# Decomposition of symmetric multivariate density function 

Kiyotaka Iki, Kouji Tahata and Sadao Tomizawa

(Received July 27, 2012; Revised October 29, 2012)


#### Abstract

For a $T$-variate density function, the present article defines the quasi-symmetry of order $k(<T)$ and the marginal symmetry of order $k$, and gives the theorem that the density function is $T$-variate permutation symmetric if and only if it is quasi-symmetric and marginal symmetric of order $k$. The theorem is illustrated for the multivariate normal density function.


AMS 2010 Mathematics Subject Classification. 62H17.
Key words and phrases. Decomposition, marginal symmetry, normal distribution, odds-ratio, permutation symmetry, quasi-symmetry.

## §1. Introduction

For analysis of square contingency tables, it is known that the symmetry model holds if and only if both the quasi-symmetry and marginal homogeneity models hold (for example, see Caussinus [3], Tomizawa and Tahata [6]). For multi-way contingency tables, Bhapkar and Darroch [1] defined the complete symmetry, quasi-symmetry and marginal symmetry models, and showed that the complete symmetry model holds if and only if both the quasi-symmetry and marginal symmetry models hold.

By the way, a similar decomposition for bivariate density function (instead of cell probabilities) is given by Tomizawa, Seo and Minaguchi [5]. Let $X$ and $Y$ be two continuous random variables with a density function $f(x, y)$. The density function $f(x, y)$ is said to be symmetric if we have

$$
f(x, y)=f(y, x) \quad \text { for every }(x, y) \in \mathbf{R}^{2} ;
$$

see Tong [7]. Tomizawa, et al. [5] defined quasi-symmetry and marginal homogeneity for the density function, and gave the theorem that the density
function $f(x, y)$ is symmetric if and only if it is both quasi-symmetric and marginal homogeneous.

Let the support of $f(x, y)$ denote $K^{2}$, where

$$
K^{2}=\{(x, y): f(x, y)>0\} .
$$

We assume that the support of $f(x, y)$ is an open connected set in $\mathbf{R}^{2}$. Also, let $\theta\left(s_{1}, s_{2} ; t_{1}, t_{2}\right)$ be the odds-ratio for $X$-values $s_{1}, s_{2}$ and $Y$-values $t_{1}, t_{2}$; namely,

$$
\theta\left(s_{1}, s_{2} ; t_{1}, t_{2}\right)=\frac{f\left(s_{1}, t_{1}\right) f\left(s_{2}, t_{2}\right)}{f\left(s_{2}, t_{1}\right) f\left(s_{1}, t_{2}\right)} .
$$

Then the density function $f(x, y)$ is said to be quasi-symmetric if we have

$$
\theta\left(s_{1}, s_{2} ; t_{1}, t_{2}\right)=\theta\left(t_{1}, t_{2} ; s_{1}, s_{2}\right)
$$

for any $\left(s_{i}, t_{j}\right) \in K^{2}$. Thus this indicates that the density function is symmetric with respect to the odds-ratio. The density function $f(x, y)$ is said to be marginal homogeneous if we have

$$
f_{X}(t)=f_{Y}(t) \quad \text { for every } t \in \mathbf{R},
$$

where $f_{X}(t)$ and $f_{Y}(t)$ are the marginal density functions of $X$ and $Y$, respectively. Now, we are interested in extending the decomposition of the symmetric density function in multivariate case.

In this article, we define the quasi-symmetry and marginal symmetry for multivariate density function, and decompose the symmetry into quasi-symmetry and marginal symmetry. Section 2 provides the decomposition for trivariate density function. Section 3 extends the decomposition to multivariate density function. Section 4 illustrates our decompositions for normal distributions. Section 5 describes some comments.

## §2. Decomposition of trivariate density function

Let $X_{1}, X_{2}$ and $X_{3}$ be three continuous random variables with a density function $f\left(x_{1}, x_{2}, x_{3}\right)$. The density function $f\left(x_{1}, x_{2}, x_{3}\right)$ is said to be permutation symmetric $\left(S^{3}\right)$ if for each permutation $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ of $(1,2,3)$ and every $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}$, we have

$$
f\left(x_{\pi_{1}}, x_{\pi_{2}}, x_{\pi_{3}}\right)=f\left(x_{1}, x_{2}, x_{3}\right) ;
$$

see Tong [7], and Fang, Kotz and Ng [4].

Let $f_{X_{1}}\left(x_{1}\right), f_{X_{2}}\left(x_{2}\right)$ and $f_{X_{3}}\left(x_{3}\right)$ be the marginal density functions of $X_{1}, X_{2}$ and $X_{3}$, respectively. For the density function $f\left(x_{1}, x_{2}, x_{3}\right)$, we shall define marginal symmetry of order 1 (denoted by $M_{1}^{3}$ ) by

$$
M_{1}^{3}: f_{X_{1}}(t)=f_{X_{2}}(t)=f_{X_{3}}(t) \quad \text { for every } t \in \mathbf{R} .
$$

Also, we define marginal symmetry of order 2 (denoted by $M_{2}^{3}$ ) by
$M_{2}^{3}: f_{X_{1} X_{2}}(s, t)=f_{X_{1} X_{2}}(t, s)=f_{X_{1} X_{3}}(s, t)=f_{X_{2} X_{3}}(s, t)$ for every $(s, t) \in \mathbf{R}^{2}$.
Thus, $M_{2}^{3}$ indicates that each of marginal distributions of $\left(X_{1}, X_{2}\right),\left(X_{1}, X_{3}\right)$ and ( $X_{2}, X_{3}$ ) has a same bivariate density function being symmetric. Note that $M_{2}^{3}$ implies $M_{1}^{3}$.

