Mean Labeling of Some Graphs

D. Ramya and P. Jeyanthi

(Received January 28, 2011; Revised November 11, 2011)

Abstract

Let G be a (p, q) graph and $f: V(G) \rightarrow\{0,1,2,3, \ldots, q\}$ be an injection. For each edge $e=u v$, let $f^{*}(e)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$. Then f is called a mean labeling if $\left\{f^{*}(e): e \in E(G)\right\}=\{1,2,3, \ldots, q\}$. A graph that admits a mean labeling is called a mean graph. In this paper, we prove $T \hat{o} C_{n}, T \tilde{o} C_{n}, T @ P_{n}, T \subset 2 P_{n}$, where T is a T_{p}-tree, are mean graphs.

AMS 2010 Mathematics Subject Classification. 05C78. Key words and phrases. Mean labeling, mean graph, T_{p}-tree.

§1. Introduction

By a graph, we mean a finite simple and undirected one. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. The disjoint union of m copies of the graph G is denoted by $m G$. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. A vertex of degree one is called a pendant vertex. The corona $G_{1} \odot G_{2}$ of the graphs G_{1} and G_{2} is obtained by taking one copy of G_{1} (with p vertices) and p copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} to every vertex of the $i^{\text {th }}$ copy of G_{2}.

Let T be a tree and u_{0} and v_{0} be two adjacent vertices in $V(T)$. Let there be two pendant vertices u and v in T such that the length of $u_{0}-u$ path is equal to the length of $v_{0}-v$ path. If the edge $u_{0} v_{0}$ is deleted from T and u, v are joined by an edge $u v$, then such a transformation of T is called an elementary parallel transformation (or an EPT) and the edge $u_{0} v_{0}$ is called a transformable edge. If by a sequence of EPT's T can be reduced to a path, then T is called a T_{p}-tree (transformed tree) and any such sequence regarded as a composition of mappings (EPT's) denoted by P, is called a parallel transformation of T. The path, the image of T under P is denoted as $P(T)$.

Let T be a T_{p}-tree with m vertices. Let $T \hat{o} C_{n}$ be a graph obtained from T and m copies of C_{n} by identifying a vertex of $i^{\text {th }}$ copy of C_{n} with $i^{\text {th }}$ vertex of T. Let $T \tilde{o} C_{n}$ be a graph obtained from T and m copies of C_{n} by joining a vertex of $i^{\text {th }}$ copy of C_{n} with $i^{\text {th }}$ vertex of T by an edge. Let $T @ P_{n}$ be the graph obtained from T and m copies of P_{n} by identifying one pendant vertex of $i^{\text {th }}$ copy of P_{n} with $i^{\text {th }}$ vertex of T, where P_{n} is a path of length $n-1$. Let $T(C) 2 P_{n}$ be the graph obtained from T by identifying the pendant vertices of two vertex disjoint paths of equal lengths $n-1$ at each vertex of the T_{p}-tree T. Terms and notations not defined here are used in the sense of Harary [1].

A graph $G=(p, q)$ with p vertices and q edges is called a mean graph if there is an injective function f that maps $V(G)$ to $\{0,1,2,3, \ldots, q\}$ such that for each edge $u v$ is labeled with $\frac{f(u)+f(v)}{2}$ if $f(u)+f(v)$ is even and $\frac{f(u)+f(v)+1}{2}$ if $f(u)+f(v)$ is odd. Then the resulting edge labels are distinct.

The mean labeling of $P_{6} \odot K_{1}$ is given in Figure 1.

Figure 1
The concept of mean labeling is introduced by S. Somasundaram and R. Ponraj [7] in 2003. They have proved in [4, 5, 8, 9] and [10] the meanness of many standard graphs like $P_{n}, C_{n}, K_{n}(n \leq 3)$, the ladder, the triangular snake $K_{2, n}, K_{2}+m K_{1}, K_{n}+2 K_{2}, C_{m} \cup P_{n}, P_{m} \times P_{n}, P_{m} \times C_{n}, C_{m} \odot K_{1}, P_{m} \odot K_{1}$, the friendship graph, triangular snakes, quadrilateral snakes, K_{n} if and only if $n \leq 3, K_{1, n}$ if and only if $n \leq 3$, bistars $B_{m, n}(m \geq n)$ if and only if $m<n+2$, the subdivision graph of the star $K_{1, n}$ if and only if $n<4$, the friendship graph $C_{3}^{(t)}$ if and only if $t<2$. Also they ahve investigated the mean graphs or order less than or equal to 5 . In addition, they have proved that the graphs $K_{n}(n>3), K_{1, n}(n>3), B_{m, n}(m>n+2), S\left(K_{1, n}\right)(n>4), C_{3}^{(t)}(t>2)$, the wheel W_{n} are not mean graphs. M.A. Seoud and M.A. Salim [6] investigated the mean labeling of graphs of order 6 . In $[2,3]$, some constructions of mean graphs and mean labeling of some standard families of graphs are given.

