIC and its modification when the number q of groups or explanatory variables and the sample size n are large. First we show that the AIC has a consistency property under a large- (q, n) framework such that $q / n \rightarrow d \in[0,1)$, under a condition on the noncentrality matrix, but the dimension p is fixed. Next we propose a modification of the AIC (denoted by MAIC) which is an asymptotic unbiased estimator of the risk under the asymptotic framework. It is shown that MAIC has a consistency property under a condition on the noncentrality matrix. Our results are checked numerically by conducting a Mote Carlo simulation.

AMS 2010 Mathematics Subject Classification. 62H12, 62H30.
Key words and phrases. AIC, Consistency property, Growth curve model, Modified criterion, Large- (q, n) framework, Selection of models.

§1. Introduction

The growth curve model introduced by Potthoff and Roy [7] is written as

$$
\begin{equation*}
\mathbf{Y}=\mathbf{A} \boldsymbol{\Theta} \mathbf{X}+\boldsymbol{\mathcal { E }} \tag{1.1}
\end{equation*}
$$

where $\mathbf{Y} ; n \times p$ is an observation matrix, $\mathbf{A} ; n \times q$ is a design matrix across individuals, $\mathbf{X} ; k \times p$ is a design matrix within individuals, $\boldsymbol{\Theta}$ is an unknown matrix, and each row of \mathcal{E} is independent and identically distributed as a p-dimensional normal distribution with mean $\mathbf{0}$ and an unknown covariance
$\operatorname{matrix} \boldsymbol{\Sigma}$. We assume that $n-p-k-1>0$ and $\operatorname{rank}(\mathbf{X})=k$. If we consider a polynomial regression of degree $k-1$ on the time t with q groups, then

$$
\mathbf{A}=\left(\begin{array}{cccc}
\mathbf{1}_{n_{1}} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{1}_{n_{2}} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{1}_{n_{q}}
\end{array}\right), \quad \mathbf{X}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
t_{1} & t_{2} & \cdots & t_{p} \\
\vdots & \vdots & \vdots & \vdots \\
t_{1}^{k-1} & t_{2}^{k-1} & \cdots & t_{p}^{k-1}
\end{array}\right)
$$

Relating to the problem of deciding the degree in a polynomial growth curve model, consider a set of candidate models M_{1}, \ldots, M_{k} where M_{j} is defined by

$$
\begin{equation*}
M_{j} ; \mathbf{Y}=\mathbf{A} \boldsymbol{\Theta}_{j} \mathbf{X}_{j}+\mathcal{E}, \quad j=1, \ldots, k \tag{1.2}
\end{equation*}
$$

where $\boldsymbol{\Theta}_{j}$ is the $q \times j$ submatrix of $\boldsymbol{\Theta}$, and \mathbf{X}_{j} is the $j \times p$ submatrix of \mathbf{X} defined by

$$
\boldsymbol{\Theta}=\left(\boldsymbol{\Theta}_{j}, \boldsymbol{\Theta}_{\bar{j}}\right), \quad \mathbf{X}=\binom{\mathbf{X}_{j}}{\mathbf{X}_{\bar{j}}}
$$

Here we note that the design matrix \mathbf{A} may be also an observation matrix of several explanatory variables. For such an application, see Satoh and Yanagihara [8]. There are several criteria for selecting models including the AIC (Akaike [1]). The AIC for M_{j} is given by

$$
\begin{equation*}
\mathrm{AIC}=n \log \left|\hat{\boldsymbol{\Sigma}}_{j}\right|+n p(\log 2 \pi+1)+2\left\{q j+\frac{1}{2} p(p+1)\right\} \tag{1.3}
\end{equation*}
$$

where $\hat{\boldsymbol{\Sigma}}_{j}$ is the MLE of $\boldsymbol{\Sigma}$ under M_{j}, which is given by

$$
\hat{\boldsymbol{\Sigma}}_{j}=\frac{1}{n}\left(\mathbf{Y}-\mathbf{A} \hat{\boldsymbol{\Theta}}_{j} \mathbf{X}_{j}\right)^{\prime}\left(\mathbf{Y}-\mathbf{A} \hat{\boldsymbol{\Theta}}_{j} \mathbf{X}_{j}\right)
$$

where $\hat{\boldsymbol{\Theta}}_{j}=\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1} \mathbf{A}^{\prime} \mathbf{Y} \mathbf{S}^{-1} \mathbf{X}_{j}^{\prime}\left(\mathbf{X}_{j} \mathbf{S}^{-1} \mathbf{X}_{j}^{\prime}\right)^{-1}, \mathbf{S}=\mathbf{Y}^{\prime}\left(\mathbf{I}_{n}-\mathbf{P}_{\mathbf{A}}\right) \mathbf{Y} /(n-q)$, and $\mathbf{P}_{\mathbf{A}}=\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1} \mathbf{A}^{\prime}$. The last term $\{q j+p(p+1) / 2\}$ is the number of independent parameters under M_{j}. In addition to AIC, some bias-corrected criteria have been proposed. Satoh, Kobayashi and Fujikoshi [9] proposed $\mathrm{MAIC}_{\mathrm{LS}}$ which is a higher-order asymptotic unbiased estimator of the risk function under a large-sample framework,

$$
\begin{equation*}
p, q \text { and } k \text { are fixed, } n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

The $\mathrm{MAIC}_{\mathrm{LS}}$ for M_{j} is given by

$$
\begin{equation*}
\mathrm{MAIC}_{\mathrm{LS}}=n \log \left|\hat{\boldsymbol{\Sigma}}_{j}\right|+n p(\log 2 \pi+1)+b_{A 1}+\tilde{b}_{A 2} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{align*}
& b_{A 1}=-n p+\frac{n^{2}(p-j)}{n-p+j-1}+\frac{n(n+q)(n-q-1) j}{(n-q-p-1)(n-q-p+j-1)}, \tag{1.6}\\
& \tilde{b}_{A 2}=(p-j+1)\left\{2 \tilde{\xi}_{1}-(p-j)\right\}-\tilde{\xi}_{2} . \tag{1.7}
\end{align*}
$$