Let the support of $f\left(x_{1}, x_{2}, x_{3}\right)$ denote $K^{3}$, where
$K^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right): f\left(x_{1}, x_{2}, x_{3}\right)>0, a<x_{i}<b, i=1,2,3,-\infty \leq a<b \leq \infty\right\}$.
We assume that the support of $f\left(x_{1}, x_{2}, x_{3}\right)$ is an open connected set in $\mathbf{R}^{3}$. Generally, we can express the density function as

$$
\begin{align*}
f\left(x_{1}, x_{2}, x_{3}\right)= & \mu \alpha_{1}\left(x_{1}\right) \alpha_{2}\left(x_{2}\right) \alpha_{3}\left(x_{3}\right) \times  \tag{2.1}\\
& \beta_{12}\left(x_{1}, x_{2}\right) \beta_{13}\left(x_{1}, x_{3}\right) \beta_{23}\left(x_{2}, x_{3}\right) \gamma\left(x_{1}, x_{2}, x_{3}\right),
\end{align*}
$$

where $\left(x_{1}, x_{2}, x_{3}\right) \in K^{3}$, and for an arbitrary fixed value $c \in(a, b)$,

$$
\begin{gathered}
\alpha_{1}(c)=1, \quad \beta_{12}\left(c, x_{2}\right)=\beta_{12}\left(x_{1}, c\right)=1, \\
\gamma\left(c, x_{2}, x_{3}\right)=\gamma\left(x_{1}, c, x_{3}\right)=\gamma\left(x_{1}, x_{2}, c\right)=1,
\end{gathered}
$$

with similar properties of $\alpha_{2}, \alpha_{3}, \beta_{13}$ and $\beta_{23}$. The terms $\alpha_{i}$ correspond to main effects of the variable $X_{i}, \beta_{i j}$ to interaction effects of $X_{i}$ and $X_{j}$, and $\gamma$ to interaction effect of $X_{1}, X_{2}$ and $X_{3}$. Namely

$$
\begin{aligned}
& \mu=f(c, c, c) \\
& \alpha_{1}\left(x_{1}\right)=\frac{f\left(x_{1}, c, c\right)}{f(c, c, c)}, \quad \alpha_{2}\left(x_{2}\right)=\frac{f\left(c, x_{2}, c\right)}{f(c, c, c)}, \quad \alpha_{3}\left(x_{3}\right)=\frac{f\left(c, c, x_{3}\right)}{f(c, c, c)}, \\
& \beta_{12}\left(x_{1}, x_{2}\right)=\frac{f\left(x_{1}, x_{2}, c\right) f(c, c, c)}{f\left(x_{1}, c, c\right) f\left(c, x_{2}, c\right)} \\
& \beta_{13}\left(x_{1}, x_{3}\right)=\frac{f\left(x_{1}, c, x_{3}\right) f(c, c, c)}{f\left(x_{1}, c, c\right) f\left(c, c, x_{3}\right)} \\
& \beta_{23}\left(x_{2}, x_{3}\right)=\frac{f\left(c, x_{2}, x_{3}\right) f(c, c, c)}{f\left(c, x_{2}, c\right) f\left(c, c, x_{3}\right)} \\
& \gamma\left(x_{1}, x_{2}, x_{3}\right)=\frac{f\left(x_{1}, x_{2}, x_{3}\right) f\left(x_{1}, c, c\right) f\left(c, x_{2}, c\right) f\left(c, c, x_{3}\right)}{f(c, c, c) f\left(x_{1}, x_{2}, c\right) f\left(x_{1}, c, x_{3}\right) f\left(c, x_{2}, x_{3}\right)} .
\end{aligned}
$$

The term $\alpha_{1}\left(x_{1}\right)$ indicates the odds of density function with respect to $X_{1-}$ values with $\left(X_{2}, X_{3}\right)=(c, c)$. Note that

$$
\begin{aligned}
\beta_{12}\left(x_{1}, x_{2}\right) & =\left(\frac{f\left(x_{1}, x_{2}, c\right)}{f\left(c, x_{2}, c\right)}\right) /\left(\frac{f\left(x_{1}, c, c\right)}{f(c, c, c)}\right) \\
& =\left(\frac{f\left(x_{1}, x_{2}, c\right)}{f\left(x_{1}, c, c\right)}\right) /\left(\frac{f\left(c, x_{2}, c\right)}{f(c, c, c)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma\left(x_{1}, x_{2}, x_{3}\right) & =\left(\frac{f\left(x_{1}, x_{2}, x_{3}\right) f\left(c, c, x_{3}\right)}{f\left(x_{1}, c, x_{3}\right) f\left(c, x_{2}, x_{3}\right)}\right) /\left(\frac{f\left(x_{1}, x_{2}, c\right) f(c, c, c)}{f\left(x_{1}, c, c\right) f\left(c, x_{2}, c\right)}\right) \\
& =\left(\frac{f\left(x_{1}, x_{2}, x_{3}\right) f\left(c, x_{2}, c\right)}{f\left(x_{1}, x_{2}, c\right) f\left(c, x_{2}, x_{3}\right)}\right) /\left(\frac{f\left(x_{1}, c, x_{3}\right) f(c, c, c)}{f\left(x_{1}, c, c\right) f\left(c, c, x_{3}\right)}\right) \\
& =\left(\frac{f\left(x_{1}, x_{2}, x_{3}\right) f\left(x_{1}, c, c\right)}{f\left(x_{1}, x_{2}, c\right) f\left(x_{1}, c, x_{3}\right)}\right) /\left(\frac{f\left(c, x_{2}, x_{3}\right) f(c, c, c)}{f\left(c, x_{2}, c\right) f\left(c, c, x_{3}\right)}\right) .
\end{aligned}
$$

Thus, $\beta_{12}\left(x_{1}, x_{2}\right)$ indicates the odds-ratio of density function with respect to $\left(X_{1}, X_{2}\right)$-values with $X_{3}=c$. Also $\gamma\left(x_{1}, x_{2}, x_{3}\right)$ indicates the ratio of oddsratios of density function, i.e., the ratio of odds-ratio with respect to ( $X_{1}, X_{2}$ )values with $X_{3}=x_{3}$ to that with $X_{3}=c$ (or the ratio of odds-ratio with respect to $\left(X_{i}, X_{j}\right)$-values with $X_{k}=x_{k}$ to that with $X_{k}=c$, where $(i, j, k)=(1,3,2)$ and (2, 3, 1)).