§2. Mean Graphs

Theorem 2.1. Let T be a T_{p}-tree on m vertices. Then the graph Tô C_{n} is a mean graph.

Proof. Let T be a T_{p}-tree with m vertices. By the definition of a T_{p}-tree, there exists a parallel transformation P of T such that for the path $P(T)$ we have
(i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T) \backslash E_{d}\right) \cup E_{P}$, where E_{d} is the set of edges deleted from T and E_{P} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPTs P used to arrive at the path $P(T)$. Clearly E_{d} and E_{P} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to other. Let $u_{1}^{i}, u_{2}^{i}, \ldots, u_{n}^{i}$ be the vertices of the $i^{t h}$ copy of C_{n} with $u_{1}^{i}=v_{i}$ for $1 \leq i \leq m$. Then $V\left(T \hat{o} C_{n}\right)=$ $\left\{u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Let

$$
n= \begin{cases}2 k+1 & \text { if } n \text { is odd } \\ 2 k & \text { if } n \text { is even. }\end{cases}
$$

Define $f: V\left(T \hat{o} C_{n}\right) \rightarrow\{0,1,2,3, \ldots, q=(n+1) m-1\}$ as follows:
Case (i). n is odd.

$$
\begin{aligned}
f\left(u_{i}^{2 j-1}\right) & =2(n+1)(j-1)+2(i-1) & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k+1, \\
f\left(u_{k+2}^{2 j-1}\right) & =2(n+1)(j-1)+n & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, \\
f\left(u_{k+2+i}^{2 j-1}\right) & =2(n+1)(j-1)+n-2 i & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k-1, \\
f\left(u_{1}^{2 j}\right) & =2(n+1) j-1 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, \\
f\left(u_{i}^{2 j}\right) & =2(n+1) j-2(i-1) & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 2 \leq i \leq k+2, \\
f\left(u_{k+2+i}^{2 j}\right) & =(n+1)(2 j-1)+2 i+1 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k-1 .
\end{aligned}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent EPTs. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{equation*}
f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2}\right\rceil=(n+1)(i+t) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{f\left(v_{i+t}+f\left(v_{i+t+1}\right)\right.}{2}\right\rceil=(n+1)(i+t) \tag{2.2}
\end{equation*}
$$

Therefore from (2.1) and (2.2), $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.
Let $e_{i}^{j}=u_{i}^{j} u_{i+1}^{j}, e_{n}^{j}=u_{n}^{j} u_{1}^{j}$ for $1 \leq i \leq n-1,1 \leq j \leq m$.

For each vertex label f, the induced edge label f^{*} is defined as follows:

$$
\begin{aligned}
f^{*}\left(v_{i} v_{i+1}\right) & =(n+1) i & & \text { for } 1 \leq i \leq m-1, \\
f^{*}\left(e_{i}^{2 j-1}\right) & =2(n+1)(j-1)+2 i-1 & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k+1 \\
f^{*}\left(e_{k+2}^{2 j-1}\right) & =2(n+1)(j-1)+n-1 & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, \\
f^{*}\left(e_{k+2+i}^{2 j-1}\right) & =2(n+1)(j-1)+n-1+2 i & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k-1, \\
f^{*}\left(e_{i}^{2 j}\right) & =2(n+1) j-2 i+1 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k+1, \\
f^{*}\left(e_{k+2}^{2 j}\right) & =2(n+1) j-n+1 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, \\
f^{*}\left(e_{k+2+i}^{2 j}\right) & =2(n+1) j-n+1+2 i & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k-1 .
\end{aligned}
$$

It can be verified that f is an mean labeling of $T \hat{o} C_{n}$.
Case (ii). n is even.