Here $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ are the estimators of ξ_{1} and ξ_{2} (for the definition of ξ_{1} and ξ_{2}, see (4.1)) given by

$$
\begin{align*}
& \tilde{\xi}_{1}=\frac{n}{n-q}\left\{\operatorname{tr}\left(n \boldsymbol{\Sigma}_{j}\right)^{-1}(n-q) \mathbf{S}-j\right\} \tag{1.8}\\
& \tilde{\xi}_{2}=\left(\tilde{\xi}_{1}\right)^{2}+\left(\frac{n}{n-q}\right)^{2}\left[\operatorname{tr}\left\{\left(n \hat{\boldsymbol{\Sigma}}_{j}\right)^{-1}(n-q) \mathbf{S}\right\}^{2}-j\right] \tag{1.9}
\end{align*}
$$

Recently, Fujikoshi, Enomoto and Sakurai [4] have proposed HAIC which is a higher-order asymptotic estimator of the risk under a high-dimensional asymptotic framework,

$$
\begin{equation*}
q \text { and } k \text { are fixed, } p \rightarrow \infty, n \rightarrow \infty, p / n \rightarrow c \in[0,1) \tag{1.10}
\end{equation*}
$$

For the original AIC and two bias-corrected AICs, it was assumed that the true model is included in the full model M_{k}. The assumption is also assumed in this paper. So, without loss of generality, we may assume that the minimum model including the true model is $M_{j_{0}}$, and then the true model is expressed as

$$
\begin{equation*}
M_{j_{0}}: \mathbf{Y} \sim \mathrm{N}_{n \times p}\left(\mathbf{A} \boldsymbol{\Theta}_{0} \mathbf{X}_{j_{0}}, \boldsymbol{\Sigma}_{0} \otimes \mathbf{I}_{n}\right) \tag{1.11}
\end{equation*}
$$

where $\boldsymbol{\Theta}_{0}$ is a given $q \times j_{0}$ matrix, and $\boldsymbol{\Sigma}_{0}$ is a given positive definite matrix. For simplicity, we write $\mathbf{X}_{j_{0}}$ as \mathbf{X}_{0}.

It was shown that the $\mathrm{AIC}, \mathrm{MAIC}_{\mathrm{LS}}$ and HAIC have no consistency property under the large-sample framework and the high-dimensional framework by Satoh, Kobayashi and Fujikoshi [9] and Fujikoshi, Enomoto and Sakurai [4], respectively. A reason for such inconsistency is that the differences of bias correction parts between the true model and the other candidate models are not $\mathrm{O}(n)$, but $\mathrm{O}(1)$ in each of their asymptotic frameworks. In this paper we study asymptotic properties of the AIC when the number q of groups or explanatory variables and the sample size n are large, but the dimension p is fixed. In general, it may be happen when the number q of explanatory variables is large. Further, the number q of groups will increase in the following cases:
(1) The groups are based on many clusters.
(2) The groups are constructed by repeated measurements of each the subjects.

First we show that the AIC has a consistency property under a large- (q, n) framework such that

$$
\begin{equation*}
p \text { and } k \text { are fixed, } q \rightarrow \infty, n \rightarrow \infty, q / n \rightarrow d \in[0,1) \tag{1.12}
\end{equation*}
$$

under a condition on the noncentrality matrix defined in Lemma 2.1. The fact might be interesting, since the AIC has no consistency property under a largesample framework (1.4) and a high-dimensional framework (1.10). Next we propose a modification of the AIC (denoted by MAIC) which is an asymptotic unbiased estimator of the risk under (1.12). Further, it is shown that MAIC has a consistency property under a condition on the noncentrality matrix. Our results are checked numerically by conducting a Mote Carlo simulation. Some future problems are discussed in the final section.

§2. Preliminaries

In this section we prepare some distributional results on the AIC itself and its bias as an estimator of the risk. For a detail derivation, see Fujikoshi, Enomoto and Sakurai [4]. Let

$$
\mathbf{H}_{1}^{(j)}=\left(\mathbf{X}_{j} \boldsymbol{\Sigma}_{0}^{-1 / 2}\right)^{\prime}\left(\mathbf{X}_{j} \boldsymbol{\Sigma}_{0}^{-1} \mathbf{X}_{j}^{\prime}\right)^{-1 / 2} ; p \times j, \quad j=1, \ldots, k
$$

and consider a $p \times p$ orthogonal matrix

$$
\mathbf{H}=\left(\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{k} ; *\right)
$$

satisfying $\boldsymbol{h}_{1} \in \mathcal{R}\left[\mathbf{H}_{1}^{(1)}\right],\left(\boldsymbol{h}_{1}, \boldsymbol{h}_{2}\right) \in \mathcal{R}\left[\mathbf{H}_{1}^{(2)}\right], \ldots,\left(\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{k}\right) \in \mathcal{R}\left[\mathbf{H}_{1}^{(k)}\right]$, and the remainder $p-k$ columns are any ones such that \mathbf{H} is an orthogonal matrix. We partition \mathbf{H} as

$$
\mathbf{H}=\left(\mathbf{H}_{1}^{(j)}, \mathbf{H}_{2}^{(j)}\right), \mathbf{H}_{1}^{(j)} ; p \times j, \quad j=1, \ldots, k
$$

Using the orthogonal matrix \mathbf{H}, we define the random matrices \mathbf{W} and \mathbf{B} as follows;

$$
\begin{align*}
& \mathbf{W}=\mathbf{H}^{\prime} \boldsymbol{\Sigma}_{0}^{-1 / 2}(n-q) \mathbf{S} \boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{H} \tag{2.1}\\
& \mathbf{B}=\mathbf{H}^{\prime}\left\{\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2} \mathbf{A}^{\prime} \mathbf{Y} \boldsymbol{\Sigma}_{0}^{-1 / 2}\right\}^{\prime}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1 / 2} \mathbf{A}^{\prime} \mathbf{Y} \boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{H} \tag{2.2}
\end{align*}
$$

Then \mathbf{W} and \mathbf{B} are independently distributed as $\mathrm{W}_{p}\left(n-q, \mathbf{I}_{p}\right)$ and $\mathrm{W}_{p}\left(q, \mathbf{I}_{p}\right.$; $\left.\boldsymbol{\Gamma}^{\prime} \boldsymbol{\Gamma}\right)$, where $\boldsymbol{\Gamma}=\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{1 / 2} \boldsymbol{\Theta}_{0} \mathbf{X}_{0} \boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{H}$. We use the following result which is obtained from (2.7) and (2.8) in Fujikoshi, Enomoto and Sakurai [4].