The density function is $S^{3}$ if and only if it is expressed as the form (2.1) with

$$
S^{3}:\left\{\begin{array}{l}
\alpha_{1}\left(x_{1}\right)=\alpha_{2}\left(x_{1}\right)=\alpha_{3}\left(x_{1}\right), \\
\beta_{12}\left(x_{1}, x_{2}\right)=\beta_{12}\left(x_{2}, x_{1}\right)=\beta_{13}\left(x_{1}, x_{2}\right)=\beta_{23}\left(x_{1}, x_{2}\right), \\
\gamma\left(x_{\pi_{1}}, x_{\pi_{2}}, x_{\pi_{3}}\right)=\gamma\left(x_{1}, x_{2}, x_{3}\right) .
\end{array}\right.
$$

We shall define quasi-symmetry of order 1 (denoted by $Q_{1}^{3}$ ), and order 2 (denoted by $Q_{2}^{3}$ ). We define $Q_{1}^{3}$ by (2.1) with

$$
Q_{1}^{3}:\left\{\begin{array}{l}
\beta_{12}\left(x_{1}, x_{2}\right)=\beta_{12}\left(x_{2}, x_{1}\right)=\beta_{13}\left(x_{1}, x_{2}\right)=\beta_{23}\left(x_{1}, x_{2}\right), \\
\gamma\left(x_{\pi_{1}}, x_{\pi_{2}}, x_{\pi_{3}}\right)=\gamma\left(x_{1}, x_{2}, x_{3}\right) .
\end{array}\right.
$$

Thus $Q_{1}^{3}$ indicates

$$
\begin{aligned}
& \theta\left(s_{1}, s_{2} ; t_{1}, t_{2} ; u\right)=\theta\left(t_{1}, t_{2} ; s_{1}, s_{2} ; u\right) \\
& =\theta\left(s_{1}, s_{2} ; u ; t_{1}, t_{2}\right)=\theta\left(t_{1}, t_{2} ; u ; s_{1}, s_{2}\right) \\
& =\theta\left(u ; s_{1}, s_{2} ; t_{1}, t_{2}\right)=\theta\left(u ; t_{1}, t_{2} ; s_{1}, s_{2}\right),
\end{aligned}
$$

where $\left(s_{i}, t_{j}, u\right) \in K^{3}$ and so on, and

$$
\begin{aligned}
\theta\left(s_{1}, s_{2} ; t_{1}, t_{2} ; u\right) & =\frac{f\left(s_{1}, t_{1}, u\right) f\left(s_{2}, t_{2}, u\right)}{f\left(s_{2}, t_{1}, u\right) f\left(s_{1}, t_{2}, u\right)} \\
\theta\left(s_{1}, s_{2} ; u ; t_{1}, t_{2}\right) & =\frac{f\left(s_{1}, u, t_{1}\right) f\left(s_{2}, u, t_{2}\right)}{f\left(s_{2}, u, t_{1}\right) f\left(s_{1}, u, t_{2}\right)} \\
\theta\left(u ; s_{1}, s_{2} ; t_{1}, t_{2}\right) & =\frac{f\left(u, s_{1}, t_{1}\right) f\left(u, s_{2}, t_{2}\right)}{f\left(u, s_{2}, t_{1}\right) f\left(u, s_{1}, t_{2}\right)}
\end{aligned}
$$

because we can see

$$
\theta\left(s_{1}, s_{2} ; t_{1}, t_{2} ; u\right)=\frac{\theta\left(c, s_{1} ; c, t_{1} ; u\right) \theta\left(c, s_{2} ; c, t_{2} ; u\right)}{\theta\left(c, s_{2} ; c, t_{1} ; u\right) \theta\left(c, s_{1} ; c, t_{2} ; u\right)}
$$

and so on. Therefore $Q_{1}^{3}$ indicates that the density function is symmetric with respect to the odds-ratio.

Also, we define $Q_{2}^{3}$ by (2.1) with

$$
Q_{2}^{3}: \gamma\left(x_{\pi_{1}}, x_{\pi_{2}}, x_{\pi_{3}}\right)=\gamma\left(x_{1}, x_{2}, x_{3}\right)
$$

Thus $Q_{2}^{3}$ indicates

$$
\begin{aligned}
& \frac{\theta\left(s_{1}, s_{2} ; t_{1}, t_{2} ; u_{1}\right)}{\theta\left(s_{1}, s_{2} ; t_{1}, t_{2} ; u_{2}\right)}=\frac{\theta\left(t_{1}, t_{2} ; s_{1}, s_{2} ; u_{1}\right)}{\theta\left(t_{1}, t_{2} ; s_{1}, s_{2} ; u_{2}\right)} \\
& =\frac{\theta\left(s_{1}, s_{2} ; u_{1} ; t_{1}, t_{2}\right)}{\theta\left(s_{1}, s_{2} ; u_{2} ; t_{1}, t_{2}\right)}=\frac{\theta\left(t_{1}, t_{2} ; u_{1} ; s_{1}, s_{2}\right)}{\theta\left(t_{1}, t_{2} ; u_{2} ; s_{1}, s_{2}\right)} \\
& =\frac{\theta\left(u_{1} ; s_{1}, s_{2} ; t_{1}, t_{2}\right)}{\theta\left(u_{2} ; s_{1}, s_{2} ; t_{1}, t_{2}\right)}=\frac{\theta\left(u_{1} ; t_{1}, t_{2} ; s_{1}, s_{2}\right)}{\theta\left(u_{2} ; t_{1}, t_{2} ; s_{1}, s_{2}\right)}
\end{aligned}
$$

