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Abstract. Given two m-sectorial operators in a reflexive Banach space X, a
sufficient condition is presented for the family {T +κA; κ ∈ Σ c} to be holomor-
phic of type (A), where Σ is a closed convex region in the κ-plane such that ∂Σ
is the left branch of a hyperbola. The abstract formulation is almost identical
with Kato’s when X is a Hilbert space. However, ∂Σ is typically reduced to a
parabola when X is a Hilbert space. The m-sectoriality is a generalized notion
of the nonnegative selfadjointness so that Schrödinger operators with singular
potentials in the Lp-spaces (1 < p < ∞) are typical examples of the abstract
theory. In this connection a detailed analysis is given in the case of −∆+κ|x|−2.
This application is an Lp-generalization of Kato’s.
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§1. Introduction

This paper is concerned with holomorphic families of the Schrödinger operator
−∆+κV (x) in Lp = Lp(RN ), 1 < p < ∞, N ∈ N. Here V (x) is a nonnegative
potential with singularity at the origin or at infinity, and κ is a complex
parameter running outside a closed convex region Σ in the κ-plane. Namely,
we ask when {−∆ + κV (x); κ ∈ Σ c}, Σ c := C \ Σ, forms a family of closed
linear operators with constant domain in Lp. A solution of this problem with
p = 2 had already been given by Kato [9] using the abstract theory in the
Hilbert space setting. For example, put

Σ2 := {ξ + iη ∈ C; η2 ≤ 4(β0(2)− ξ)} = {ξ + iη ∈ C; ξ ≤ β0(2)− η2/4},
∗Partially supported by Grant-in-Aid for Scientific Research (C), No. 20540190.

185



186 Y. MAEDA AND N. OKAZAWA

where

(1.1) β0(2) := 1− (N − 2)2

4
= −(N − 4)N

4
∀ N ∈ N.

Then Kato proved that, in his terms, {−∆ + κ|x|−2; κ ∈ Σ c
2} forms a holo-

morphic family of type (A) in L2. His result means that this family consists
of closed operators with constant domain in L2. Later, Borisov-Okazawa [3]
proved that {d/dx + κx−1; κ ∈ Σ c

1} forms a holomorphic family of type (A)
in Lp(0,∞) (1 < p < ∞), where

Σ1 :=
{
κ ∈ C; Reκ ≤ − 1

p ′

} ( 1

p
+

1

p ′ = 1
)
.

Recently, Tamura [21] proved that {∆2+κ|x|−4; κ ∈ Σ c
4} forms a holomorphic

family of type (A) in L2, where

Σ4 := {ξ + iη ∈ C; η2 ≤ f(ξ), ξ ≤ 112− 3(N − 2)2};

however, f is too complicated to be stated here.
In this connection we note that the practical use of the holomorphic families

of type (A) and other types is exemplified in Kato [8].
Let T and A be two linear m-accretive operators in a Hilbert space H; the

domain and range of T are denoted by D(T ) and R(T ), respectively. Then
Kato gave two abstract theorems [9, Theorems 2.1 and 2.2] on holomorphic
families of the form {T +κA; κ ∈ Σ c}. For a general definition of holomorphic
families of type (A) see Definition 1 in Section 2. It seems from the viewpoint of
operator semigroups that [9, Theorem 2.1] deals with generators of “general”
contraction semigroups on H, while [9, Theorem 2.2] deals with generators of
“analytic” contraction semigroups. In [9, Theorem 2.1] he assumes that A−1

exists (but not necessarily bounded) and there is a constant a ∈ R such that

(1.2) lim sup
ε→0

(|ε|−1Re ε≥δ>0)

Re ((A+ ε)−1v, T ∗v) ≥ −a‖v‖2 ∀ v ∈ D(T ∗),

where T ∗ is the adjoint of T (and δ may depend on v). Under these conditions
he proves among others that {T + κA; Reκ > a} forms a holomorphic family
of type (A), that is, a typical case of Σ is the left half-plane:

(1.3) Σacc = {κ ∈ C; Reκ ≤ a}.

In this case the family maintains the m-accretivity for only real κ > a+ :=
max{a, 0}. Kato remarks that if A−1 is bounded, then (1.2) is equivalent to

(1.4) Re (A−1v, T ∗v) ≥ −a‖v‖2 ∀ v ∈ D(T ∗)
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which is identical with the condition introduced by Sohr [19] and [20]. For
an interesting characterization of condition (1.4) with a = 0 is presented by
Miyajima [10]. In his proof the notion of Yosida approximation is employed.

Now let {Aε; ε > 0} be the family of Yosida approximation of A:

Aε := A(1 + εA)−1 = ε−1[1− (1 + εA)−1], ε > 0.

Then the second author of the present paper introduced the following condition
for T + A (or its closure) to be m-accretive in H: there are constants a ≤ 1
and b, c ≥ 0 such that

(1.5) Re (Tu,Aεu) ≥ −a‖Aεu‖2 − b‖Aεu‖ · ‖u‖ − c‖u‖2 ∀ u ∈ D(T )

(see [12, Theorem 4.2 and Corollary 5.5]). As stated in [3, Introduction],
we can show that (1.5) is also a generalization of (1.4). It should be noted
further that A need not be invertible in condition (1.5). Inequalities of the
form (1.5) makes sense even in a (reflexive) Banach space X if we replace the
inner product (Tu,Aεu) with the semi-inner product (Tu, F (Aεu)):

(1.6) Re (Tu, F (Aεu)) ≥ −a1‖Aεu‖2 − b1‖Aεu‖ · ‖u‖ − c1‖u‖2

for all u ∈ D(T ), where F is the duality map on X to its adjoint X∗, that
is, (f, g) denotes the pairing between f ∈ X and g ∈ X∗. By virtue of
(1.6) we could generalize [9, Theorem 2.1] from the Hilbert space case to
the (reflexive) Banach space case (see [3, Theorems 2.2 and 2.4]). As an
application we considered the first order singular differential operator d/dx+
κx−1 in Lp(0,∞), 1 < p < ∞. However, a detailed analysis of the second
order singular differential operator such as d2/dx2 + κx−2 in Lp(0,∞) has
been left open over ten years.

In order to generalize [9, Theorem 2.2] let T and A be two linear m-sectorial
operators in a (reflexive) Banach spaceX (in applications in [9, Section 7] Kato
assumed in addition that T and A are also selfadjoint in L2). As introduced by
Goldstein [4, Definition 1.5.8] (see also Ouhabaz [17, p. 97]), a linear operator
T in X is said to be sectorial of type S(tan θ) if (Tu, F (u)) ∈ S(tan θ) for
u ∈ D(T ), where S(tan θ) is the sector defined by

(1.7) S(tan θ) :=


[ 0,∞) (θ = 0),

{z ∈ C; |Im z| ≤ (tan θ)Re z}
(
0 < θ <

π

2

)
,

{z ∈ C; Re z ≥ 0}
(
θ =

π

2

)
;

additionally, an accretive operator is sectorial of type S(tanπ/2) and a sec-
torial operator T is m-sectorial if R(1 + T ) = X. It should be noted that
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sectoriality (or more precisely, sectorial-valuedness) was first introduced in a
Hilbert space (see Kato [7, Section V.3.10]) as an extension of the notion of
nonnegative selfadjointness. In fact, a linear operator T is the generator of
an analytic contraction semigroup on X if and only if −T is an m-sectorial
operator in (reflexive) X (see [4, Theorem1.5.9 and Proposition 1.3.9]).