Lemma 2.1. Let \mathbf{W} and \mathbf{B} be the random matrices defined by (2.1) and (2.2), respectively. Then

$$
\begin{equation*}
\frac{|(n-q) \mathbf{S}|}{\left|n \hat{\boldsymbol{\Sigma}}_{j}\right|}=\frac{\left|\mathbf{W}_{(j)}\right|}{\left|\mathbf{W}_{(j)}+\mathbf{B}_{(j)}\right|}, \tag{2.3}
\end{equation*}
$$

where $\mathbf{W}_{(j)}$ and $\mathbf{B}_{(j)}$ are the last $(p-j) \times(p-j)$ submatrices of \mathbf{W} and \mathbf{B} by respectively, that is

$$
\mathbf{W}=\left(\begin{array}{cc}
* & * \\
* & \mathbf{W}_{(j)}
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}
* & * \\
* & \mathbf{B}_{(j)}
\end{array}\right) .
$$

Further

$$
\mathbf{W}_{(j)} \sim \mathrm{W}_{p-j}\left(n-q, \mathbf{I}_{p-j}\right), \quad \mathbf{B}_{(j)} \sim \mathrm{W}_{p-j}\left(q, \mathbf{I}_{p-j} ; \boldsymbol{\Omega}_{j}\right)
$$

where $\boldsymbol{\Omega}_{j}=\boldsymbol{\Gamma}_{j}^{\prime} \boldsymbol{\Gamma}_{j}$, and $\boldsymbol{\Gamma}_{j}=\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{1 / 2} \mathbf{\Theta}_{0} \mathbf{X}_{0} \boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{H}_{2}^{(j)}$.

The matrix $\boldsymbol{\Omega}_{j}$ is simply called a noncentrality matrix. As is well known, the AIC was proposed as an approximately unbiased estimator of the risk defined by the expected $-2 \times \log$-predictive likelihood. Let $f\left(\mathbf{Y} ; \boldsymbol{\Theta}_{j}, \boldsymbol{\Sigma}_{j}\right)$ be the density function of \mathbf{Y} under M_{j}. Then the expected $-2 \times \log$-predictive likelihood of M_{j} is defined by

$$
\begin{equation*}
R_{A}=\mathrm{E}_{\boldsymbol{\gamma}^{*}}^{*} \mathrm{E}_{\boldsymbol{\boldsymbol { Y }}_{F}}^{*}\left[-2 \log f\left(\mathbf{Y}_{F} ; \hat{\boldsymbol{\Theta}}_{j}, \hat{\boldsymbol{\Sigma}}_{j}\right)\right], \tag{2.4}
\end{equation*}
$$

where $\hat{\boldsymbol{\Sigma}}_{j}$ and $\hat{\boldsymbol{\Theta}}_{j}$ are the maximum likelihood estimators of $\boldsymbol{\Sigma}$ and $\boldsymbol{\Theta}$ under M_{j}, respectively. Here $\mathbf{Y}_{F} ; n \times p$ may be regarded as a future random matrix that has the same distribution as \mathbf{Y} and is independent of \mathbf{Y}, and E^{*} denotes the expectation with respect to the true model. The risk is expressed as

$$
\begin{equation*}
R_{A}=\mathrm{E}_{\mathbf{Y}^{*}}^{*} \mathrm{E}_{\mathbf{Y}_{F}}^{*}\left[-2 \log f\left(\mathbf{Y} ; \hat{\boldsymbol{\Theta}}_{j}, \hat{\boldsymbol{\Sigma}}_{j}\right)\right]+b_{A}, \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{A}=\mathrm{E}_{\mathbf{Y}}^{*} \mathrm{E}_{\boldsymbol{Y}_{F}}^{*}\left[-2 \log f\left(\mathbf{Y}_{F} ; \hat{\boldsymbol{\Theta}}_{j}, \hat{\boldsymbol{\Sigma}}_{j}\right)+2 \log f\left(\mathbf{Y} ; \hat{\boldsymbol{\Theta}}_{j}, \hat{\boldsymbol{\Sigma}}_{j}\right)\right] . \tag{2.6}
\end{equation*}
$$

The AIC and its modifications have been proposed by regarding b_{A} as the bias term when we estimate R_{A} by

$$
-2 \log f\left(\mathbf{Y} ; \hat{\boldsymbol{\Theta}}_{j}, \hat{\boldsymbol{\Sigma}}_{j}\right)=n \log \left|\hat{\boldsymbol{\Sigma}}_{j}\right|+n p(\log 2 \pi+1)
$$

and by evaluating the bias term b_{A}. The bias for M_{j} is expressed as in the following Lemma 2.2.

Lemma 2.2. Suppose that the true model is given by (1.11). Then, the bias b_{A} for model M_{j} in (2.5) or (2.6) is expressed in terms of $\mathbf{W}_{(j)}$ and $\mathbf{B}_{(j)}$ in Lemma 2.1 as follows:

$$
\begin{equation*}
b_{A}=b_{A 1}+b_{A 2}, \tag{2.7}
\end{equation*}
$$

where $b_{A 1}$ is given by (1.6) and

$$
\begin{equation*}
b_{A 2}=\mathrm{E}\left[n^{2} \operatorname{tr}\left(\mathbf{W}_{(j)}+\mathbf{B}_{(j)}\right)^{-1}\left(\mathbf{I}+\frac{1}{n} \boldsymbol{\Omega}_{j}\right)\right]-\frac{n^{2}(p-j)}{n-p+j-1} \tag{2.8}
\end{equation*}
$$

§3. Consistency of AIC

In this section we show that the asymptotic probability of selecting the true model by the AIC goes to 1 as the number q and the sample size n approaching to ∞ as in (1.12), under the several assumptions. We denote the AIC for M_{j} by AIC_{j}. The best model chosen by minimizing the AIC is written as

$$
\hat{j}_{\mathrm{A}}=\arg \min _{j=1, \ldots, k} \mathrm{AIC}_{j} .
$$

Our main assumptions are summarized as follows:
A1 (The true model M_{0}): $j_{0} \in\{1, \ldots, k\}$.
A2 (The asymptotic framework): $q \rightarrow \infty, n \rightarrow \infty, q / n \rightarrow d \in[0,1)$.
A3 (The noncentrality matrix): For $j<j_{0}$,

$$
\boldsymbol{\Omega}_{j}=n \boldsymbol{\Delta}_{j}=\mathrm{O}_{g}(n) \text { and } \lim _{q / n \rightarrow d} \boldsymbol{\Delta}_{j}=\boldsymbol{\Delta}_{j}^{*} .
$$