where $\left(s_{i}, t_{j}, u_{k}\right) \in K^{3}$ and so on; because

$$
\frac{\theta\left(s_{1}, s_{2} ; t_{1}, t_{2} ; u_{k}\right)}{\theta\left(s_{1}, s_{2} ; t_{1}, t_{2} ; c\right)}=\frac{\gamma\left(s_{1}, t_{1}, u_{k}\right) \gamma\left(s_{2}, t_{2}, u_{k}\right)}{\gamma\left(s_{2}, t_{1}, u_{k}\right) \gamma\left(s_{1}, t_{2}, u_{k}\right)}
$$

Therefore $Q_{2}^{3}$ indicates that the density function is symmetric with respect to the ratio of odds-ratios. We point out that each of $S^{3}, Q_{1}^{3}$ and $Q_{2}^{3}$ does not depend on the value of $c$ fixed. It is obviously that $Q_{1}^{3}$ implies $Q_{2}^{3}$. Note that the alternative way of expressing $Q_{1}^{3}$ is

$$
Q_{1}^{3}: f\left(x_{1}, x_{2}, x_{3}\right)=\theta_{1}\left(x_{1}\right) \theta_{2}\left(x_{2}\right) \theta_{3}\left(x_{3}\right) v\left(x_{1}, x_{2}, x_{3}\right)
$$

where $v$ is positive and permutation symmetric function, i.e., $v\left(x_{\pi_{1}}, x_{\pi_{2}}, x_{\pi_{3}}\right)=$ $v\left(x_{1}, x_{2}, x_{3}\right)$. We obtain the following theorem.

Theorem 1. For $k$ fixed $(k=1,2)$, the trivariate density function $f\left(x_{1}, x_{2}, x_{3}\right)$ is $S^{3}$ if and only if it is both $Q_{k}^{3}$ and $M_{k}^{3}$.
Referring to Bhapkar and Darroch [1] for discrete probabilities in multi-way contingency tables, we can prove theorem for multivariate density function as follows.

Proof. Consider the case of $k=1$. If a density function is $S^{3}$, then it satisfies $Q_{1}^{3}$ and $M_{1}^{3}$. Assume that it is both $Q_{1}^{3}$ and $M_{1}^{3}$, and then we shall show that it satisfies $S^{3}$.

Let $f^{*}\left(x_{1}, x_{2}, x_{3}\right)$ be the density function which satisfies both $Q_{1}^{3}$ and $M_{1}^{3}$. Since $f^{*}\left(x_{1}, x_{2}, x_{3}\right)$ satisfies $Q_{1}^{3}$, we see
$\log f^{*}\left(x_{1}, x_{2}, x_{3}\right)=\log \theta_{1}\left(x_{1}\right)+\log \theta_{2}\left(x_{2}\right)+\log \theta_{3}\left(x_{3}\right)+\log v\left(x_{1}, x_{2}, x_{3}\right)$,
where $v$ is positive and permutation symmetric function. Let the density $g\left(x_{1}, x_{2}, x_{3}\right)$ be $c^{-1} v\left(x_{1}, x_{2}, x_{3}\right)$ with $c=\iiint v\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}$. Also, since $f^{*}\left(x_{1}, x_{2}, x_{3}\right)$ satisfies $M_{1}^{3}$, we see

$$
\begin{equation*}
f_{X_{1}}^{*}(t)=f_{X_{2}}^{*}(t)=f_{X_{3}}^{*}(t)=\mu(t) \quad \text { for } t \in \mathbf{R} \tag{2.2}
\end{equation*}
$$

where $f_{X_{1}}^{*}(t), f_{X_{2}}^{*}(t)$ and $f_{X_{3}}^{*}(t)$ are the marginal density functions of $X_{1}, X_{2}$ and $X_{3}$, respectively. Consider the arbitrary density function $f\left(x_{1}, x_{2}, x_{3}\right)$ satisfying $M_{1}^{3}$ with

$$
\begin{equation*}
f_{X_{1}}(t)=f_{X_{2}}(t)=f_{X_{3}}(t)=\mu(t) \quad \text { for } t \in \mathbf{R} \tag{2.3}
\end{equation*}
$$

where $f_{X_{1}}(t), f_{X_{2}}(t)$ and $f_{X_{3}}(t)$ are the marginal density functions of $X_{1}, X_{2}$ and $X_{3}$, respectively. From (2.2) and (2.3), we see

$$
\begin{align*}
& \iiint\left\{f\left(x_{1}, x_{2}, x_{3}\right)-f^{*}\left(x_{1}, x_{2}, x_{3}\right)\right\} \times  \tag{2.4}\\
& \quad \log \left(\frac{f^{*}\left(x_{1}, x_{2}, x_{3}\right)}{g\left(x_{1}, x_{2}, x_{3}\right)}\right) d x_{1} d x_{2} d x_{3}=0
\end{align*}
$$

Using the equation (2.4), we obtain

$$
I(f, g)=I\left(f^{*}, g\right)+I\left(f, f^{*}\right)
$$

where

$$
I\left(h_{1}, h_{2}\right)=\iiint h_{1}\left(x_{1}, x_{2}, x_{3}\right) \log \left(\frac{h_{1}\left(x_{1}, x_{2}, x_{3}\right)}{h_{2}\left(x_{1}, x_{2}, x_{3}\right)}\right) d x_{1} d x_{2} d x_{3}
$$

