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Abstract. A graph G is said to have totally magic cordial(TMC) labeling
with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that
f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0)− nf (1)| ≤ 1,
where nf (i)(i = 0, 1) is the sum of the number of vertices and edges with label
i. In this paper, we investigate some new families of graphs that admit totally
magic cordial labeling.
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§1. Introduction

All graphs considered here are finite, simple and undirected. We follow the
basic notations and terminologies of graph theory as in Harary [5]. A graph
labeling is an assignment of integers to the vertices or edges or both, subject
to certain conditions. A detailed survey of graph labeling is available in [4].
The concept of cordial labeling was introduced by Cahit [1] and he proved
that every tree is cordial, Kn is cordial if n ≤ 3, Km,n is cordial for all m and

n, the friendship graph C
(t)
3 is cordial if and only if t ̸≡ 2 (mod 4), all fans are

cordial and the wheel graph Wn is cordial if and only if n ̸≡ 3 (mod 4). In [2]
he proved that a k-angular cactus with t cycles is cordial if and only if kt ̸≡ 2
(mod 4). Further results on cordial labelings were discussed in [6, 7, 8, 9].

Based on cordial labeling Cahit [3] introduced another two well known
graph labelings namely totally magic cordial labeling (TMC) and total se-
quential cordial labeling (TSC). In this paper, we show that the graph G is
TMC if and only if G is TSC, a graph with number of vertices and number of
edges differ by atmost 1 is TMC and also investigate that the TMC labelings
of some families of graphs. In Theorem 10 [3], Cahit proved that the complete
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graph Kn is TMC if and only if n ∈ {2, 3, 5, 6}. This observation is not correct.
We rectify this error in Theorem 2.11.

We use the following definitions in the subsequent section:

Definition 1.1. A graph G is said to have totally magic cordial(TMC) labeling
with constant C if there exists a mapping f : V (G)∪E(G) → {0, 1} such that
f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0)− nf (1)| ≤ 1,
where nf (i)(i = 0, 1) is the sum of the number of vertices and edges with label
i.

Definition 1.2. A graph G is said to have total sequential cordial(TSC) la-
beling if there is a total mapping f : V (G)∪E(G) → {0, 1} such that for each
edge e = {a, b}, f(e) = |f(a)− f(b)| and the condition |nf (0)− nf (1)| ≤ 1
holds.

Definition 1.3. A wheel graph Wn is obtained from a cycle Cn by adding a
new vertex and joining it to all the vertices of the cycle by an edge, then the
new edges are called spokes of the wheel.

Definition 1.4. Flower graph Fln(n ≥ 3) is constructed from a wheel Wn

by attaching a pendant edge at each vertex of the n-cycle and by joining each
pendant vertex to the central vertex.

Definition 1.5. Ladder graph Ln(n ≥ 2) is a product graph P2 × Pn with 2n
vertices and 3n− 2 edges.

Definition 1.6. An (n, t)-kite graph is a cycle Cn with a t-edge path (the tail)
attached to one vertex.

Definition 1.7. An n-sun graph is a cycle Cn with a pendant edge attached
to each vertex of a cycle Cn.

Definition 1.8. A friendship graph Tn(n ≥ 2) is the one-point union of t
cycles of length n.

§2. Main Results

Theorem 2.1. If G is a (p, q) graph with |p− q| ≤ 1 then G is TMC.

Proof. If we assign 0 to all the edges of G and 1 to all the vertices of G then
we get C = 0. If we assign 1 to all the edges of G and 0 to all the vertices of
G then we get C = 1. In either case, |nf (0)− nf (1)| = |p− q| ≤ 1. Clearly, G
is TMC.

Corollary 2.2. All trees, cycles (n ≥ 3), unicyclic graphs, (n, t)-kite graphs
(n ≥ 3) and n-sun graphs (n ≥ 3) are TMC.
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Theorem 2.3. A graph G is TMC if and only if G is TSC.

Proof. A mapping f : V (G)∪E(G) → {0, 1} is a TMC labeling with constant
0 if and only if f is a TSC labeling, and f is a TMC labeling with constant 1
if and only if f̄ is a TSC labeling, where f̄ is defined by f̄(x) = 1− f(x), for
all x ∈ V (G) ∪ E(G). Hence a graph G has a TMC labeling if and only if G
has a TSC labeling.