Here $\mathrm{O}_{g}\left(n^{i}\right)$ denotes the term of i-th order with respect to n under (1.12).
Theorem 3.1. Suppose that the assumptions A1, A2 and A3 are satisfied. Let $d_{\mathrm{a}}(\approx 0.797)$ be the constant satisfying $\log \left(1-d_{\mathrm{a}}\right)+2 d_{\mathrm{a}}=0$. Further, assume that $d \in\left[0, d_{\mathrm{a}}\right)$, and

A4: For any $j<j_{0}$,

$$
\log \left|\mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*}\right|>\left(j_{0}-j\right)\{2 d+\log (1-d)\} .
$$

Then, the asymptotic probability of selecting the true model j_{0} by the AIC tends to 1, i.e.

$$
\lim _{q / n \rightarrow d} P\left(\hat{j}_{\mathrm{A}}=j_{0}\right)=1
$$

Proof. Using Lemma 2.1 we have

$$
\begin{align*}
\mathrm{AIC}_{j}-\mathrm{AIC}_{j_{0}}= & -n \log \frac{|(n-q) \mathbf{S}|}{\left|n \hat{\boldsymbol{\Sigma}}_{j}\right|}-\left(-n \log \frac{|(n-q) \mathbf{S}|}{\mid n \hat{\boldsymbol{\Sigma}_{j_{0}} \mid}}\right)+2 q\left(j-j_{0}\right) \\
= & -n \log \frac{\left|\mathbf{W}_{(j)}\right|}{\left|\mathbf{W}_{(j)}+\mathbf{B}_{(j)}\right|}-\left\{-n \log \frac{\left|\mathbf{W}_{\left(j_{0}\right)}\right|}{\left|\mathbf{W}_{\left(j_{0}\right)}+\mathbf{B}_{\left(j_{0}\right)}\right|}\right\} \tag{3.1}\\
& +2 q\left(j-j_{0}\right)
\end{align*}
$$

Let $\mathbf{V}_{(j)}$ and $\mathbf{U}_{(j)}$ be defined by

$$
\begin{aligned}
& \mathbf{V}_{(j)}=\sqrt{n-q}\left(\frac{1}{n-q} \mathbf{W}_{(j)}-\mathbf{I}_{p-j}\right), \text { and } \\
& \mathbf{U}_{(j)}=\sqrt{q}\left(\frac{1}{q} \mathbf{B}_{(j)}-\mathbf{I}_{p-j}-\frac{n}{q} \boldsymbol{\Delta}_{j}\right)
\end{aligned}
$$

respectively. Then, $\mathbf{V}_{(j)}$ and $\mathbf{U}_{(j)}$ converge to normal distributions, and we have

$$
\begin{align*}
\frac{1}{n} \mathbf{W}_{(j)} & =\frac{n-q}{n} \cdot \frac{1}{n-q} \mathbf{W}_{(j)} \xrightarrow{p}(1-d) \mathbf{I}_{p-j} \tag{3.2}\\
\frac{1}{n} \mathbf{B}_{(j)} & =\frac{q}{n} \frac{1}{q} \mathbf{U}_{(j)} \xrightarrow{p} d\left(\mathbf{I}_{p-j}+\frac{1}{d} \boldsymbol{\Delta}_{j}^{*}\right)=d \mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*} \tag{3.3}
\end{align*}
$$

Therefore

$$
\begin{aligned}
-\log \frac{\left|\mathbf{W}_{(j)}\right|}{\left|\mathbf{W}_{(j)}+\mathbf{B}_{(j)}\right|} \stackrel{p}{\rightarrow} & -\log \frac{\left|(1-d) \mathbf{I}_{p-j}\right|}{\left|(1-d) \mathbf{I}_{p-j}+d \mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*}\right|} \\
& =\log \left|\mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*}\right|-(p-j) \log (1-d)
\end{aligned}
$$

Since $\boldsymbol{\Delta}_{j_{0}}^{*}=\mathbf{O}$, we have

$$
\frac{1}{n}\left(\mathrm{AIC}_{j}-\mathrm{AIC}_{j_{0}}\right) \xrightarrow{p} \log \left|\mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*}\right|+\left(j-j_{0}\right)\{2 d+\log (1-d)\}
$$

By the way it is easily checked that if $0<d<d_{a}, 2 d+\log (1-d)>0$. Therefore, for $j=j_{0}+1, \ldots, k$, we have

$$
\frac{1}{n}\left(\mathrm{AIC}_{j}-\mathrm{AIC}_{j_{0}}\right) \xrightarrow{p}\left(j-j_{0}\right)\{2 d+\log (1-d)\}>0
$$

Further, for $j=1, \ldots, j_{0}-1$, from A4 we have

$$
\frac{1}{n}\left(\mathrm{AIC}_{j}-\mathrm{AIC}_{j_{0}}\right) \xrightarrow{p} \log \left|\mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*}\right|-\left(j_{0}-j\right)\{2 d+\log (1-d)\}>0
$$

For the case $d=0$, we can prove by considering the limit of $(1 / q)\left(\mathrm{AIC}_{j}-\right.$ $\left.\mathrm{AIC}_{j_{0}}\right)$ in stead of $(1 / n)\left(\mathrm{AIC}_{j}-\mathrm{AIC}_{j_{0}}\right)$. These complete the proof.

§4. Modification of AIC

In this section we first obtain an asymptotic expansion of b_{A}, assuming A1, A2 and A3. Then, using the expansion we obtain an asymptotic unbiased estimator of b_{A}.