For $g$ fixed, we see

$$
\min _{f} I(f, g)=I\left(f^{*}, g\right)
$$

and then $f^{*}$ uniquely minimizes $I(f, g)$.
Let $f^{* *}\left(x_{1}, x_{2}, x_{3}\right)=f^{*}\left(x_{1}, x_{3}, x_{2}\right)$. In a similar way, we also see

$$
\iiint\left\{f\left(x_{1}, x_{2}, x_{3}\right)-f^{* *}\left(x_{1}, x_{2}, x_{3}\right)\right\} \log \left(\frac{f^{* *}\left(x_{1}, x_{2}, x_{3}\right)}{g\left(x_{1}, x_{2}, x_{3}\right)}\right) d x_{1} d x_{2} d x_{3}=0
$$

where $f\left(x_{1}, x_{2}, x_{3}\right)$ is $M_{1}^{3}$ with (2.3). Thus, we obtain

$$
I(f, g)=I\left(f^{* *}, g\right)+I\left(f, f^{* *}\right)
$$

For $g$ fixed, we see

$$
\min _{f} I(f, g)=I\left(f^{* *}, g\right)
$$

and then $f^{* *}$ uniquely minimizes $I(f, g)$. Therefore, we see $f^{*}\left(x_{1}, x_{2}, x_{3}\right)=$ $f^{* *}\left(x_{1}, x_{2}, x_{3}\right)$. Thus, $f^{*}\left(x_{1}, x_{2}, x_{3}\right)=f^{*}\left(x_{1}, x_{3}, x_{2}\right)$.

Also, in a similar way, we obtain

$$
f^{*}\left(x_{1}, x_{2}, x_{3}\right)=f^{*}\left(x_{2}, x_{1}, x_{3}\right)=f^{*}\left(x_{2}, x_{3}, x_{1}\right)=f^{*}\left(x_{3}, x_{1}, x_{2}\right)=f^{*}\left(x_{3}, x_{2}, x_{1}\right)
$$

Therefore, we have $f^{*}\left(x_{1}, x_{2}, x_{3}\right)=f^{*}\left(x_{\pi_{1}}, x_{\pi_{2}}, x_{\pi_{3}}\right)$. Namely $f^{*}\left(x_{1}, x_{2}, x_{3}\right)$ satisfies $S^{3}$. The case of $k=2$ can be proved in a similar way as the case of $k=1$. So the proof is completed.

## §3. Decomposition of multivariate density function

Let $X_{1}, \ldots, X_{T}$ be $T$ continuous random variables with a density function $f\left(x_{1}, \ldots, x_{T}\right)$. The density function $f\left(x_{1}, \ldots, x_{T}\right)$ is said to be permutation symmetric $\left(S^{T}\right)$ if for each permutation $\left(\pi_{1}, \ldots, \pi_{T}\right)$ of $(1, \ldots, T)$ and every $\left(x_{1}, \ldots, x_{T}\right) \in \mathbf{R}^{T}$, we have

$$
f\left(x_{\pi_{1}}, \ldots, x_{\pi_{T}}\right)=f\left(x_{1}, \ldots, x_{T}\right)
$$

see Tong [7] and Fang et al. [4].
Let the support of $f\left(x_{1}, \ldots, x_{T}\right)$ denote $K^{T}$, where

$$
\begin{aligned}
K^{T}= & \left\{\left(x_{1}, \ldots, x_{T}\right): f\left(x_{1}, \ldots, x_{T}\right)>0\right. \\
& \left.\quad a<x_{i}<b, i=1, \ldots, T,-\infty \leq a<b \leq \infty\right\}
\end{aligned}
$$

We assume that the support of $f\left(x_{1}, \ldots, x_{T}\right)$ is an open connected set in $\mathbf{R}^{T}$. Generally, we can express the density function as

$$
\begin{align*}
& f\left(x_{1}, \ldots, x_{T}\right)=\alpha\left[\prod_{i_{1}=1}^{T} \alpha_{i_{1}}\left(x_{i_{1}}\right)\right]\left[\prod_{1 \leq i_{1}<i_{2} \leq T} \prod_{1 \leq i_{1}<\cdots<i_{T-1} \leq T} \alpha_{i_{1} i_{2}}\left(x_{i_{1}}, x_{i_{2}}\right)\right] \times \cdots  \tag{3.1}\\
& \left.\quad \prod_{i_{1} \ldots i_{T-1}}\left(x_{i_{1}}, \ldots, x_{i_{T-1}}\right)\right] \cdot \alpha_{1 \ldots T}\left(x_{1}, \ldots, x_{T}\right)
\end{align*}
$$

where $\left(x_{1}, \ldots, x_{T}\right) \in K^{T}$, and for an arbitrary fixed value $c \in(a, b)$,

$$
\left\{\alpha_{i}(c)=\alpha_{i_{1} i_{2}}\left(c, x_{i_{2}}\right)=\cdots=\alpha_{1 \ldots T}\left(x_{1}, \ldots, x_{T-1}, c\right)=1\right\} .
$$