Given two linear m-sectorial operators T and A, we introduce, in addition
to (1.6), the bound on Im (Tu, F (Aεu)):

|Im (Tu, F (Aεu))|2(1.8)

≤ d1{Re(Tu, F (Aεu)) + a1‖Aεu‖2 + b1‖Aεu‖ · ‖u‖+ c1‖u‖2}
× {d2Re (Tu, F (Aεu)) + a2‖Aεu‖2 + b2‖Aεu‖ · ‖u‖+ c2‖u‖2}

for u ∈ D(T ), with a1d2 ≤ a2. Letting ε ↓ 0 in (1.8) with u ∈ D(T ) ∩D(A),
we have

|Im (Tu, F (Au))|2

≤ d1{Re(Tu, F (Au)) + a1‖Au‖2 + b1‖Au‖ · ‖u‖+ c1‖u‖2}
× {d2Re (Tu, F (Au)) + a2‖Au‖2 + b2‖Au‖ · ‖u‖+ c2‖u‖2}.

The closedness and m-accretivity of T + κA for a fixed κ is equivalent to that
of t(T+κA) = (tT )+κ(tA) for every t > 0. Therefore the essential parameters
in (1.6) and (1.8), with Aε replaced with A, seems to be aj and dj (j = 1,
2). In fact, (1.6) and (1.8) yield the “hyperbolic” region (bounded by the left
branch of a hyperbola) in terms of aj and dj (j = 1, 2):

(1.9) Σsec = {x+ iy ∈ C; y2 ≤ d1(x− a1)(d2x− a2), −∞ < x ≤ a1}

such that {T + κA; κ = x + iy ∈ Σ c
sec} forms a holomorphic family of type

(A) (see Theorems 3.1 and 3.3 below); note that Σ c
acc ⊂ Σ c

sec (if a1 = a) as a
consequence of the difference between accretivity and sectoriality.

Here we want to explain that our result (Theorems 3.1 and 3.3) below is
regarded as a generalization of [9, Theorem 2.2] to the (reflexive) Banach space
case. To this end we give a brief description of two examples of Σsec given by
(1.9). Let T := −∆ be the minus Laplacian in Lp = Lp(RN ), with domain
D(T ) := W 2, p(RN ). Then it is well-known recently that T is m-sectorial of
type S(cp) in Lp :

|Im (−∆u, F (u))| ≤ cpRe (−∆u, F (u)) ∀ u ∈ W 2, p(RN ),

where the best constant cp := |p− 2|/(2
√
p− 1) was found by Henry [6, p. 32]

(see also Okazawa [14] and Voigt [23]). Next, let A := |x|−2 be the maxi-
mal multiplication operator in Lp. Then −∆ + κ|x|−2 is an example of the
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Schrödinger operator in Lp for which the hyperbolic region is given by

Σp =
{
x+ iy ∈ C; y2 ≤ (x− β0(p))

[ | p− 2 |2

p− 1
x− a2

]
, −∞ < x ≤ β0(p)

}
,

with

a1 = β0(p) <
a2
d2

=
p− 1

| p− 2 |2
a2

(for the details see Theorem5.1 below). Letting p → 2, we see that a2 → 4
and the “hyperbolic” region Σp is reduced to the “parabolic” region (bounded
by a parabola)

(1.10) Σ2 = {x+ iy ∈ C; y2 ≤ 4(β0(2)− x), −∞ < x ≤ β0(2)}

as described in [9, Theorem7.1 and Example 7.4 (a)] (for the constant β0(2)
see (1.1)); note that

a2
d2

=
p− 1

| p− 2 |2
a2 → ∞ (p → 2),

while a1 = β0(p) remains bounded. This explains the restriction a1d2 ≤ a2
in (1.8). In this connection, if N ≥ 5 then −β0(2) = (N − 4)N/4 > 0 is
well-known as the constant in the Rellich inequality

(N − 4)N

4

∥∥|x|−2u
∥∥
L2 ≤ ‖(−∆)u‖L2 , u ∈ H2(RN ) ⊂ D(|x|−2)

(for a simple proof see, e.g., [16, Lemma 3.2]).
In the next example the potential is of harmonic oscillator type : T +κA =

−∆ + κ|x|2. In this case, computing for V (x) + α = |x|2 + α instead of
V (x) = |x|2 itself, we have the “hyperbolic” region Σp(α) (depending on α > 0)
defined by the following inequalities:

y2 ≤ p2

4(p− 1)

(
x− p− 1

4
ρ(α)

)( | p− 2 |2

p− 1
x− p2

4
ρ(α)

)
, −∞ < x ≤ p− 1

4
ρ(α),

where ρ(α) := 16/(27α 2). Letting α → ∞, we obtain the sector on the left
half-plane:

Σp(∞) =
{
x+ iy ∈ C; |y| ≤ −p | p− 2 |

2 (p− 1)
x, −∞ < x ≤ 0

}
.

This is a special case of Example 1 in Section 4. In this limiting process it
should be noted that the closedness of −∆ + κV (x) is equivalent to that of
−∆+κ[V (x)+α], while the maximality R(1−∆+κV (x)) = Lp is equivalent
to R(1−∆+ κ[V (x) + α]) = Lp if Reκ ≥ 0. Thus we see that if p → 2 then
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the sector Σp(∞) degenerates into the ray Σ2(∞) = (−∞, 0], as described in
[9, Section 7, Remark (b)].

Actually, Σ2 given by (1.10) and Σ2(∞) are typical examples of the closed
convex subset S which was employed by Kato in the second abstract theorem
[9, Theorem 2.2]. That is, our result forms a generalization of Kato’s to the
(reflexive) Banach space case.

This paper is divided into six sections. Section 2 is concerned with the
holomorphic family of type (A) of closed linear operators in a Banach space. In
Section 3 we prepare an abstract result (Theorems 3.1 and 3.3) for holomorphic
family of linear m-sectorial operators in a reflexive Banach space, satisfying
(1.6) and (1.8). We consider in Section 4 the general Schrödinger operator
−∆ + κV (x) in Lp. Detailed analysis of the inverse square potential case is
carried out in Section 5. The final Section 6 is concerned with the parabolic
Cauchy problem for the Schrödinger operator with inverse square potential.

§2. Preliminaries

Let T and A be two closed linear operators from a Banach space X to another
Y . Then we consider the operator

(2.1) T + κA with domain D0 := D(T ) ∩D(A),

where κ is a complex parameter and D0 is assumed to be non-trivial. We
want to ask if T +κA forms a holomorphic family of type (A) on a non-empty
complex region in the sense of Kato. To this end let us recall the general
definition of holomorphic family of type (A).

Definition 1 ([7, Section VII.2]). Let G0 be a domain in C. Then a family
{T (κ); κ ∈ G0} of linear operators (from X to Y ) is said to be holomorphic
of type (A) if

(i) T (κ) is closed for every κ ∈ G0, with D(T (κ)) = D0 independent of κ ;
(ii) T (κ)u is holomorphic with respect to κ ∈ G0 for every u ∈ D0.

In particular, if T (κ) is a linear function of κ as in (2.1) then only (i) is
required. In this case κ = 0 may be an exceptional point ; in fact, D(T ) =
D(T (0)) may differ from D(T ) ∩D(A) = D(T (κ)) with κ 6= 0.