$$
\begin{aligned}
f\left(u_{i}^{2 j-1}\right) & =2(n+1)(j-1)+2(i-1) & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k+1, \\
f\left(u_{k+2}^{2 j-1}\right) & =2(n+1)(j-1)+n-1 & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, \\
f\left(u_{k+2+i}^{2 j-1}\right) & =2(n+1)(j-1)+n-1-2 i & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k-2, \\
f\left(u_{i}^{2 j}\right) & =2(n+1) j-2 i+1 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k+1 \\
f\left(u_{k+2}^{2 j}\right) & =2(n+1) j-n+2 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, \\
f\left(u_{k+2+i}^{2 j}\right) & =2(n+1) j-n+2+2 i & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k-2 .
\end{aligned}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent EPTs. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{equation*}
f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2}\right\rceil=(n+1)(i+t) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{f\left(v_{i+t}+f\left(v_{i+t+1}\right)\right.}{2}\right\rceil=(n+1)(i+t) \tag{2.4}
\end{equation*}
$$

Therefore from (2.3) and (2.4), $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.

Let $e_{i}^{j}=u_{i}^{j} u_{i+1}^{j}, e_{n}^{j}=u_{n}^{j} u_{1}^{j}$ for $1 \leq i \leq n-1,1 \leq j \leq m$.
For each vertex label f, the induced edge label f^{*} is defined as follows:

$$
\begin{aligned}
f^{*}\left(v_{i} v_{i+1}\right) & =(n+1) i & & \text { for } 1 \leq i \leq m-1, \\
f^{*}\left(e_{i}^{2 j-1}\right) & =2(n+1)(j-1)+2 i-1 & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k \\
f^{*}\left(e_{k+i}^{2 j-1}\right) & =2(n+1)(j-1)+n-2(i-1) & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k, \\
f^{*}\left(e_{i}^{2 j}\right) & =2(n+1) j-2 i & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k, \\
f^{*}\left(e_{k+i}^{2 j}\right) & =2(n+1) j-n+2 i-1 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k .
\end{aligned}
$$

It can be verified that f is an mean labeling of $T \hat{o} C_{n}$. Hence $T \hat{o} C_{n}$ is a mean graph.

The example for the mean labeling of $T \hat{o} C_{6}$, where T is a T_{p}-tree with 11 vertices, is given in Figure 2.

Figure 2
Corollary 2.2. Let T be a T_{p}-tree on m vertices. Then the graph $T \odot K_{2}$ is a mean graph.

Proof. It follows from Theorem 2.1, by taking $n=3$.
Theorem 2.3. Let T be a T_{p}-tree on m vertices. Then the graph $T \tilde{o} C_{n}$ is a mean graph.

Proof. Let T be a T_{p}-tree with m vertices. By the definition of a T_{p}-tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T) E_{d}\right) \cup E_{P}$, where E_{d} is the set of edges deleted from T and E_{P} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPTs P used to arrive at the path $P(T)$. Clearly E_{d} and E_{P} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to other. Let $u_{1}^{i}, u_{2}^{i}, \ldots, u_{n}^{i}$ be the vertices of the $i^{\text {th }}$ copy of C_{n} for $1 \leq i \leq m$. Then $V\left(T \tilde{o} C_{n}\right)=\left\{v_{j}, u_{i}^{j}: 1 \leq\right.$ $i \leq n, 1 \leq j \leq m\}$ and $E\left(T \tilde{o} C_{n}\right)=E(T) \cup E\left(C_{n}\right) \cup\left\{v_{j} u_{1}^{j}: 1 \leq j \leq m\right\}$. Let

$$
n= \begin{cases}2 k+1 & \text { if } n \text { is odd } \\ 2 k & \text { if } n \text { is even. }\end{cases}
$$

Define $f: V\left(T \tilde{o} C_{n}\right) \rightarrow\{0,1,2,3, \ldots, q=(n+2) m-1\}$ as follows:

$$
\begin{aligned}
f\left(v_{2 i-1}\right) & =2(n+2)(i-1) & & \text { for } 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil, \\
f\left(v_{2 i}\right) & =2(n+2) i-1 & & \text { for } 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor .
\end{aligned}
$$

Case (i). n is odd.