Then, the density function $f\left(x_{1}, \ldots, x_{T}\right)$ being $S^{T}$ is also expressed as (3.1) with

$$
\begin{array}{r}
S^{T}: \alpha_{i_{1} \ldots i_{m}}\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)=\alpha_{i_{1} \ldots i_{m}}\left(x_{\pi_{i_{1}}}, \ldots, x_{\pi_{i_{m}}}\right)=\alpha_{j_{1} \ldots j_{m}}\left(x_{i_{1}}, \ldots, x_{i_{m}}\right) \\
\left(m=1, \ldots, T ; 1 \leq i_{1}<\cdots<i_{m} \leq T ; 1 \leq j_{1}<\cdots<j_{m} \leq T\right),
\end{array}
$$

where $\left(\pi_{i_{1}}, \ldots, \pi_{i_{m}}\right)$ is permutation of $\left(i_{1}, \ldots, i_{m}\right)$.
For $k=1, \ldots, T-1$, we shall define quasi-symmetry of order $k$ (denoted by $Q_{k}^{T}$ ) by (3.1) with

$$
\begin{array}{r}
Q_{k}^{T}: \alpha_{i_{1} \ldots i_{m}}\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)=\alpha_{i_{1} \ldots i_{m}}\left(x_{\pi_{i_{1}}}, \ldots, x_{\pi_{i_{m}}}\right)=\alpha_{j_{1} \ldots j_{m}}\left(x_{i_{1}}, \ldots, x_{i_{m}}\right) \\
\left(m=k+1, \ldots, T ; 1 \leq i_{1}<\cdots<i_{m} \leq T ; 1 \leq j_{1}<\cdots<j_{m} \leq T\right) .
\end{array}
$$

Also, for $k=1, \ldots, T-1$, we shall define marginal symmetry of order $k$ (denoted by $M_{k}^{T}$ ) by
$M_{k}^{T}: f_{X_{i_{1}} \ldots X_{i_{k}}}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)=f_{X_{i_{1}} \ldots X_{i_{k}}}\left(x_{\pi_{i_{1}}}, \ldots, x_{\pi_{i_{k}}}\right)=f_{X_{j_{1}} \ldots X_{j_{k}}}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$

$$
\left(1 \leq i_{1}<\cdots<i_{k} \leq T ; 1 \leq j_{1}<\cdots<j_{k} \leq T\right),
$$

where $f_{X_{i_{1}} \ldots X_{i_{k}}}$ is the marginal density function of $\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)$. Then we obtain the following theorem.

Theorem 2. For $k$ fixed ( $k=1, \ldots, T-1$ ), the multivariate density function $f\left(x_{1}, \ldots, x_{T}\right)$ is $S^{T}$ if and only if it is both $Q_{k}^{T}$ and $M_{k}^{T}$.

The proof of Theorem 2 is omitted because it is obtained in a similar way to the proof of Theorem 1.

## §4. Symmetry of multivariate normal density function

Example 1. Consider a $T$-dimensional random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{T}\right)^{\prime}$ having a normal distribution with mean vector $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{T}\right)^{\prime}$ and covariance matrix $\boldsymbol{\Sigma}$. The density function is

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{T}\right)=\frac{1}{(2 \pi)^{\frac{T}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\} . \tag{4.1}
\end{equation*}
$$

Denote $\boldsymbol{\Sigma}^{-1}$ by $\boldsymbol{A}=\left(a_{i j}\right)$ with $a_{i j}=a_{j i}$. Then the density function can be expressed as

$$
f\left(x_{1}, \ldots, x_{T}\right)=C \exp \left\{-\frac{1}{2} H\right\}
$$

where $C$ is positive constant and

$$
H=\sum_{s=1}^{T} a_{s s} x_{s}^{2}+\sum_{s \neq t} a_{s t} x_{s} x_{t}-2 \sum_{s=1}^{T} \sum_{t=1}^{T} a_{s t} \mu_{s} x_{t}
$$

By setting $c=0$ without loss of generality, we see

$$
\begin{align*}
& \alpha_{i}\left(x_{i}\right)=\exp \left\{-\frac{1}{2}\left(a_{i i} x_{i}^{2}-2 \sum_{s=1}^{T} a_{s i} \mu_{s} x_{i}\right)\right\} \quad(i=1, \ldots, T), \\
& \alpha_{i j}\left(x_{i}, x_{j}\right)=\exp \left(-a_{i j} x_{i} x_{j}\right) \quad(i<j), \tag{4.2}
\end{align*}
$$

and for $m=3, \ldots, T$,

$$
\alpha_{i_{1} \ldots i_{m}}\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)=1 \quad\left(1 \leq i_{1}<\cdots<i_{m} \leq T\right)
$$

Therefore the density function (4.1) is $Q_{k}^{T}$ for $k=2, \ldots, T-1$. Also from (4.2), the density function (4.1) is $Q_{1}^{T}$ if and only if $\left\{a_{i j}\left(=a_{j i}\right)\right\}$ are constant (e.g., equals $w$ ) for all $i<j$; namely, $\boldsymbol{\Sigma}^{-1}$ has the form

$$
\begin{equation*}
\boldsymbol{\Sigma}^{-1}=\boldsymbol{D}+w \boldsymbol{e} \boldsymbol{e}^{\prime} \tag{4.3}
\end{equation*}
$$

where $\boldsymbol{D}$ is the $T \times T$ diagonal matrix, $\boldsymbol{e}$ is the $T \times 1$ vector of 1 elements, and $w$ is scalar. Although the detail is omitted, then $\boldsymbol{\Sigma}$ has the form

$$
\boldsymbol{\Sigma}=\boldsymbol{D}^{-1}+d \boldsymbol{D}^{-1} \boldsymbol{e} \boldsymbol{e}^{\prime} \boldsymbol{D}^{-1}
$$

where $d$ is scalar. Therefore, the density function (4.1) is $Q_{1}^{T}$ if and only if $\boldsymbol{\Sigma}$ has the form

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
b_{1} & \cdots & 0  \tag{4.4}\\
\vdots & \ddots & \vdots \\
0 & \cdots & b_{T}
\end{array}\right)+d\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{T}
\end{array}\right)\left(b_{1}, \ldots, b_{T}\right)
$$

Let $V\left(X_{i}\right)=\sigma_{i}^{2}(i=1, \ldots, T)$ and let $\rho_{i j}$ be the correlation coefficient of $X_{i}$ and $X_{j}(i \neq j)$ with $\left|\rho_{i j}\right|<1$. Assume that
(i) $\sigma_{1}^{2}=\cdots=\sigma_{T}^{2}\left(=\sigma^{2}\right)$ and $\rho_{i j}=\rho(i<j)$.