Now we introduce the duality map F on X to X∗, the adjoint of X:

(2.2) F (v) := {f ∈ X∗; (v, f) = ‖v‖2 = ‖f‖2} ∀ v ∈ X.

Then we have the homogeneity of F : F (rv) = rF (v), r ≥ 0, and an answer to
the above-mentioned question is given in terms of (Tu, f), f ∈ F (Au).
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Proposition 2.1. Let T and A be closed linear operators from X to Y . As-
sume that for every u ∈ D0 there is f ∈ F (Au) such that

Re (Tu, f) ≥ − a1‖Au‖2 − b1‖Au‖ · ‖u‖ − c1‖u‖2,(2.3)

|Im (Tu, f)|2 ≤ d1{Re (Tu, f) + a1‖Au‖2 + b1‖Au‖ · ‖u‖+ c1‖u‖2}(2.4)

× {d2Re (Tu, f) + a2‖Au‖2 + b2‖Au‖ · ‖u‖+ c2‖u‖2},

where aj ∈ R, bj, cj, dj ≥ 0 are constants (j = 1, 2), with a1d2 ≤ a2. Let Σ
be the closed convex subset of C given by

(2.5) Σ := {x+ iy ∈ C; y2 ≤ d1(x− a1)(d2x− a2), −∞ < x ≤ a1}.

Then
(i) T + κA is closed for κ ∈ Σ c. In particular, if bj = cj = 0 (j = 1, 2), then

(2.6) ‖Au‖ ≤ dist(κ,Σ)−1‖(T + κA)u‖, u ∈ D0.

(ii) {T + κA; κ ∈ Σ c, κ 6= 0} forms a holomorphic family of type (A); κ = 0
is an exceptional point even if a1 < 0.

In the next lemma we prove an inequality which yields the (T + κA)-
boundedness of A (and hence of T ).

Lemma 2.2. Let T , A be closed operators from X to Y satisfying (2.3) and
(2.4). Define the following four functions of θ with |θ| < π/2 :

δ(θ) := 1 +
1

4
d1d2 tan

2 θ + i tan θ, α(θ) := a1 +
1

4
a2 d1 tan

2 θ,(2.7)

β(θ) := b1 +
1

4
b2 d1 tan

2 θ, γ(θ) := c1 +
1

4
c2 d1 tan

2 θ.(2.8)

Then, the following assertions hold.

(i) Let θ be an arbitrary angle with |θ| < π/2 and put δ = δ(θ), α = α(θ),
β = β(θ) and γ = γ(θ) for simplicity. Then for every u ∈ D0 there is
f ∈ F (Au) such that

(2.9) Re (Tu, δf) ≥ −α‖Au‖2 − β‖Au‖ · ‖u‖ − γ‖u‖2.

(ii) If κ is a complex number with Re {δ(θ)κ} > α(θ) for some θ with |θ| < π/2
(⇔ κ ∈ Σ c), then A is (T + κA)-bounded : for u ∈ D0,

‖Au‖ ≤ |δ| (Re {δ κ} − α)−1‖(T + κA)u‖(2.10)

+

[
β (Re {δ κ} − α)−1 +

√
γ (Re {δ κ} − α)−1

]
‖u‖,
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and hence T is also (T + κA)-bounded : for u ∈ D0,

‖Tu‖ ≤ [1 + |κ| · |δ| (Re {δ κ} − α)−1]‖(T + κA)u‖(2.11)

+ |κ|
[
β (Re {δ κ} − α)−1 +

√
γ(Re {δ κ} − α)−1

]
‖u‖.

Proof. Fix θ with |θ| < π/2. Then it follows from (2.4) that

Re (Tu, ei θf)− (cos θ)Re (Tu, f) = (sin θ)Im (Tu, f)

≥ − d
1/2
1 | sin θ|{Re (Tu, f) + a1‖Au‖2 + b1‖Au‖ · ‖u‖+ c1‖u‖2}1/2

× {d2Re (Tu, f) + a2‖Au‖2 + b2‖Au‖ · ‖u‖+ c2‖u‖2}1/2

= − 2(cos θ)1/2{Re (Tu, f) + a1‖Au‖2 + b1‖Au‖ · ‖u‖+ c1‖u‖2}1/2

× d
1/2
1 | sin θ|

2(cos θ)1/2
{d2Re (Tu, f) + a2‖Au‖2 + b2‖Au‖ · ‖u‖+ c2‖u‖2}1/2.

Applying the inequality 2ab ≤ a2 + b2, we have

Re (Tu, ei θf) ≥ − (sin θ)2

4 cos θ
d1d2Re (Tu, f)− α(cos θ)‖Au‖2

− β(cos θ)‖Au‖ · ‖u‖ − γ(cos θ)‖u‖2.

Thus we obtain (2.9) with α, β and γ given by (2.7) and (2.8).
Now let κ be a complex number with Re {δ(θ)κ} > α(θ) for some θ with

|θ| < π/2. Then it follows from (2.9) that

Re ((T + κA)u, δf) =Re (Tu, δf) + Re {δ κ}‖Au‖2

≥ (Re {δ κ} − α)‖Au‖2 − β ‖Au‖ · ‖u‖ − γ ‖u‖2

and hence

(Re {δ κ} − α)‖Au‖2 ≤ (|δ| · ‖(T + κA)u‖+ β ‖u‖)‖Au‖+ γ ‖u‖2

which implies (2.10) and (2.11). (We shall prove the equivalence κ ∈ Σ c ⇔
Re {δ(θ)κ} > α(θ) for some θ with |θ| < π/2 in the proof of Proposition
2.1.)

Proof of Proposition 2.1. Obviously, (2.10) and (2.11) imply that if κ is a
complex number with Re {δ(θ)κ} > α(θ), then T + κA is closed in X. Thus
it remains to prove the equivalence:

(2.12) κ ∈ Σ c ⇔ Re {δ(θ)κ} > α(θ) for some θ with |θ| < π/2.

First we have to determine the shape of Σ or its boundary ∂Σ. The key lies
in the equation Re {δ κ} = α. In fact, we see from (2.7) that the equation
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depends on the parameter tan θ (|θ| < π/2). Thus we have a one-parameter
family of lines on the (x, y)-plane:

Re {δ κ} − α = Re {δ (x+ iy)} − α(2.13)

=
(
1 +

1

4
d1d2 tan

2 θ
)
x+ (tan θ)y −

(
a1 +

1

4
a2d1 tan

2 θ
)
= 0.

Setting λ := tan θ ∈ R, these lines are rewritten as

(2.14) F (x, y, λ) :=
(
1 +

1

4
d1d2λ

2
)
x+ λy −

(
a1 +

1

4
a2d1λ

2
)
= 0.

Now it is easy to understand that ∂Σ is nothing but the envelope E of the
family (2.14). In fact, E is determined as

E = {x+ iy ∈ C; F (x, y, λ) = 0 = Fλ(x, y, λ)},

where Fλ(x, y, λ) = (1/2)d1d2λx + y − (1/2)a2d1λ. By a simple computation
we obtain

∂Σ = {x+ iy ∈ C; y2 = d1(x− a1)(d2x− a2), −∞ < x ≤ a1}

as required. Incidentally, for a fixed λ, (2.14) is a tangential line of ∂Σ at
(x0, y0) with

x0 =
a1 − (1/4)a2d1λ

2

1− (1/4)d1d2λ2
, y0 =

(1/2)(a2 − a1d2)d1λ

1− (1/4)d1d2λ2
.