$$
\begin{aligned}
f\left(u_{i}^{2 j-1}\right) & =2(n+2)(j-1)+(2 i-1) & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k+1, \\
f\left(u_{k+2}^{2 j-1}\right) & =2(n+2)(j-1)+n+1 & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, \\
f\left(u_{k+2+i}^{2 j-1}\right) & =2(n+2)(j-1)+n+1-2 i & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k-1, \\
f\left(u_{i}^{2 j}\right) & =2(n+2) j-2(i-1)-2 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k, \\
f\left(u_{k+1}^{2 j}\right) & =2(n+2) j-n-2 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, \\
f\left(u_{k+1+i}^{2 j}\right) & =2(n+2) j-n+2(i-1) & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k .
\end{aligned}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent

EPTs. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{equation*}
f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2}\right\rceil=(n+2)(i+t) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{f\left(v_{i+t}+f\left(v_{i+t+1}\right)\right.}{2}\right\rceil=(n+2)(i+t) \tag{2.6}
\end{equation*}
$$

Therefore from (2.5) and (2.6), $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.
Let $e_{i}^{j}=u_{i}^{j} u_{i+1}^{j}, e_{n}^{j}=u_{n}^{j} u_{1}^{j}$ for $1 \leq i \leq n-1,1 \leq j \leq m$.
For each vertex label f, the induced edge label f^{*} is defined as follows:

$$
\begin{aligned}
f^{*}\left(v_{i} v_{i+1}\right) & =(n+2) i & & \text { for } 1 \leq i \leq m-1, \\
f^{*}\left(v_{2 j-1} u_{1}^{2 j-1}\right) & =2(n+2)(j-1)+1 & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil \\
f^{*}\left(v_{2 j} u_{1}^{2 j}\right) & =2(n+2) j-1 & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil \\
f^{*}\left(e_{i}^{2 j-1}\right) & =2(n+2)(j-1)+2 i & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil \\
f^{*}\left(e_{k+1+i}^{2 j-1}\right) & =2(n+2)(j-1)+n-2(i-1) & & \text { for } \left.1 \leq i \leq k+\rceil \frac{m}{2}\right\rceil \\
f^{*}\left(e_{i}^{2 j}\right) & =2(n+2) j-2 i-1 & & 1 \leq i \leq k \\
f^{*}\left(e_{k+i}^{2 j}\right) & =2(n+2) j-n-1+2 i & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor \\
& & & 1 \leq i \leq k
\end{aligned}
$$

It can be verified that f is an mean labeling of $T \tilde{o} C_{n}$.
Case (ii). n is even.

$$
\begin{aligned}
f\left(u_{i}^{2 j-1}\right) & =2(n+2)(j-1)+(2 i-1) & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k+1, \\
f\left(u_{k+2}^{2 j-1}\right) & =2(n+2)(j-1)+n & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil \\
f\left(u_{k+2+i}^{2 j-1}\right) & =2(n+2)(j-1)+n-2 i & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k-2 \\
f\left(u_{i}^{2 j}\right) & =2(n+2) j-2(i-1)-2 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k+1, \\
f\left(u_{k+2}^{2 j}\right) & =2(n+2) j-n+1 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, \\
f\left(u_{k+2+i}^{2 j}\right) & =2(n+2) j-n+1+2 i & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k-2 .
\end{aligned}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent EPTs. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{equation*}
f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2}\right\rceil=(n+2)(i+t) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{f\left(v_{i+t}+f\left(v_{i+t+1}\right)\right.}{2}\right\rceil=(n+2)(i+t) \tag{2.8}
\end{equation*}
$$

Therefore from (2.7) and (2.8), $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.
Let $e_{i}^{j}=u_{i}^{j} u_{i+1}^{j}, e_{n}^{j}=u_{n}^{j} u_{1}^{j}$ for $1 \leq i \leq n-1,1 \leq j \leq m$.
For each vertex label f, the induced edge label f^{*} is defined as follows:

$$
\begin{aligned}
f^{*}\left(v_{i} v_{i+1}\right) & =(n+2) i & & \text { for } 1 \leq i \leq m-1 \\
f^{*}\left(v_{2 j-1} u_{1}^{2 j-1}\right) & =2(n+2)(j-1)+1 & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil \\
f^{*}\left(v_{2 j} u_{1}^{2 j}\right) & =2(n+2) j-1 & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil \\
f^{*}\left(e_{i}^{2 j-1}\right) & =2(n+2)(j-1)+2 i & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k \\
f^{*}\left(e_{k+i}^{2 j-1}\right) & =2(n+2)(j-1)+n+3-2 i & & \text { for } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq i \leq k \\
f^{*}\left(e_{i}^{2 j}\right) & =2(n+2) j-2 i-1 & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k \\
f^{*}\left(e_{k+i}^{2 j}\right) & =2(n+2) j-n+2(i-1) & & \text { for } 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor, 1 \leq i \leq k
\end{aligned}
$$