Note that $\mathbf{W}_{(j)}+\mathbf{B}_{(j)} \sim \mathrm{W}_{p-j}\left(n, \mathbf{I}_{p-j} ; \boldsymbol{\Omega}_{j}\right)$. Therefore, from an asymptotic result (see, e.g., Fujikoshi [2]) we have

$$
b_{A 2}=-\frac{n(p-j)(p-j+1)}{n-p+j-1}+2(p-j+1) \xi_{1}-\xi_{2}+\mathrm{O}_{g}\left(n^{-1}\right),
$$

where

$$
\begin{equation*}
\xi_{1}=\operatorname{tr}\left(\mathbf{I}_{p-j}+\frac{1}{n} \boldsymbol{\Omega}_{j}\right)^{-1}, \quad \xi_{2}=\xi_{1}^{2}+\operatorname{tr}\left(\mathbf{I}_{p-j}+\frac{1}{n} \boldsymbol{\Omega}_{j}\right)^{-2} \tag{4.1}
\end{equation*}
$$

In the special case $\boldsymbol{\Omega}_{j}=\mathbf{O}$, we can see that $b_{A 2}=0$ since $\mathrm{E}\left[\operatorname{tr}\left(\mathbf{W}_{(j)}+\mathbf{B}_{(j)}\right)^{-1}\right]=$ $(p-j) /(n-p+j-1)$. These results are summarized as follows:

$$
b_{A 2}= \begin{cases}0, & \boldsymbol{\Omega}_{j}=\mathbf{o} \\ -\frac{n(p-j)(p-j+1)}{n-p+j-1}+2(p-j+1) \xi_{1}-\xi_{2}+\mathrm{O}_{g}\left(n^{-1}\right), & \boldsymbol{\Omega}_{j} \neq \mathbf{o}\end{cases}
$$

Now we look for an estimator \hat{b}_{A} in the following form:

$$
\begin{equation*}
\hat{b}_{A}=b_{A 1}-\frac{n(p-j)(p-j+1)}{n-p+j-1}+2(p-j+1) \hat{\xi}_{1}-\hat{\xi}_{2} . \tag{4.2}
\end{equation*}
$$

We wish to determine $\hat{\xi}_{1}$ and $\hat{\xi}_{2}$ satisfying the following properties:
(1) When $\boldsymbol{\Omega}_{j}=\mathbf{0}, \mathrm{E}\left[\hat{b}_{A}\right]=b_{A}$.
(2) When $\boldsymbol{\Omega}_{j} \neq \mathbf{0}, \mathrm{E}\left[\hat{b}_{A}\right]=b_{A}+\mathrm{O}_{g}\left(n^{-1}\right)$.

It is known (see, e.g., Fujikoshi, Enomoto and Sakurai [4]) that

$$
\begin{aligned}
\operatorname{tr}\left(n \hat{\boldsymbol{\Sigma}}_{j}\right)^{-1}(n-q) \mathbf{S} & =j+\operatorname{tr} \mathbf{Q}_{j}, \\
\operatorname{tr}\left\{\left(n \hat{\boldsymbol{\Sigma}}_{j}\right)^{-1}(n-q) \mathbf{S}\right\}^{2} & =j+\operatorname{tr} \mathbf{Q}_{j}^{2},
\end{aligned}
$$

where $\mathbf{Q}_{j}=\mathbf{W}_{(j)}\left(\mathbf{W}_{(j)}+\mathbf{B}_{(j)}\right)^{-1}$. Using (3.2) and (3.3) we have

$$
\mathbf{Q}_{j} \xrightarrow{p}(1-d)\left(\mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*}\right)^{-1} .
$$

Based on these results, let us consider the estimators $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ defined by (1.8) and (1.9) as the native estimators. Then we can see that

$$
\begin{aligned}
& \tilde{\xi}_{1} \xrightarrow{p} \xi_{10}=\operatorname{tr}\left(\mathbf{I}+\boldsymbol{\Delta}_{j}^{*}\right)^{-1}, \\
& \tilde{\xi}_{2} \xrightarrow{p} \xi_{20}=\left\{\operatorname{tr}\left(\mathbf{I}+\boldsymbol{\Delta}_{j}^{*}\right)^{-1}\right\}^{2}+\operatorname{tr}\left(\mathbf{I}+\boldsymbol{\Delta}_{j}^{*}\right)^{-2}
\end{aligned}
$$

When $\boldsymbol{\Omega}_{j}=\mathbf{0}, \mathbf{Q}_{j}$ is distributed as a multivariate beta distribution $\mathrm{B}_{p-j}((n$ $-q) / 2, q / 2$) (see, e.g., Muirhead [6], Fujikoshi, Ulyanov and Shimizu [5]). Using the moment formulas (see, e.g., Fujikoshi and Satoh [3]) on \mathbf{Q}_{j} we have

$$
\begin{aligned}
\mathrm{E}_{0}\left[\tilde{\xi}_{1}\right] & =\left(\frac{n}{n-q}\right) \mathrm{E}_{0}\left[\operatorname{tr} \mathbf{Q}_{j}\right]=p-j, \\
\mathrm{E}_{0}\left[\tilde{\xi}_{2}\right] & =\left(\frac{n}{n-q}\right)^{2} \mathrm{E}_{0}\left[\left(\operatorname{tr} \mathbf{Q}_{j}\right)^{2}+\operatorname{tr} \mathbf{Q}_{j}^{2}\right] \\
& =\frac{n(p-j)}{3(n-q)}\left\{\frac{2(n-q+2)(p-j+2)}{n+2}+\frac{(n-q-1)(p-j-1)}{n-1}\right\} .
\end{aligned}
$$

Here \mathbf{E}_{0} means the expectation when $\boldsymbol{\Omega}_{j}=\mathbf{O}$. Now we modify $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ as

$$
\hat{\xi}_{1}=\tilde{\xi}_{1}, \text { and } \hat{\xi}_{2}=f \tilde{\xi}_{2},
$$

where f is a constant satisfying that $f=1+\mathrm{O}_{g}\left(n^{-1}\right)$. Our purpose is to determine f such that \hat{b}_{A} is an exact biased estimator of b_{A} when $\boldsymbol{\Omega}_{j}=\mathbf{0}$. This is equivalent to determine f such that

$$
2(p-j+1) \mathrm{E}_{0}\left[\tilde{\xi}_{1}\right]-f \mathrm{E}_{0}\left[\tilde{\xi}_{2}\right]=\frac{n(p-j)(p-j+1)}{n-p+j-1} .
$$