In particular, we have (x0, y0) = (a1, 0) when λ = 0. Therefore we can conclude
that T + κA is closed for κ ∈ Σ c so that {T + κA; κ ∈ Σ c, κ 6= 0} forms a
holomorphic family of type (A).

Finally, we show that if bj = cj = 0 (j = 1, 2), then (2.10) is simplified as
(2.6). Given κ ∈ Σ c, we can find a supporting line ` to Σ such that

(2.15) dist(κ,Σ) = dist(κ, `),

where ` is one of the lines in the family (2.13). Therefore it suffices to remind
of the well-known formula

(2.16) dist(κ, `) = |δ|−1(Re {δ κ} − α).

It then follows from (2.10), (2.15) and (2.16) that

‖Au‖ ≤ dist(κ,Σ)−1‖(T + κA)u‖, u ∈ D0;

note that β = 0 = γ is a consequence of bj = 0 = cj (j = 1, 2). This completes
the proof of Proposition 2.1.
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Remark 1. In the perturbation theory of (unbounded) linear operators the
relative boundedness is a very popular condition (see [7, Section IV.1.1]). Now
suppose that A is T -bounded:

‖Au‖ ≤ a0‖u‖+ b0‖Tu‖, u ∈ D(T ) ⊂ D(A).

Then for every g ∈ F (Au) we have

(2.17) Re (Tu, g) ≥ −‖Tu‖ · ‖Au‖ ≥ −b0‖Tu‖2 − a0‖Tu‖ · ‖u‖.

This is obviously different from (2.3). We note that (2.17) is used by Borisov [2]
when X is a Hilbert space.

§3. Holomorphic families of linear m-sectorial operators

Let F be the duality map on a Banach space X to its adjoint X∗ (see (2.2)).
Then we begin with the definition of a sectorial operator in X.

Definition 2. A linear operator T inX is said to be sectorial of type S(tan θT )
if there is θT ∈ [0, π/2] such that for all u ∈ D(T ) there is a f ∈ F (u) satisfying

(3.1) (Tu, f) ∈ S(tan θT ),

where S(tan θT ) is the sector defined as (1.7) with θ = θT . In other words,
a linear operator T in X is sectorial of type S(tan θT ) if e

i θT is accretive for
every θ with |θ| ≤ π/2 − θT . In particular, T is m-sectorial in X if T is
sectorial of type S(tan θT ) and R(1 + T ) = X.

We say that an operator T in X is simply sectorial if T is sectorial of type
S(tan θ) for some θ ∈ [0, π/2].

Let T bem-sectorial in a reflexive space X. Then, since ei θT ism-accretive,
we have

Re (ei θTu, f) ≥ 0 ∀ f ∈ F (u), ∀ u ∈ D(T ), |θ| ≤ π/2− θT

(see Pazy [18, Theorem 1.4.6] and Tanabe [22, Theorem 2.1.5]). Therefore
we obtain (3.1) for all f ∈ F (u) and u ∈ D(T ). Thus we see that as for m-
sectorial operators in a reflexive space Definition 2 coincides with that given by
Goldstein [4, Definition 1.5.8]. Consequently, if T and A are two m-sectorial
operators in a reflexive space, then T +A is also sectorial.

Now let T and A be linear m-sectorial operators in a reflexive Banach
space X. In this section we consider the m-sectoriality of T +κA with domain
D0 = D(T ) ∩ D(A). Our basic assumption (A1) is stated in terms of the
Yosida approximation {Aε} of A:
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(A1) For every u ∈ D(T ) and ε > 0 there is fε ∈ F (Aεu) such that

Re (Tu, fε) ≥ −a1‖Aεu‖2 − b1‖Aεu‖ · ‖u‖ − c1‖u‖2,(3.2)

|Im (Tu, fε)|2(3.3)

≤ d1{Re (Tu, fε) + a1‖Aεu‖2 + b1‖Aεu‖ · ‖u‖+ c1‖u‖2}
× {d2Re (Tu, fε) + a2‖Aεu‖2 + b2‖Aεu‖ · ‖u‖+ c2‖u‖2},

where aj ∈ R, bj , cj , dj ≥ 0 (j = 1, 2) are constants, with a1d2 ≤ a2.
Then we have the first half of the main theorem in this section.

Theorem 3.1. Let T and A be linear m-sectorial operators in a reflexive
Banach space X. Assume that condition (A1) is satisfied. Let Σ be the closed
convex subset of C given by

(3.4) Σ = {x+ iy ∈ C; y2 ≤ d1(x− a1)(d2x− a2), −∞ < x ≤ a1}.

Then the following assertions hold :
(i) Let a1 ≥ 0. Then T +κA is closed for κ ∈ Σ c and hence {T +κA; κ ∈ Σ c}
forms a holomorphic family of type (A). In particular, if bj = cj = 0 (j = 1, 2),
then for u ∈ D0,

‖Au‖ ≤ dist(κ,Σ)−1‖(T + κA)u‖.
(ii) Let a1 < 0. Then 0 ∈ Σ c and A is T -bounded with T -bound less than or
equal to (−a1)

−1 = dist(0,Σ)−1 : for u ∈ D0 = D(T ),

(3.5) ‖Au‖ ≤ (−a1)
−1‖Tu‖+

[
b1(−a1)

−1 +
√

c1(−a1)−1
]
‖u‖.

Consequently, {T + κA; κ ∈ Σ c} forms a holomorphic family of type (A).

Proof. First we note that the constants in (3.2) and (3.3) are identical to those
in (2.3) and (2.4).

(i) In the same way as in the proof of Lemma 2.2 we can obtain

(3.6) Re (Tu, δfε) ≥ −α‖Aεu‖2 − β‖Aεu‖ · ‖u‖ − γ‖u‖2,

where α, β, γ and δ are the same as in (2.9). Hence we can obtain (2.10)
and (2.11) with A replaced with Aε. Since Aεu → Au for u ∈ D0, we have
(2.10) and (2.11) themselves. Therefore it follows from Proposition 2.1 that
{T + κA; κ ∈ Σ c} forms a holomorphic family of type (A).

(ii) Since −a1 > 0, it follows from (3.2) that

(−a1)‖Aεu‖2 ≤ (‖Tu‖+ b1‖u‖)‖Aεu‖+ c1‖u‖2,

which implies

‖Aεu‖ ≤ (−a1)
−1‖Tu‖+

[
b1(−a1)

−1 +
√

c1(−a1)−1
]
‖u‖, u ∈ D(T ).

Therefore we conclude that u ∈ D(A) and Aεu ⇀ Au as ε ↓ 0, with (3.5).
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Remark 2. The m-sectoriality of T and A was not used in the proof of
Theorem3.1. However, the notion is essential in applications in Sections 4
and 5.

Lemma 3.2. Assume that (A1) above and (A2) below are satisfied :

(A2) Let v ∈ X and ε > 0. Then Im (Aεv, g) = 0 for every g ∈ F (v), and

(v, gε) ≥ 0 so that Im (v, gε) = 0 ∀ gε ∈ F (Aεv).

Then (3.2) and (3.3) hold, with T replaced with T + λ (λ > 0).