It can be verified that f is a mean labeling of $T \tilde{o} C_{n}$. Hence $T \tilde{o} C_{n}$ is a mean graph.

The example for the mean labeling of $T \tilde{o} C_{5}$, where T is a T_{p}-tree with 9 vertices, is given in Figure 3.

Figure 3
Theorem 2.4. Let T be a T_{p}-tree on m vertices. Then the graph $T @ P_{n}$ is a mean graph.

Proof. Let T be a T_{p}-tree with m vertices. By the definition of a T_{p}-tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T) E_{d}\right) \cup E_{P}$, where E_{d} is the set of edges deleted from T and E_{P} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPTs P used to arrive at the path $P(T)$. Clearly E_{d} and E_{P} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to other. Let $u_{1}^{j}, u_{2}^{j}, u_{3}^{j}, \ldots, u_{n}^{j}(1 \leq$ $j \leq m)$ be the vertices of $j^{t h}$ copy of P_{n}. Then $V\left(T @ P_{n}\right)=\left\{u_{i}^{j}: 1 \leq i \leq\right.$ $n, 1 \leq j \leq m$ with $\left.u_{n}^{j}=v_{j}\right\}$.

Define $f: V\left(T @ P_{n}\right) \rightarrow\{0,1,2,3, \ldots, q=m n-1\}$ as follows:

$$
\begin{aligned}
f\left(u_{i}^{2 j-1}\right) & =2(j-1) n+i-1 \text { for } 1 \leq i \leq n, 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil \\
f\left(u_{i}^{2 j}\right) & =(2 j-1) n+n-i \text { for } 1 \leq i \leq n, 1 \leq j \leq\left\lfloor\frac{m}{2}\right\rceil
\end{aligned}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let
P be a parallel transformation of T that contains P_{1} as one of the constituent EPTs. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{equation*}
f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2}\right\rceil=n(i+t) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{f\left(v_{i+t}+f\left(v_{i+t+1}\right)\right.}{2}\right\rceil=n(i+t) \tag{2.10}
\end{equation*}
$$

Therefore from (2.9) and (2.10), $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.
Let $e_{i}^{j}=u_{i}^{j} u_{i+1}^{j}$ for $1 \leq i \leq n-1,1 \leq j \leq m$.
For each vertex label f, the induced edge label f^{*} is defined as follows:

$$
\begin{aligned}
f^{*}\left(v_{i} v_{i+1}\right) & =n i & & \text { for } 1 \leq i \leq m-1 \\
f^{*}\left(e_{i}^{2 j-1}\right) & =2 n(j-1)+i & & \text { for } 1 \leq i \leq n-1,1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil \\
f^{*}\left(e_{i}^{2 j}\right) & =n(2 j-1)+n-i & & \text { for } 1 \leq i \leq n-1,1 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor
\end{aligned}
$$

It can be verified that f is an mean labeling of $T @ P_{n}$. Hence $T @ P_{n}$ is a mean graph.

The example for the mean labeling of $T @ P_{4}$, where T is a T_{p}-tree with 12 vertices, is given in Figure 4.

Figure 4

Theorem 2.5. Let T be a T_{p}-tree on m vertices. Then the graph $T\left(2 P_{n}\right.$ is a mean graph.

Proof. Let T be a T_{p}-tree with m vertices. By the definition of a T_{p}-tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T) \backslash E_{d}\right) \cup E_{P}$, where E_{d} is the set of edges deleted from T and E_{P} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the EPTs P used to arrive at the path $P(T)$. Clearly E_{d} and E_{P} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to other. Let $u_{1,1}^{j}, u_{1,2}^{j}, u_{1,3}^{j}, \ldots, u_{1, n}^{j}$ and $u_{2,1}^{j}, u_{2,2}^{j}, u_{2,3}^{j}, \ldots, u_{2, n}^{j}(1 \leq j \leq m)$ be the vertices of the two vertex disjoint paths joined with $j^{t h}$ vertex of T such that $v_{j}=u_{1, n}^{j}=u_{2, n}^{j}$. Then $V\left(T\right.$ (c) $\left.P_{n}\right)=\left\{v_{j}, u_{1, i}^{j}, u_{2, i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right.$ with $\left.v_{j}=u_{1, n}^{j}=u_{2, n}^{j}\right\}$.