Therefore, the constant f may be determined as

$$
\begin{align*}
f= & \frac{1}{\mathrm{E}\left[\tilde{\xi}_{2}\right]}(p-j)(p-j+1)\left\{2-\frac{n}{n-p+j-1}\right\} \\
= & \frac{3(n-q)(p-j+1)(n-2 p+2 j-2)}{n(n-p+j-1)} \tag{4.3}\\
& \times\left\{\frac{2(n-q+2)(p-j+2)}{n+2}+\frac{(n-q-1)(p-j-1)}{n-1}\right\}^{-1},
\end{align*}
$$

which is $1+\mathrm{O}_{g}\left(n^{-1}\right)$. Consequently, as a modification of AIC we propose

$$
\begin{equation*}
\mathrm{MAIC}=n \log \left|\hat{\boldsymbol{\Sigma}}_{j}\right|+n p(\log 2 \pi+1)+\hat{b}_{A}, \tag{4.4}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{b}_{A} & =b_{A 1}+\hat{b}_{A 2} \\
& =b_{A 1}-\frac{n(p-j)(p-j+1)}{n-p+j-1}+2(p-j+1) \hat{\xi}_{1}-\hat{\xi}_{2} .
\end{aligned}
$$

Here $b_{A 1}$ is given by (1.6). The $\hat{\xi}_{1}$ and $\hat{\xi}_{2}$ are given by

$$
\begin{aligned}
& \hat{\xi}_{1}=\frac{n}{n-q}\left\{\operatorname{tr}\left(n \hat{\boldsymbol{\Sigma}}_{j}\right)^{-1}(n-q) \mathbf{S}-j\right\}, \\
& \hat{\xi}_{2}=f\left[\hat{\xi}_{1}^{2}+\left(\frac{n}{n-q}\right)^{2}\left[\operatorname{tr}\left\{\left(n \hat{\boldsymbol{\Sigma}}_{j}\right)^{-1}(n-q) \mathbf{S}\right\}^{2}-j\right]\right],
\end{aligned}
$$

where f is defined by (4.3).
From our results and Satoh, Kobayashi and Fujikoshi [9], the biases of AIC, $\mathrm{MAIC}_{\mathrm{LS}}$ and MAIC are summarized as in Table 1.

Table 1. Biases of AIC, MAIC ${ }_{L S}$ and MAIC

	AIC	$\mathrm{MAIC}_{\mathrm{LS}}$	MAIC
$\boldsymbol{\Omega}_{j}=\mathrm{O}(n)$ or $\boldsymbol{\Omega}_{j}=\mathrm{O}_{g}(n)$	$\mathrm{O}(1)$	$\mathrm{O}\left(n^{-1}\right)$	$\mathrm{O}_{g}\left(n^{-1}\right)$
$\boldsymbol{\Omega}_{j}=\mathbf{0}$	$\mathrm{O}\left(n^{-1}\right)$	$\mathrm{O}\left(n^{-2}\right)$	0

Here $\mathrm{O}\left(n^{i}\right)$ denotes the term of i-th order with respect to n under (1.4).

§5. Consistency of MAIC

In this section we examine a consistency property of MAIC proposed by (4.4). We denote the MAIC for M_{j} by MAIC_{j}. The best model chosen by minimizing the AIC is written as

$$
\hat{j}_{\mathrm{MA}}=\arg \min _{j=1, \ldots, k} \mathrm{MAIC}_{j} .
$$

Further, we denote b_{A} and \hat{b}_{A} for model M_{j} by $b_{A ; j}$ and $\hat{b}_{A ; j}$, respectively. Similar notations are used for $\hat{\xi}_{1}, \hat{\xi}_{2}, \xi_{10}, \xi_{20}$, etc. Then we have seen in Section 4 that

$$
\hat{\xi}_{1 ; j} \xrightarrow{p} \xi_{10 ; j}, \quad \hat{\xi}_{2 ; j} \xrightarrow{p} \xi_{20 ; j} .
$$

Therefore, it is easily seen that

$$
\frac{1}{n} \hat{b}_{A ; j}=\frac{2 q}{n-q} j+\mathrm{O}_{g}\left(n^{-1}\right) .
$$

This implies that

$$
\frac{1}{n}\left(\hat{b}_{A ; j}-\hat{b}_{A ; j_{0}}\right) \xrightarrow{p} \frac{2 d}{1-d}\left(j-j_{0}\right) .
$$

Using asymptotic results on AIC in Section 3 we have

$$
\begin{align*}
\frac{1}{n}\left(\operatorname{MAIC}_{j}-\operatorname{MAIC}_{j_{0}}\right) \xrightarrow{p} & \log \left|\mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*}\right| \\
& +\left(j-j_{0}\right)\left\{\frac{2 d}{1-d}+\log (1-d)\right\} \tag{5.1}
\end{align*}
$$

Note that $f(d)=2 d(1-d)^{-1}+\log (1-d)$ is positive for $0<d<1$. In fact, put $f(x)=2 x(1-x)^{-1}+\log (1-x)$ for $0<x<1$. Then $\lim _{x \rightarrow+0} f(x)=0$, and $f^{\prime}(x)=(1+x)(1-x)^{-2}>0$. This implies $f(d)>0$ for $0<d<1$. Using (5.1), we have a Theorem similar to Theorem 3.1.

Theorem 5.2. Suppose that the assumptions A1, A2 and A3 in Theorem 3.1 are satisfied. Further, suppose that

A5: For any $j<j_{0}$,

$$
\log \left|\mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*}\right|>\left(j_{0}-j\right)\left\{\frac{2 d}{1-d}+\log (1-d)\right\}
$$

Then, the asymptotic probability of selecting the true model j_{0} by the MAIC tends to 1, i.e.

$$
\lim _{q / n \rightarrow d} P\left(\hat{j}_{\mathrm{MA}}=j_{0}\right)=1
$$

For Theorem 5.2, the assumption $d \in\left[0, d_{a}\right)$ in Theorem 3.1 is not necessary. However, Assumption A5 is required instead of Assumption A4.

§6. Simulation study

In this section, we numerically examine the validity of our claims. The five candidate models M_{1}, \ldots, M_{5}, with several different values of n and $q=d n$, were considered for Monte Carlo simulations, where $p=5, n=50,100,200$, $n_{1}=\cdots=n_{q}=n / q$ and $d=0.1,0.2$. We constructed a 5×5 matrix \mathbf{X} of explanatory variables with $t_{i}=1+(i-1)(p-1)^{-1}$. The true model was determined by $\boldsymbol{\Theta}_{0}=\mathbf{1}_{q} \mathbf{1}_{2}^{\prime}$ and $\boldsymbol{\Sigma}_{0}$ whose (i, j) th element was defined by $\rho^{|i-j|}$, where $\rho=0.2,0.8$. Thus, M_{2} was the true model, the true model were included in M_{3}, M_{4}, M_{5}, the true model was not included in M_{1}. Therefore, $\boldsymbol{\Omega}_{j}=\mathbf{O}$ when $M_{2}, M_{3}, M_{4}, M_{5}$ and $\boldsymbol{\Omega}_{j} \neq \mathbf{O}$ when M_{1}.