In fact, we have Re (Tu, fε) ≤ Re ((T + λ)u, fε) for fε ∈ F (Aεu).

Here we note that condition (A2) means that A is symmetric and nonneg-
ative if X is a Hilbert space.

Theorem 3.3. Let T be a linear m-sectorial operator of type S(tan θT ) in
a reflexive Banach space X and let A be a linear m-sectorial operator in X.
Assume that conditions (A1) and (A2) are satisfied. Let Σ be the region as
in (3.4). Then in addition to (i), (ii) in Theorem3.1 one has

(iii) T + κA is m-accretive in X for κ ∈ Σ c with Reκ ≥ 0.

(iv) T + κA is m-sectorial of type S(tan θ) in X for θ ∈ [θT , π/2) and κ ∈ Σ c

with | arg κ| ≤ θ.

Assume further that bj = cj = 0 (j = 1, 2) in (A1). Then one has

(v) R− := (−∞, 0) belongs to the resolvent set of T + κA for κ ∈ Σ c.

(vi) In particular, if there exists a constant γ ≥ 0 such that

(3.7) Re (Tu, f) ≥ γ (Aεu, f), u ∈ D(T ), f ∈ F (u),

then T + κA is m-accretive in X for κ ∈ Σ c with Reκ ≥ −γ.

To prove Theorem3.3 we need the following

Lemma 3.4. Let A be a linear m-accretive operator in a reflexive Banach
space X.

(i) Let {uε} be a family in D(A) such that uε ⇀ u ∈ X (ε ↓ 0). If ‖Auε‖ are
bounded as ε tends to 0, then u ∈ D(A) and Auε ⇀ Au (ε ↓ 0).

(ii) Let {vε} be a family in X such that vε ⇀ u ∈ X (ε ↓ 0). If ‖Aεvε‖ are
bounded as ε tends to 0, then u ∈ D(A) and Aεvε ⇀ Au (ε ↓ 0).

Note that (ii) is reduced to (i) in Lemma 3.4. In fact, put uε := (1+εA)−1vε.
Then Auε = Aεvε is bounded and uε = vε − εAεvε ⇀ u (ε ↓ 0).
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Proof of Theorem3.3. (iii) Since (Aεu, f) is real-valued (see (A2)), we have

Re ((T + κAε)u, f) =Re (Tu, f) + (Aεu, f)Reκ, u ∈ D(T ), f ∈ F (u).

Therefore T + κAε (and hence T + κA) is accretive in X if κ ∈ Σ c with
Reκ ≥ 0. To prove the assertion it remains to show that

R(1 + T + κA) = X for κ ∈ Σ c with Reκ ≥ 0.

Let κ ∈ Σ c with Reκ ≥ 0. Since κAε is bounded and accretive in X, T + κAε

is m-accretive in X, that is, for every v ∈ X and ε > 0 there is uε ∈ D(T )
such that

uε + Tuε + κAεuε = v,

with ‖uε‖ ≤ ‖v‖. Thus we see from (2.10), (2.15) and (2.16) that

‖Aεuε‖ ≤
[
(2 + β|δ|−1) dist(κ,Σ)−1 +

√
γ|δ|−1 dist(κ,Σ)−1

]
‖v‖,

where δ is given by (2.7). This implies that v ∈ R(1 + T + κA) (cf. [11,
Proposition 2.2]; see [4, Exercises 1.6.12 (7)]).

(iv) Let θ be an angle with θT ≤ θ < π/2 and κ ∈ C with | arg κ| ≤ θ. Here
we may assume that κ 6= 0. Then condition (A2) yields that for every u ∈ D0

and f ∈ F (u),

|Im
(
(T + κA)u, f

)
| ≤ |Im

(
Tu, f)|+ (Au, f) |Imκ|

≤ (tan θT )Re (Tu, f) +
|Imκ|
Reκ

Re
(
κAu, f

)
=(tan θT )Re (Tu, f) +

∣∣tan(arg κ)∣∣Re (κAu, f
)

≤ (tan θ)Re
(
(T + κA)u, f

)
.

Since T +κA is m-accretive (see (iii) above), we see that T +κA is m-sectorial
of type S(tan θ) in X.

(v) Let κ ∈ Σ c. Then Re {δ(θ)κ} > α(θ) for some θ with |θ| < π/2 (see
(2.12)), where δ = δ(θ) and α = α(θ) are given by (2.7). Next let

t > α+ = α+(θ) := max{α, 0}.

Then we see that t/δ ∈ Σ c with Re {t/δ} > 0 and hence (T + (t/δ)A + λ)−1

exists for λ > 0 as a consequence of the m-accretivity of T +(t/δ)A. Therefore
(T + κA+ λ)−1 also exists for λ > 0. In fact, we can show that if λ > 0, then
the resolvent of T + κA is given by the Neumann series:

(T + κA+ λ)−1(3.8)

= (T + (t/δ)A+ λ)−1
∞∑
n=0

((t/δ)− κ)n[A(T + (t/δ)A+ λ)−1]n.
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To this end we have to show that

(3.9) ‖A(T + (t/δ)A+ λ)−1‖ ≤ |δ|(t− α)−1, λ > 0.

Now, it follows from (2.10) with T replaced with T + λ that

‖Au‖ ≤ |δ|(t− α)−1‖(T + (t/δ)A+ λ)u‖, u ∈ D0, λ > 0

(see Lemma3.2); note that β = γ = 0. Since T + (t/δ)A is m-accretive, we
obtain (3.9). Hence the resolvent (3.8) exists if κ satisfies

|(t/δ)− κ| · |δ|(t− α)−1 < 1 ⇔ |t− δ κ| < t− α.

Noting that

{κ ∈ C; ∃ θ such that Re {δ(θ)κ} > α(θ)}

=
∪

t>α+(θ)

{κ ∈ C; ∃ θ such that |t− δ(θ)κ| < t− α(θ)},

we can obtain the conclusion.

(vi) Let κ ∈ Σ c. Then, since (v) yields R(1+T +κA) = X, it suffices to note
that if Reκ+ γ ≥ 0,

Re ((T + κA)u, f) = lim
ε↓0

Re ((T + κAε)u, f) ≥ 0, u ∈ D0.

This completes the proof of Theorem3.3.

Remark 3. Borisov-Okazawa [3, Theorem2.4 (ii)] is false unless b = 0 = c in
(2.2).

§4. Application to Schrödinger operators in Lp(RN )

Let V ≥ 0 be a function in C1(RN ) (or in C1(RN \ {0})), N ∈ N. Then we
consider the Schrödinger operator −∆+ κV (x) in Lp = Lp(RN ), 1 < p < ∞,
with domain

W 2,p(RN ) ∩ {u ∈ Lp; V u ∈ Lp}

(for the domain characterization of −∆ see, e.g., Hempel-Voigt [5]). We shall
figure out the region Σ for which {−∆+κV (x); κ ∈ Σ c} forms a holomorphic
family of type (A). To do so we shall use Theorem3.3 with T := −∆ and A :=
A(α) := V (x) +α (α > 0) instead of V (x) itself. As stated in Introduction, T
is m-sectorial of type S(cp):

|Im (−∆u, F (u))| ≤ cpRe (−∆u, F (u)) ∀ u ∈ W 2,p(RN ).
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Here (f, g) denotes the pairing between f ∈ Lp and g ∈ Lp′ (p−1 + p′−1 = 1),
and (f, g) is linear in f and conjugate linear in g. Thus the computation
depends on the single-valued duality map on Lp: F (0) = 0 and

F (v)(x) := ‖v‖2−p|v(x)|p−2v(x), 0 6= v ∈ Lp.