Cahit [3] proved that every cordial graph is TSC and the friendship graph
Tn is TMC for all n ≥ 2. Hence, we obtain the following results:

Corollary 2.4. Every cordial graph is TMC.

Corollary 2.5. The friendship graph Tn is TMC for all n ≥ 2.

Lemma 2.6. The flower graph Fln is TMC for n ≥ 3.

Proof. Let V = {u, ui, vi|1 ≤ i ≤ n} be the vertex set and
E = {uui, uivi, uvi|1 ≤ i ≤ n} ∪ {uiui+1|1 ≤ i ≤ n− 1} ∪ {unu1} be the edge
set for n ≥ 3. Clearly, |V | = 2n+ 1 and |E| = 4n. Define f : V ∪ E → {0, 1}
as follows: f(u) = 0, f(ui) = 0, f(vi) = 1, f(uui) = 1, f(uivi) = 0 and
f(uvi) = 0 for 0 ≤ i ≤ n and f(uiui+1) = f(unu1) = 1 for 0 ≤ i < n. Clearly,
f(a)+ f(b)+ f(ab) ≡ 1 (mod 2) for all ab ∈ E. Also, nf (0) = nf (1) = 3n+1.
Thus, |nf (0)− nf (1)| ≤ 1. Hence, Fln is TMC for n ≥ 3.

Lemma 2.7. The ladder graph Ln is TMC for all n ≥ 2.

Proof. Let the vertex set be V = {ui, vi|1 ≤ i ≤ n} and the edge set be
E = {uivi|1 ≤ i ≤ n} ∪ {uiui+1, vivi+1|1 ≤ i < n}. Clearly, |V | = 2n and
|E| = 3n − 2. Define f : V ∪ E → { 0, 1} as follows: f(ui) = 0 for i =
1, 2, ..., n and f(uiui+1) = 1 for i = 1, 2, ..., n − 1. f(vi) = f(vi+1) = 0,
f(uivi) = f(ui+1vi+1) = 1 for i ≡ 1 (mod 4), f(vi) = f(vi+1) = 1, f(uivi) =
f(ui+1vi+1) = 0 for i ≡ 3 (mod 4) and

f(vivi+1) =

{
1 if i is odd,
0 if i is even.

Clearly, C = 1 and nf (0) = nf (1) + 1 = 5n−1
2 if n is odd and nf (0) = nf (1) =

5n−2
2 if n is even. Hence, the ladder graph Ln is TMC for all n ≥ 2.

Lemma 2.8. If G is a graph obtained by identifying a vertex of the cycle
Cm(m ≥ 3) with each vertex of the cycle Cn(n ≥ 3) then G is TMC.

Proof. Let V (G) =
{
uji |1 ≤ i ≤ m, 1 ≤ j ≤ n

}
and

E(G) =
{
ujiu

j
i+1|1 ≤ i ≤ m− 1, 1 ≤ j ≤ n

}
∪
{
ujmuj1|1 ≤ j ≤ n

}
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∪
{
uj1u

j+1
1 |1 ≤ j ≤ n− 1

}
∪
{
un1u

1
1

}
. Clearly, |V (G)| = mn and |E(G)| =

mn+ n. Define f : V (G) ∪ E(G) → { 0, 1} as follows: For j = 1, 2, ..., n,

f(uj2) =

{
0 if j is odd,
1 if j is even

and f(uji ) = 0 for i ̸= 2 and i = 1, 3, ...,m.

f(uj1u
j
2) = f(uj2u

j
3) =

{
1 if j is odd,
0 if j is even.

For i = 3, 4, ...,m, f(ujiu
j
i+1) = 1 and for j = 1, 2, ..., n − 1, f(uj1u

j+1
1 ) =

f(un1u
1
1) = 1. Clearly, C = 1 and

nf (1) =

{
nf (0) + 1 if j is odd,
nf (0) if j is even.

Hence, G is TMC.

Theorem 2.9. If G1(p1, q1) and G2(p2, q2) are two disjoint TMC graphs and
p1 = q1 or p2 = q2 then G1 ∪G2 is also TMC.