In the above simulation model, we shall check whether the assumptions A3, A4 and A5 are satisfied. The noncentrality matrix $\boldsymbol{\Omega}{ }_{j}$ defined by Lemma 2.1 is expressed as

$$
\left.\begin{array}{rl}
\boldsymbol{\Omega}_{j} & =\mathbf{H}_{2}^{(j)^{\prime}} \boldsymbol{\Sigma}_{0}^{-1 / 2^{\prime}} \mathbf{X}_{0}^{\prime} \mathbf{\Theta}_{0}^{\prime} \mathbf{A}^{\prime} \mathbf{A} \boldsymbol{\Theta}_{0} \mathbf{X}_{0} \boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{H}_{2}^{(j)} \\
& =\mathbf{H}_{2}^{(j)^{\prime}} \boldsymbol{\Sigma}_{0}^{-1 / 2^{\prime}} \mathbf{X}_{0}^{\prime} \mathbf{1}_{2} \mathbf{1}_{q}^{\prime}\left(\begin{array}{cccc}
n_{1} & 0 & \cdots & 0 \\
0 & n_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & n_{q}
\end{array}\right) \mathbf{1}_{q} \mathbf{1}_{2}^{\prime} \mathbf{X}_{0} \boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{H}_{2}^{(j)} \\
& =\mathbf{H}_{2}^{(j)^{\prime}} \boldsymbol{\Sigma}_{0}^{-1 / 2^{\prime}} \mathbf{X}_{0}^{\prime}\left(\begin{array}{c}
n \\
n \\
n
\end{array}\right. \\
n
\end{array}\right) \mathbf{X}_{0} \boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{H}_{2}^{(j)} .
$$

Further, $\mathbf{X}_{0}, \boldsymbol{\Sigma}_{0}^{-1 / 2}$ and $\mathbf{H}_{2}^{(j)}$ do not depend on n and q. Therefore, $\boldsymbol{\Omega}_{j}=$ $\mathrm{O}_{q}(n)$. Moreover, the convergent values in A 4 and A 5 for consistency are calculated as follows:

ρ	d	$\log \left\|\mathbf{I}_{p-j}+\boldsymbol{\Delta}_{j}^{*}\right\|$	$2 d+\log (1-d)$	$2 d /(1-d)+\log (1-d)$
0.2	0.1	0.440	0.095	0.117
	0.2	0.440	0.177	0.277
0.8	0.1	0.614	0.095	0.117
	0.2	0.614	0.177	0.277

First, we studied performances of AIC and MAIC as estimators of the AIC-type risk R_{A}. For each of M_{1}, \ldots, M_{5}, we computed the averages of R_{A}, AIC and MAIC by Monte Carlo simulations with 10^{4} replications. Table 2 shows the risk R_{A} and the biases of AIC and MAIC to R_{A}, defined by " R_{A} - (the expectation of the information criterion)". In Table $2, j$ means the model M_{j} and the bold face denotes the true model. From Table 2, we can see that the biases of MAIC were smaller than the ones of AIC. In general, there is a tendency that the biases become large as q increases. But the tendency of MAIC is very small in the comparison with AIC. Further, AIC has a tendency of underestimating the risk.

Table 2. Risks and biases of AIC and MAIC

$\rho=0.2$	R_{A}	AIC	MAIC	R_{A}	AIC	MAIC	R_{A}	AIC	MAIC
$d=0.1$	$(n, q)=(50,5)$			$(n, q)=(100,10)$			$(n, q)=(200,20)$		
${ }^{j}$	751.84	10.11	0.94	1477.63	7.38	-0.36	2935.55	8.96	0.14
	738.90	15.05	0.66	1448.24	13.03	-0.51	2873.64	16.54	-0.07
	746.98	18.77	0.78	1461.70	17.35	-0.72	2898.93	23.26	-0.02
	754.20	21.54	0.84	1474.74	21.10	-0.70	2923.63	29.28	0.09
	760.72	23.48	0.91	1487.13	24.18	-0.58	2947.58	34.33	-0.04
$d=0.2$	$(n, q)=(50,10)$			$(n, q)=(100,20)$			$(n, q)=(200,40)$		
${ }^{j}$	765.45	20.26	0.32	1499.82	22.63	1.20	2971.86	29.87	-0.03
	764.77	33.97	-0.25	1490.22	40.45	0.82	2945.65	57.18	-0.43
	784.01	45.16	-0.24	1523.03	56.44	1.13	3005.79	82.85	-0.22
	801.12	53.92	-0.40	1553.92	70.14	1.13	3064.21	106.39	-0.28
	816.56	60.78	-0.39	1583.22	81.95	1.14	3121.08	128.14	-0.30
$\rho=0.8$	R_{A}	AIC	MAIC	R_{A}	AIC	MAIC	R_{A}	AIC	MAIC
$d=0.1$	$(n, q)=(50,5)$			$(n, q)=(100,10)$			$(n, q)=(200,20)$		
j 4 	563.77	9.18	0.25	1103.82	8.53	1.00	2185.42	9.25	0.61
	542.07	14.10	-0.28	1057.17	14.36	0.82	2088.67	16.80	0.19
	549.96	17.59	-0.40	1070.82	18.87	0.79	2113.99	23.48	0.20
	557.31	20.50	-0.20	1083.64	22.41	0.61	2138.59	29.30	0.10
	563.88	22.51	-0.06	1095.99	25.36	0.60	2162.47	34.32	-0.04
$d=0.2$	$(n, q)=(50,10)$			$(n, q)=(100,20)$			$(n, q)=(200,40)$		
j	578.14	20.37	0.68	1124.34	21.27	0.04	2221.89	29.57	-0.14
	569.38	34.81	0.58	1097.56	39.38	-0.25	2161.18	57.53	-0.08
	588.43	45.75	0.35	1130.35	55.23	-0.07	2221.19	82.78	-0.29
	605.49	54.46	0.14	1161.15	68.91	-0.09	2279.43	106.20	-0.46
	621.25	61.68	0.51	1190.20	80.49	-0.32	2336.38	128.15	-0.29