As for A(α) its m-sectoriality is a simple consequence of the positivity of
V (x) + α. In fact, it is easy to see that R(1 +A(α)) = Lp, with

|Im (A(α)u, F (u))| = 0 ≤ Re (A(α)u, F (u)) = ‖u‖2−p

∫
RN

[V (x)+α]|u(x)|p dx.

Next we introduce the Yosida approximation A(α)ε of A(α): for v ∈ Lp and
ε > 0,

A(α)εv(x) := (V + α)ε(x)v(x)(4.1)

= (V (x) + α)[1 + ε(V (x) + α)]−1v(x).

Then we see that A(α)ε satisfies condition (A2):

Im (A(α)εv, F (v)) = 0, (v, F (A(α)εv)) ≥ 0 ∀ v ∈ Lp.

In this section we do not use the Yosida approximation of V (x) itself.
Now we assume that A(α) = V (x) + α satisfies

(V)ε (V + α)ε ∈ C1(RN ) and for every α > 0 and ε > 0 there is a constant
ρ(α) ≥ 0 (independent of ε > 0) such that

(4.2) |∇(V + α)ε(x)|2 ≤ ρ(α)[(V + α)ε(x)]
3 ∀ x ∈ RN .

Before stating the main theorem we want to give a sufficient condition for
(V)ε.

Proposition 4.1. Assume that V ∈ C1(RN ) and for every α > 0 there is a
constant ρ(α) ≥ 0 such that

(4.3) |∇V (x)|2 ≤ ρ(α)[V (x) + α]3 ∀ x ∈ RN .

Then V (x) satisfies condition (V)ε.

Proof. Since V ∈ C1(RN ), we see from (4.1) that

∇(V + α)ε(x) =
1

ε
∇
[
1− 1

1 + ε(V (x) + α)

]
=

∇V (x)

[1 + ε(V (x) + α)]2
.

Then it follows from (4.3) that

|∇(V + α)ε(x)|2 ≤ ρ(α)
[(V + α)ε(x)]

3

1 + ε(V (x) + α)
≤ ρ(α)[(V + α)ε(x)]

3.

This completes the proof.
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Let ρ(α) be as introduced in condition (V)ε. Then we assume further that

(4.4) ρ := lim
α→∞

ρ(α) < ∞

(for this class of potentials cf. Kato [9, Section 6]).

In terms of ρ we can obtain a generalization of Kato [9, Theorem 7.1].

Theorem 4.2. For the potential V (x) assume that condition (V)ε is satisfied,
together with (4.4). Define the hyperbolic region Σp(∞) as

(4.5) Σp(∞) :=
{
x+ iy ∈ C; y2 ≤ f(x), −∞ < x ≤ p− 1

4
ρ
}
,

where f is defined as

f(x) :=
p2

4(p− 1)

(
x− p− 1

4
ρ
)( | p− 2 |2

p− 1
x− p2

4
ρ
)
.

Then

(a) {−∆+ κV (x); κ ∈ Σp(∞) c} forms a holomorphic family of type (A).

(b) −∆+ κV (x) is m-accretive in Lp for κ ∈ Σp(∞) c with Reκ ≥ 0.

(c) −∆ + κV (x) is m-sectorial of type S(tan θ) in Lp for θ ∈ [tan−1 cp, π/2)
and κ ∈ Σp(∞) c with | arg κ| ≤ θ.

Proof. Let Σp(∞) be the region defined by (4.5). Then for κ ∈ Σp(∞) c we
prove the assertions (a), (b) and (c). Since Σp(∞) c is open, we see from (4.4)
that κ ∈ Σp(α)

c for sufficiently large α > 0, where Σp(α) is defined by (4.5)
with f and ρ replaced with fα and ρ(α), respectively:

Σp(α) :=
{
x+ iy ∈ C; y2 ≤ fα(x), −∞ < x ≤ p− 1

4
ρ(α)

}
,

fα(x) :=
p2

4(p− 1)

(
x− p− 1

4
ρ(α)

)( | p− 2 |2

p− 1
x− p2

4
ρ(α)

)
.

It is expected that Σp(α) is the region associated with T = −∆ and A(α) =
V + α. Therefore it suffices to prove the closedness, m-accretivity and m-
sectoriality of −∆ + κ[V (x) + α] for κ ∈ Σp(α)

c instead of (a), (b) and (c).
Since (A2) is already verified above, we are going to show that T = −∆ and
A(α)ε = (V + α)ε satisfy condition (A1): for u ∈ C∞

0 (RN ),

Re (Tu, F (A(α)εu)) ≥ −p− 1

4
ρ(α)‖A(α)εu‖2,(4.6)

|Im (Tu, F (A(α)εu))|2(4.7)

≤ p2

4(p− 1)

{
Re (Tu, F (A(α)εu)) +

p− 1

4
ρ(α)‖A(α)εu‖2

}
×

{ | p− 2 |2

p− 1
Re (Tu, F (A(α)εu)) +

p2

4
ρ(α)‖A(α)εu‖2

}
;
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note that C∞
0 (RN ) is a core for T . The proof is divided into three steps.

Step 1 [Proof of (4.6)]. It suffices to show that for u ∈ C∞
0 (RN ),

(4.8) Re (Tu, |A(α)εu|p−2A(α)εu)) ≥ −p− 1

4
ρ(α)‖A(α)εu‖p.

First we note that if 1 < p < 2, then

Re (Tu, |A(α)εu|p−2A(α)εu)) = lim
δ↓0

Re I(δ),

where

I(δ) := −
∫
RN

[(V + α)ε(x)]
p−1(|u(x)|2 + δ)(p−2)/2u(x)∆u(x) dx;

if p ≥ 2 then we may take δ = 0 so that the computation will be simpler. Thus
we restrict ourselves to the case of 1 < p < 2. Put Q(x) := [(V + α)ε(x)]

p−1.
Then integration by parts gives

I(δ) =

∫
RN

f(x, δ) dx+

∫
RN

g(x, δ) dx,(4.9)

where f(x, δ) := Q(x)(|u(x)|2 + δ)(p−2)/2|∇u(x)|2 and

g(x, δ) :=
{p− 2

2
∇|u(x)|2 + ∇Q(x)

Q(x)
(|u(x)|2 + δ)

}
·Q(x)(|u(x)|2 + δ)(p−4)/2u(x)∇u(x).

This yields that

Re I(δ)−
∫
RN

f(x, δ) dx = Re

∫
RN

g(x, δ) dx(4.10)

= (p− 2)

∫
RN

Q(x)|u(x)|2(|u(x)|2 + δ)(p−4)/2|∇|u(x)||2 dx

+

∫
RN

|u(x)|(|u(x)|2 + δ)(p−2)/2∇Q(x) · ∇|u(x)| dx.