Then

$$
\boldsymbol{\Sigma}=\sigma^{2}(1-\rho)\left(\boldsymbol{E}+\frac{\rho}{1-\rho} \boldsymbol{e} \boldsymbol{e}^{\prime}\right)
$$

where $\boldsymbol{E}$ is the $T \times T$ identity matrix. This satisfies the form (4.4) of $\boldsymbol{\Sigma}$. Therefore the density function (4.1) with condition (i) is $Q_{1}^{T}$.

Next, assume that
(ii) $\sigma_{1}^{2}=\cdots=\sigma_{T}^{2}\left(=\sigma^{2}\right)$.

From (4.4), then $Q_{1}^{T}$ holds if and only if

$$
\begin{cases}\sigma^{2}=b_{i}+d b_{i}^{2} & (i=1, \ldots, T) \\ \sigma^{2} \rho_{i j}=d b_{i} b_{j} & (i<j)\end{cases}
$$

hold, namely, $b_{1}=\cdots=b_{T}$ since $\left|\rho_{i j}\right|<1$. Therefore the density function (4.1) with condition (ii) is $Q_{1}^{T}$ if and only if $\rho_{i j}=\rho$ for all $i<j$ hold.

Also, assume that
(iii) $\rho_{i j}=\rho(\neq 0)$ for all $i<j$.

Then we see

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{T}
\end{array}\right)\left((1-\rho) \boldsymbol{E}+\rho \boldsymbol{e} \boldsymbol{e}^{\prime}\right)\left(\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{T}
\end{array}\right)
$$

Although the detail is omitted, we can see

$$
\boldsymbol{\Sigma}^{-1}=\frac{1}{1-\rho}\left(\left(\begin{array}{ccc}
\sigma_{1}^{-2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{T}^{-2}
\end{array}\right)+\frac{1}{m}\left(\begin{array}{c}
\sigma_{1}^{-1} \\
\vdots \\
\sigma_{T}^{-1}
\end{array}\right)\left(\sigma_{1}^{-1}, \ldots, \sigma_{T}^{-1}\right)\right)
$$

where $m=-(1-\rho) / \rho-T$. Therefore from (4.3), the density function (4.1) with condition (iii) is $Q_{1}^{T}$ if and only if $\sigma_{1}^{2}=\cdots=\sigma_{T}^{2}$ holds.

Assume that
(iv) $\rho_{i j}=0$ for all $i<j$.

Then the density function (4.1) is $Q_{1}^{T}$ because $\alpha_{i j}\left(x_{i}, x_{j}\right)=1$ in (4.2) with $a_{i j}=0$ for $i<j$.

We shall consider the relationship between the density function (4.1) and $M_{k}^{T}(k=1, \ldots, T-1)$. Obviously, the density function (4.1) is $M_{1}^{T}$ if and only if $\mu_{1}=\cdots=\mu_{T}$ and $\sigma_{1}^{2}=\cdots=\sigma_{T}^{2}$ hold. Also, for each $k(k=2, \ldots, T-1)$, it is $M_{k}^{T}$ if and only if $\mu_{1}=\cdots=\mu_{T}, \sigma_{1}^{2}=\cdots=\sigma_{T}^{2}$, and $\rho_{i j}=\rho$ for all $i<j$. Thus, from Theorem 2 we can see that the density function (4.1) with $\mu_{1}=\cdots=\mu_{T}$ and $\sigma_{1}^{2}=\cdots=\sigma_{T}^{2}$ is $S^{T}$ if and only if it is $Q_{1}^{T}$. Also, from Theorem 2, the density function (4.1) is $S^{T}$ if and only if $\mu_{1}=\cdots=\mu_{T}$, $\sigma_{1}^{2}=\cdots=\sigma_{T}^{2}$ and $\rho_{i j}=\rho$ for all $i<j$ hold.

Example 2. Consider a $T$-dimensional random vector $\boldsymbol{U}=\left(U_{1}, \ldots, U_{T}\right)^{\prime}$ having a multinominal distribution with

$$
\begin{aligned}
& \mathrm{P}\left(U_{1}=u_{1}, \ldots, U_{T}=u_{T} \mid N\right)= \\
& \quad \frac{N!}{u_{1}!\cdots u_{T}!\left(N-\sum_{i=1}^{T} u_{i}\right)!} \pi_{1}^{u_{1}} \cdots \pi_{T}^{u_{T}}\left(1-\sum_{i=1}^{T} \pi_{i}\right)^{N-\sum_{i=1}^{T} u_{i}},
\end{aligned}
$$

where $u_{i}$ is nonnegative integer with $0 \leq u_{i} \leq N$. Let

$$
\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{T}\right)^{\prime}, \quad \hat{\boldsymbol{\pi}}=\left(\hat{\pi}_{1}, \ldots, \hat{\pi}_{T}\right)^{\prime}
$$

where $\hat{\pi}_{i}=u_{i} / N$. Also let $\boldsymbol{X}=\sqrt{N}(\hat{\boldsymbol{\pi}}-\boldsymbol{\pi})$. Then it is well-known that $\boldsymbol{X}$ has asymptotically (as $N \rightarrow \infty$ ) a $T$-variate normal distribution with mean $T \times 1$ zero vector $\mathbf{0}=(0, \ldots, 0)^{\prime}$ and covariance matrix