Define $f: V\left(T \subset 2 P_{n}\right) \rightarrow\{0,1,2,3, \ldots, q=m(2 n-1)-1\}$ as follows:

$$
\begin{aligned}
f\left(u_{1, i}^{j}\right) & =(2 n-1)(j-1)+i-1 & & \text { for } 1 \leq i \leq n, 1 \leq j \leq m \\
f\left(u_{2, n+1-i}^{j}\right) & =(2 n-1)(j-1)+n+i-2 & & \text { for } 2 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i \leq j \leq m$ and let P_{1} be the EPT that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent EPTs. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{equation*}
f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)}{2}\right\rceil=(2 n-1)(i+t) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{f\left(v_{i+t}+f\left(v_{i+t+1}\right)\right.}{2}\right\rceil=(2 n-1)(i+t) \tag{2.12}
\end{equation*}
$$

Therefore from (2.11) and (2.12), $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.
Let $e_{1, i}^{j}=u_{1, i}^{j} u_{1, i+1}^{j}$ for $1 \leq i \leq n-1,1 \leq j \leq m, e_{2 i}^{j}=u_{2, i}^{j} u_{2, i+1}^{j}$ for $1 \leq i \leq n-1,1 \leq j \leq m$ and $e_{j}=v_{j} v_{j+1}$ for $1 \leq j \leq m-1$.

For each vertex label f, the induced edge label f^{*} is defined as follows:

$$
\begin{aligned}
f^{*}\left(v_{i} v_{i+1}\right) & =(2 n-1) i & & \text { for } 1 \leq i \leq m-1 \\
f^{*}\left(e_{1, i}^{j}\right) & =(2 n-1)(j-1)+i & & \text { for } 1 \leq i \leq n-1,1 \leq j \leq m \\
f^{*}\left(e_{2, n+1-i}^{j}\right) & =(2 n-1)(j-1)+n+i-2 & & \text { for } 2 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
$$

It can be verified that f is a mean labeling of T © $2 P_{n}$. Hence $T\left(2 P_{n}\right.$ is a mean graph.

The example for the mean labeling of $T \subset 2 P_{3}$, where T is a T_{p}-tree with 11 vertices, is given in Figure 5.

Figure 5

References

[1] F. Harary, Graph Theory, Addison Wesley, Massachusetts, (1972).
[2] P. Jeyanthi, D. Ramya and A. Maheswari, Mean Labeling of Some Trees, Utilitas Math., (To Appear).
[3] P. Jeyanthi and D. Ramya, On Construction of Mean graphs, (Preprint).
[4] R. Ponraj and S. Somasundaram, Further results on mean graphs, Proc. SACOEFERENCE,Dr. Sivanthi Aditanar College of Engineering, (2005) 443448.
[5] R. Ponraj and S. Somasundaram, Mean graphs obtained from mean graphs, (Preprint).
[6] M. A. Seoud and M. A. Salim, On Mean Graphs, Ars Combin., (To appear).
[7] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science letter, 26 (2003), 210-213.
[8] S. Somasundaram and R. Ponraj, Non - existence of mean labeling for a wheel, Bulletin of pure and Applied Sciences, (Section E Maths \& Statistics) 22E (2003), 103-111.
[9] S. Somasundaram and R. Ponraj, Some results on means graphs, Pure and Applied Mathematika Sciences, 58 (2003), 29-35.
[10] S. Somasundaram and R. Ponraj, On Mean graphs of order ≤ 5, Journal of Decision and Mathematical Sciences, 9(1-3) (2004), 48-58.
D. Ramya

Department of Mathematics
Dr. Sivanthi Aditanar College of Engineering
Tiruchendur-628 215, India
E-mail: aymar_padma@yahoo.co.in
P. Jeyanthi

Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur-628 215, India
E-mail: jeyajeyanthi@rediffmail.com