Now suppose that supp u ⊂ B = B(0, R) for some R > 0. Then, applying the
Cauchy-Schwarz and geometric-arithmetic mean inequalities to

(|u(x)|2 + δ)(p−2)/2|u(x)|∇Q(x) · ∇|u(x)|,

we can obtain

Re I(δ) +
1

p2
J(δ)− δ

∫
RN

Q(x)(|u(x)|2 + δ)(p−4)/2|∇u(x)|2 dx(4.11)

≥
∫
RN

Q(x)|u(x)|2(|u(x)|2 + δ)(p−4)/2
(
|∇u(x)|2 −

∣∣∇|u(x)|
∣∣2) dx ≥ 0
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(note that |∇|u(x)|| ≤ |∇u(x)|), where

(4.12) J(δ) :=
p2

4(p− 1)

∫
B(0,R)

|∇Q(x)|2

Q(x)
(|u(x)|2 + δ)p/2 dx.

Here (4.2) in condition (V)ε applies to give

|∇Q(x)|2

Q(x)
≤ (p− 1)2ρ(α)[(V + α)ε(x)]

p.

Therefore we have

(4.13) −Re I(δ) ≤ 1

p2
J(δ) ≤ p− 1

4
ρ(α)‖A(α)ε(|u|2 + δ)1/2‖pLp(B).

Letting δ ↓ 0, we obtain (4.8); the computation stated above is essentially the
same as in [13, Proof of Theorem 2.1].

Step 2. Before computing the Im I(δ), we note that (4.11) is written as

| p− 2 |2
[
Re I(δ)−

∫
RN

f(x, δ) dx
]
+

| p− 2 |2

p2
J(δ)(4.14)

≥ − | p− 2 |2
∫
RN

Q(x)|u(x)|2(|u(x)|2 + δ)(p−4)/2
∣∣∇|u(x)|

∣∣2 dx.
Setting

h(x, δ) :=

∣∣∣∣p− 2

2
∇|u(x)|2 + ∇Q(x)

Q(x)
(|u(x)|2 + δ)

∣∣∣∣2
×Q(x)(|u(x)|2 + δ)(p−4)/2,

we have |g(x, δ)| ≤
√

f(x, δ)
√
h(x, δ) ; note that

f(x, δ) ≥ Q(x)|u(x)|2(|u(x)|2 + δ)(p−4)/2|∇u(x)|2.

Therefore the Cauchy-Schwarz inequality yields that

(4.15)

∣∣∣∣∫
RN

g(x, δ) dx

∣∣∣∣2 ≤ (∫
RN

f(x, δ) dx

)(∫
B(0,R)

h(x, δ) dx

)
.

Now we see that (4.10) can be written in terms of J(δ) and h(x, δ):

2(p− 2)
[
Re I(δ)−

∫
RN

f(x, δ) dx
]
+

4(p− 1)

p2
J(δ)

=

∫
B(0,R)

h(x, δ) dx

+ | p− 2 |2
∫
RN

Q(x)|u(x)|2(|u(x)|2 + δ)(p−4)/2
∣∣∇|u(x)|

∣∣2 dx.
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Combining this equality with (4.14), we obtain

(4.16)

∫
B(0,R)

h(x, δ) dx ≤ J(δ) + p(p− 2)[Re I(δ)−K(δ)],

where we have set

K(δ) :=

∫
RN

f(x, δ) dx.

Step 3 [Proof of (4.7)]. First by virtue of (4.9) and (4.15) we have that

|Im I(δ)|2 =
∣∣∣Im∫

RN

g(x, δ) dx
∣∣∣2 = ∣∣∣∫

RN

g(x, δ) dx
∣∣∣2 − ∣∣∣Re ∫

RN

g(x, δ) dx
∣∣∣2

≤
(∫

B(0,R)
h(x, δ) dx

)
K(δ)− |Re I(δ)−K(δ)|2.

Then we see from (4.16) that

|Im I(δ)|2 ≤
{
J(δ) + p(p− 2)[Re I(δ)−K(δ)]

}
K(δ)− |Re I(δ)−K(δ)|2

= − (p− 1)2[K(δ)]2

+
{
J(δ) + (p2 − 2p+ 2)Re I(δ)

}
K(δ)− |Re I(δ)|2.

By completing the square we have

|Im I(δ)|2 ≤ 1

4(p− 1)2
{
J(δ) + (p2 − 2p+ 2)Re I(δ)

}2 − |Re I(δ)|2

=
p2| p− 2 |2

4(p− 1)2

{
Re I(δ) +

1

p2
J(δ)

}{
Re I(δ) +

1

| p− 2 |2
J(δ)

}
.

It then follows from (4.13) that

|Im I(δ)|2 ≤ p2

4(p− 1)

{
Re I(δ) +

p− 1

4
ρ(α)‖A(α)ε(|u|2 + δ)1/2‖pLp(B)

}
×
{ | p− 2 |2

p− 1
Re I(δ) +

p2

4
ρ(α)‖A(α)ε(|u|2 + δ)1/2‖pLp(B)

}
.

Letting δ ↓ 0, we obtain (4.7). Thus for T and A(α)ε, (A1) is satisfied.

Example 1. V (x) := |x|2 l (l ∈ (−∞,−1)∪ [1,∞)). Then Theorem 4.2 yields
that

(a) {−∆+κ|x|2 l; κ ∈ Σp(∞) c} forms a holomorphic family of type (A), where
Σp(∞) is given by the following sector of the κ-plane:

Σp(∞) =
{
x+ iy ∈ C; |y| ≤ −p | p− 2 |

2 (p− 1)
x, −∞ < x ≤ 0

}
;
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(b) −∆+ κ|x|2 l is m-accretive in Lp for κ with Reκ ≥ 0;

(c) −∆ + κ|x|2 l is m-sectorial of type S(tan θ) in Lp for θ ∈ [tan−1 cp, π/2)
and κ with | arg κ| ≤ θ.

The proof is divided into two cases.

Case 1: l ≥ 1 (Harmonic oscillator type potential). Put

ρ(α) :=
4

27l
(l + 1)1+1/l(2l − 1)2−1/l 1

α1+1/l
.

Then we have

|∇V (x)|2

[V (x) + α]3
=

4l2|x|2(2l−1)

(|x|2l + α)3
≤ ρ(α).

In fact, we can obtain ρ(α) as the maximum of g(t) := 4l2t2l−1/(tl + α)3

(t := |x|2 ≥ 0). Therefore ρ(α) → 0 (α → ∞).

Case 2: l < −1. Put k := −l > 1. Then the Yosida approximation of V (x)+α
is given by

(V + α)ε(x) =
1 + α|x|2k

(1 + αε)|x|2k + ε
(ε > 0).

Put

ρ(α) :=
4

27k
(k − 1)1−1/k(2k + 1)2+1/k 1

α1−1/k
.

Then we have

|∇(V + α)ε(x)|2

[(V + α)ε(x)]3
≤ 4k2|x|2(k−1)

(1 + α|x|2k)3
≤ ρ(α).

In fact, we can obtain ρ(α) as the maximum of g(t) := 4k2tk−1/(1 + αtk)3

(t := |x|2 ≥ 0). Therefore ρ(α) → 0 (α → ∞). Thus we obtain the same
conclusion both in Case 1 and in Case 2.

Example 2 (Inverse square potential). V (x) := |x|−2. Then we have

|∇(V + α)ε(x)|2

[(V + α)ε(x)]3
≤ 4

(1 + α|x|2)3
≤ ρ(α) := 4 → 4 (α → ∞).