Proof. Let f and g be TMC labeling of G1 and G2 respectively with the same
constant C. Without loss of generality, we assume that p1 = q1. Then nf (0) =
nf (1). Define h : V (G1 ∪G2)∪E(G1 ∪G2) → {0, 1} by h/V (G1)∪E(G1) = f
and h/V (G2) ∪ E(G2) = g. Now nh(0) = nf (0) + ng(0) = nh(1) if ng(0) =
ng(1). Similarly, nh(0) = nh(1)+1 if ng(0) = ng(1)+1 and nh(1) = nh(0)+1
if ng(1) = ng(0)+1. Thus, h is a TMC labeling of G1∪G2 and hence, G1∪G2

is TMC.

Corollary 2.10. The disjoint union of cycle with the TMC graph G is TMC.

Theorem 2.11. The complete graph Kn is TMC if and only if
√
4k + 1 has an integer value when n = 4k,√
k + 1 or

√
k has an integer value when n = 4k + 1,√

4k + 5 or
√
4k + 1 has an integer value when n = 4k + 2,√

k + 1 has an integer value when n = 4k + 3.

Proof. Assume that f is a TMC labeling of Kn. Without loss of generality,
we assume that C = 1. Then for any edge e = uv ∈ E(Kn), we have either
f(e) = f(u) = f(v) = 1 or f(e) = f(u) = 0 and f(v) = 1 or f(e) = f(v) = 0
and f(u) = 1 or f(u) = f(v) = 0 and f(e) = 1. Hence, under the labeling f ,
the complete graph can be decomposed as Kn = Kp ∪ Kr ∪ Kp,r, where Kp

is the subgraph whose vertices and edges are labeled with 1, Kr is the sub
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graph whose vertices labeled with 0 and its edges labeled with 1 and Kp,r is
the subgraph of Kn with the bipartition V (Kp)∪V (Kr) in which the edges are

labeled with 0. Thus, we have nf (0) = r+ pr and nf (1) = p+ p(p−1)
2 + r(r−1)

2 .
Also, for any TMC labeling f of Kn we must have the following:
(i) nf (0) = nf (1) if n ≡ 0, 3 (mod 4).
(ii) nf (1) = nf (0) + 1 or nf (0) = nf (1) + 1 if n ≡ 1, 2 (mod 4).
Case i. n ≡ 0, 3 (mod 4), n > 2.
Then nf (0) = nf (1), which implies p2+p(1−2r)+r2−3r = 0. Since p = n−r,
we have 4r2− 4r(n+1)+n2+n = 0. Hence, r = 1

2

[
(n+ 1)±

√
n+ 1

]
. Since

r is the order of subgraph Kr, it can be seen that K4k, k ≥ 1, is TMC only
if
√
4k + 1 has an integer value and K4k+3, k ≥ 0, is TMC only if

√
k + 1 has

an integer value.
Case ii. n ≡ 1, 2 (mod 4), n > 2.
Then, nf (1) = nf (0) + 1 or nf (0) = nf (1) + 1.
If nf (1) = nf (0) + 1, p2 + p(1 − 2r) + r2 − 3r − 2 = 0. Since p = n − r,
4r2− 4r(n+1)+n2+n− 2 = 0. Hence, r = 1

2

[
(n+ 1)±

√
n+ 3

]
. For k ≥ 1,

K4k+1 is TMC only if
√
k + 1 has an integer value and for k ≥ 1, K4k+2 is

TMC only if
√
4k + 5 has an integer value.

Again, if nf (0) = nf (1)+1, p2+p(1−2r)+r2−3r+2 = 0. Since p = n−r,
4r2− 4r(n+1)+n2+n+2 = 0. Hence, r = 1

2

[
(n+ 1)±

√
n− 1

]
. For k ≥ 1,

K4k+1 is TMC only if
√
k has an integer value and for k ≥ 1, K4k+2 is TMC

only if
√
4k + 1 has an integer value.

Thus, the complete graph Kn is TMC if and only if
√
4k + 1 has an integer value when n = 4k,√
k + 1 or

√
k has an integer value when n = 4k + 1,√

4k + 5 or
√
4k + 1 has an integer value when n = 4k + 2,√

k + 1 has an integer value when n = 4k + 3.
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