Table 3 gives the selection probabilities of AIC and MAIC based on the simulation experiment. When q increases, the probabilities of selecting the true model by AIC and MAIC are near to 1 . Further, we can see that when (n, q) is relatively small and $d=0.2$, MAIC has a tendency of selecting underspecified
models, but such tenancy is not seen for AIC.
Table 3. Selection probabilities (\%) of AIC and MAIC

$\rho=0.2$	AIC	MAIC	AIC	MAIC	AIC	MAIC
$d=0.1$	$(n, q)=(50,5)$		$(n, q)=(100,10)$		$(n, q)=(200,20)$	
1 $\mathbf{2}$ j 3 4 5	0.6	5.3	0.1	0.3	0.0	0.0
	84.6	90.8	94.7	98.5	98.8	99.9
	10.5	3.4	4.4	1.1	1.1	0.1
	3.3	0.5	0.7	0.1	0.0	0.0
	1.1	0.1	0.1	0.0	0.0	0.0
$d=0.2$	$(n, q)=(50,10)$		$(n, q)=(100,20)$		$(n, q)=(200,40)$	
1	5.2	52.1	1.1	24.4	0.1	7.2
2	86.0	47.7	96.5	75.6	99.7	92.8
$j 3$	7.0	0.2	2.2	0.0	0.2	0.0
4	1.4	0.0	0.1	0.0	0.0	0.0
5	0.4	0.0	0.0	0.0	0.0	0.0
$\rho=0.8$	AIC	MAIC	AIC	MAIC	AIC	MAIC
$d=0.1$	$(n, q)=(50,5)$		$(n, q)=(100,10)$		$(n, q)=(200,20)$	
j	0.0	0.4	0.0	0.0	0.0	0.0
	86.2	96.1	94.8	98.8	98.9	99.9
	9.8	2.9	4.7	1.2	1.1	0.2
	2.9	0.5	0.5	0.0	0.0	0.0
	1.1	0.2	0.1	0.0	0.0	0.0
$d=0.2$	$(n, q)=(50,10)$		$(n, q)=(100,20)$		$(n, q)=(200,40)$	
j 3 4 	0.5	19.9	0.0	2.2	0.0	0.0
	90.4	79.9	97.5	97.8	99.7	100.0
	7.4	0.2	2.3	0.0	0.3	0.0
	1.4	0.0	0.2	0.0	0.0	0.0
	0.3	0.0	0.0	0.0	0.0	0.0

§7. Concluding remarks

This paper discusses with the AIC and its modification for selecting the degrees in the growth curve model (1.1) under a large- (q, n) framework (1.12). It was shown that the AIC has a consistency property under the assumptions A1, $\mathrm{A} 2, \mathrm{~A} 3, \mathrm{~A} 4$ and $d \in\left[0, d_{a}\right)$, where d_{a} is the solution of $\log (1-d)+2 d=0$ and d_{a} is approximately 0.797 . Next we proposed a modified AIC (denoted by MAIC), which is a higher-order asymptotic unbiased estimator of the risk of AIC. Further, it was shown that MAIC has a consistency property under A1, A2, A3 and A5 without the assumption of $d \in\left[0, d_{a}\right)$.

It is interesting to study similar properties of C_{p} and MC_{p} which were proposed by Satoh, Kobayashi and Fujikoshi [9]. For the noncentrality matrix
$\boldsymbol{\Omega}_{j}$, we assumed that $\boldsymbol{\Omega}_{j}=\mathrm{O}(n)$. It is also important to study asymptotic properties of AIC, MAIC, C_{p} and MC_{p} under $\boldsymbol{\Omega}_{j}=\mathrm{O}_{g}(n q)$. The works of these directions are ongoing.

In the traditional growth curve model it is assumed that the dimension p is small or moderate. However, it is also important to analysis the data such that p is large. This suggests to study asymptotic properties of AIC and C_{p} under a high-dimensional framework such that

$$
\begin{equation*}
p \rightarrow \infty, q \rightarrow \infty, n \rightarrow \infty, p / n \rightarrow c \in[0,1), q / n \rightarrow d \in[0,1) \tag{7.1}
\end{equation*}
$$

Modifications of AIC and C_{p} and their properties should be also studied. These works are left as a future subject.

Acknowledgement

The authors would like to thank a referee for valuable comments and critical reading. The first author's research was in part supported by Grant-in-Aid for Research Activity Start-up 25880017. The third author's research was in part supported by Grant-in-Aid for Scientific Research (C) 25330038.

References

[1] H. Akaike, Information theory and an extension of the maximum likelihood principle, In 2nd. International Symposium on Information Theory (eds. B. N. Petrov and F. Csáki), 267-281, Akadémiai Kiadó, Budapest, 1973.
[2] Y. Fujikoshi, Selection of variables in discriminant analysis and canonical correlation analysis, In Multivariate Analysis-VI, Ed. P.R. Krishnaian, 219236, Elsevier Science Publishers B.V., 1985.
[3] Y. Fujikoshi and K. Satoh, Modified AIC and C_{p} in multivariate linear regression, Biometrika 84 (1997), 707-716.
[4] Y. Fujikoshi, R. Enomoto and T. Sakurai, High-dimensional AIC in the growth curve model, J. Multivariate Anal. 122 (2013), 239-250.
[5] Y. Fujikoshi, V. V. Ulyanov and R. Shimizu, Multivariate Statistics: HighDimensional and Large-Sample Approximations, John Wiley \& Sons, Hoboken, N. J., 2010.
[6] R. J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley \& Sons, N. Y., 1982.
[7] R. F. Potthoff and S. N. Roy, A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika 51 (1964), 313326.
[8] K. Satoh and H. Yanagihara, Estimation of varying coefficients for a growth curve model, Amer. J. Math. Management Sci. 30 (2010), 243-256.
[9] K. Satoh, M. Kobayashi and Y. Fujikoshi, Variable selection for the growth curve model, J. Multivariate Anal. 60 (1997), 277-292.

Rie Enomoto
Department of Mathematical Information Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
E-mail: j1410701@yahoo.co.jp
Tetsuro Sakurai
Center of General Education, Tokyo University of Science, Suwa
5000-1 Toyohira, Chino, Nagano 391-0292, Japan
Yasunori Fujikoshi
Department of Mathematics, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8626, Japan