$$
\begin{equation*}
\boldsymbol{\Sigma}=\boldsymbol{D}-\boldsymbol{\pi} \boldsymbol{\pi}^{\prime} \tag{4.5}
\end{equation*}
$$

where

$$
\boldsymbol{D}=\left(\begin{array}{ccc}
\pi_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \pi_{T}
\end{array}\right)
$$

see, e.g., Bishop, Fienberg and Holland [2]. So we shall consider the properties of normal distribution having covariance matrix (4.5). We see that $\boldsymbol{\Sigma}$ in (4.5) satisfies the form (4.4) obtained in Example 1. Therefore the density function of normal distribution $N\left(\mathbf{0}, \boldsymbol{D}-\boldsymbol{\pi} \boldsymbol{\pi}^{\prime}\right)$ is always $Q_{1}^{T}$. Also, it is $Q_{k}^{T}(k=$ $2, \ldots, T-1$ ).

The marginal distribution of $X_{i}$ in $\boldsymbol{X}=\left(X_{1}, \ldots, X_{T}\right)^{\prime}$ is $N\left(0, \pi_{i}\left(1-\pi_{i}\right)\right)$ for $i=1, \ldots, T$. Therefore the density function of $N\left(\mathbf{0}, \boldsymbol{D}-\boldsymbol{\pi} \boldsymbol{\pi}^{\prime}\right)$ is $M_{1}^{T}$ if and only if $\pi_{1}=\cdots=\pi_{T}$ holds.

Also two dimensional marginal distribution of $\left(X_{i}, X_{j}\right)$ for $i<j$ has the mean zero vector and the covariance matrix

$$
\left(\begin{array}{cc}
\pi_{i}\left(1-\pi_{i}\right) & -\pi_{i} \pi_{j} \\
-\pi_{i} \pi_{j} & \pi_{j}\left(1-\pi_{j}\right)
\end{array}\right)
$$

Thus, the density function of $N\left(\mathbf{0}, \boldsymbol{D}-\boldsymbol{\pi} \boldsymbol{\pi}^{\prime}\right)$ is $M_{2}^{T}$ if and only if $\pi_{1}=\cdots=$ $\pi_{T}$ holds. In a similar way, it is $M_{k}^{T}$ if and only if $\pi_{1}=\cdots=\pi_{T}$ holds $(k=3, \ldots, T-1)$.

Therefore we can see from Theorem 2 that the density function of $N(\mathbf{0}, \boldsymbol{D}-$ $\left.\boldsymbol{\pi} \boldsymbol{\pi}^{\prime}\right)$ is $S^{T}$ if and only if it is $M_{k}^{T}(k=1, \ldots, T-1)$, because it always satisfies $Q_{k}^{T}$.

## §5. Comments

When an arbitrary density function $f\left(x_{1}, \ldots, x_{T}\right)$ is not permutation symmetric, Theorem 2 may be useful for knowing the reason, i.e., for $k$ fixed, which structure of quasi-symmetry of order $k$ and marginal symmetry of order $k$ is lacking.

We point out that for a $T$-variate normal distribution, if the variances of $X_{1}, \ldots, X_{T}$ are the same and the correlation coefficients of $X_{i}$ and $X_{j}$ for all
$i<j$ are the same, then the density functions is quasi-symmetric of order 1 , i.e., $Q_{1}^{T}$ (as seen in Example 1); however, the converse always does not hold. Indeed, the normal density function with covariance matrix $\boldsymbol{\Sigma}=\boldsymbol{D}-\boldsymbol{\pi} \boldsymbol{\pi}^{\prime}$ (in Example 2) is always $Q_{1}^{T}$ even when the variances of $X_{1}, \ldots, X_{T}$ are not the same and the correlation coefficients of $X_{i}$ and $X_{j}$ are not the same for $1 \leq i<j \leq T$.

Finally we note that it is difficult to illustrate the decomposition of symmetry for the elliptical distribution instead of the normal distribution in Example of Section 4 because the $\left\{\alpha_{i}\left(x_{i}\right)\right\}$ and $\left\{\alpha_{i j}\left(x_{i}, x_{j}\right)\right\}$ are expressed as the ratio of density functions.

## Acknowledgements

The authors would like to express our sincere thanks to a referee for the meaningful comments.

## References

[1] V. P. Bhapkar and J. N. Darroch, Marginal symmetry and quasi symmetry of general order, Journal of Multivariate Analysis. 34 (1990), 173-184.
[2] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge, 1975.
[3] H. Caussinus, Contribution à l'analyse statistique des tableaux de corrélation, Annales de la Faculté des Sciences de l'Université de Toulouse. 29 (1965), 77-182.
[4] K.-T. Fang, S. Kotz and K. W. Ng, Symmetric Multivariate and Related Distributions, Chapman and Hall, London, 1990.
[5] S. Tomizawa, T. Seo and J. Minaguchi, Decomposition of bivariate symmetric density function, Calcutta Statistical Association Bulletin. 46 (1996), 129 133.
[6] S. Tomizawa, and K. Tahata, The analysis of symmetry and asymmetry: orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables, Journal de la Société Française de Statistique. 148 (2007), 3-36.
[7] Y. L. Tong, The Multivariate Normal Distribution, Springer-Verlag, New York, 1990.

Kiyotaka Iki
Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda City, Chiba, 278-8510, Japan
E-mail: kiyotaka_iki@ybb.ne.jp

Kouji Tahata
Department of Information Sciences, Faculty of Science and Technology,
Tokyo University of Science, Noda City, Chiba, 278-8510, Japan
E-mail: kouji_tahata@is.noda.tus.ac.jp
Sadao Tomizawa
Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda City, Chiba, 278-8510, Japan
E-mail: tomizawa@is.noda.tus.ac.jp