Hence we see from Theorem 4.2 that

(a) {−∆+κ|x|−2; κ ∈ Σp(∞) c} forms a holomorphic family of type (A), where
Σp(∞) is given by the following hyperbolic region of the κ-plane:

Σp(∞) =
{
x+ iy ∈ C; y2 ≤ f(x), −∞ < x ≤ p− 1

}
,
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and f is defined as

f(x) :=
p2

4(p− 1)

(
x− (p− 1)

)( | p− 2 |2

p− 1
x− p2

)
;

(b) −∆+ κ|x|−2 is m-accretive in Lp for κ ∈ Σp(∞) c with Reκ ≥ 0;

(c) −∆ + κ|x|−2 is m-sectorial of type S(tan θ) in Lp for θ ∈ [tan−1 cp, π/2)
and κ ∈ Σp(∞) c with | arg κ| ≤ θ.

§5. More about the case of −∆+ κ|x|−2 in Lp

In this section we shed new light on the Schrödinger operator −∆+ κ|x|−2 in
Lp = Lp(RN ) through detailed computation (1 < p < ∞, N ∈ N). As stated
above, T = −∆ with domain D(T ) = W 2,p(RN ) is m-sectorial in Lp, while
A = |x|−2 is also m-sectorial as a maximal multiplication operator in Lp and
its Yosida approximation is given by

Aε = A(1 + εA)−1 = (|x|2 + ε)−1, ε > 0.

It is easy to see that condition (A2) is satisfied (see the previous section). On
the other hand, to derive (A1) we have utilized only the quotient

|∇(|x|−2 + α)ε|2/[(|x|−2 + α)ε]
3.

As its consequence the boundary of Σp(∞) was given by the function with
constants depending only on p. However, some of those constants are already
known to depend also on N . Thus, we shall derive (A1) and (3.7) with sharp
constants: for u ∈ C∞

0 (RN ),

Re (Tu, F (Aεu)) ≥ − β0(p)‖Aεu‖2,(5.1)

|Im (Tu, F (Aεu))|2 ≤
{
Re (Tu, F (Aεu)) + β0(p)‖Aεu‖2

}
(5.2)

×
{ | p− 2 |2

p− 1
Re (Tu, F (Aεu)) + β1(p)‖Aεu‖2

}
,

Re (Tu, F (u)) ≥ γ0(p)(Au,F (u)) ≥ γ0(p)(Aεu, F (u)),(5.3)

where β0(p), β1(p) and γ0(p) depend not only on p but also on N :

β0(p) := p−2(p− 1)(2p−N)N (1 < p < ∞),

β1(p) :=


4 + 2N(p− 2) (2 ≤ p < ∞),

4

p− 1
+

2N

p
(2− p)2 (1 < p < 2),

γ0(p) := p−2(p− 1)(N − 2)2 (N ≥ 3).
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Note that β0(p) and γ0(p) are optimal (see [15, Section 5.2]).
Then as a consequence of Theorem3.3 we can state the following

Theorem 5.1. Let T = −∆, A = |x|−2 and

Σp =
{
x+ iy ∈ C; y2 ≤ (x− β0(p))

[ | p− 2 |2

p− 1
x− β1(p)

]
,−∞ < x ≤ β0(p)

}
.

(i) Let 2p ≥ N . Then T + κA = −∆+ κ|x|−2 is closed for κ ∈ Σ c
p , with∥∥|x|−2u

∥∥ ≤ dist(κ,Σp)
−1

∥∥(−∆+ κ|x|−2)u
∥∥, u ∈ W 2,p(RN ) ∩D(|x|−2),

and hence {T + κA;κ ∈ Σ c
p} forms a holomorphic family of type (A).

(ii) Let 2p < N . Then −β0(p) > 0 so that A is T -bounded with T -bound
[−β0(p)]

−1:∥∥|x|−2u
∥∥ ≤ p2

(p− 1)(N − 2p)N
‖(−∆)u‖, u ∈ W 2,p(RN ),

and hence {T + κA;κ ∈ Σ c
p} forms a holomorphic family of type (A).

(iii) If N = 1, 2, then T +κA is m-accretive in Lp for κ ∈ Σ c
p with Reκ ≥ 0.

(iv) T + κA is m-sectorial of type S(tan θ) in Lp for θ ∈ [tan−1 cp, π/2) and
κ ∈ Σ c

p with | arg κ| ≤ θ.

(v) R− = (−∞, 0) belongs to the resolvent set of T + κA for κ ∈ Σ c
p .

(vi) If N ≥ 3, then T+κA is m-accretive in Lp for κ ∈ Σ c
p with Reκ ≥ −γ0(p).

The conclusion of Theorem5.1 is a considerable improvement of Example 2.
In fact, let Σp and Σp(∞) be as in Theorem5.1 and Example 2, respectively.
Then, since β0(p) − (p − 1) = −p−2(p − 1)(p − N)2 ≤ 0, we see from the
computation of asymptotes that

Σp(∞) c ⊂ Σ c
p .

Actually, both (5.1) and (5.3) had already been proved in [15, Lemma3.5
and Theorem2.4]. As for (5.1) we shall give a simplified proof in Lemma5.3
below. In this connection we note that for N ≥ 3,

−γ0(p) ≤β0(p) when 2− 2

N
≤ p < ∞,

−γ0(p) ≥β0(p) when 1 < p ≤ 2− 2

N
.

Thus, in order to prove Theorem5.1 it remains to prove the most complicated
inequality (5.2). This will be done in Lemma5.6 below.

The next lemma is a new version of Hardy’s inequality.
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Lemma 5.2. Let v ∈ C1
0 (RN ) and δ > 0. Suppose that supp v ⊂ B(0, R) for

some R > 0. Then one has

N2

p2

∫
B(0,R)

(|v(x)|2 + δ)p/2 dx+
2N2δ

p(2− p)

∫
B(0,R)

(
|v(x)|2 + δ

)(p−2)/2
dx(5.4)

≤
∫
RN

|x|2|v(x)|2(|v(x)|2 + δ)(p−4)/2|∇v(x)|2 dx.

Consequently, if 1 < p < 2 then∫
RN

|x|2|v(x)|2(|v(x)|2 + δ)(p−4)/2|∇v(x)|2 dx(5.5)

≥ N2

p2

∫
B(0,R)

(|v(x)|2 + δ)p/2 dx.

On the other hand, if p ≥ 2 then one can set δ = 0 in (5.4):

(5.6)

∫
RN

|x|2|v(x)|p−2|∇v(x)|2 dx ≥ N2

p2

∫
RN

|v(x)|p dx.

These inequalities remain true even if v is replaced with |v| ∈ W 1, p(RN ) ∩
C0(RN ).

Remark 4. The right-hand side of (5.5) can be replaced with (N/p)2‖v‖p.
However, we need (5.5) itself at the end of the proof of Lemma5.3.

Proof of Lemma5.2. Let v ∈ C1
0 (RN ) and δ > 0. Then we have

0 ≤
∫
RN

|x|2|v(x)|2
(
|v(x)|2 + δ

)(p−4)/2
∣∣∣∣∇v(x) +

N

p

x

|x|2
v(x)

∣∣∣∣2 dx
≤

∫
RN

|x|2|v(x)|2
(
|v(x)|2 + δ

)(p−4)/2|∇v(x)|2 dx

+
N2

p2

∫
B(0,R)

(
|v(x)|2 + δ

)p/2
dx

+
N

p

∫
RN

|v(x)|2
(
|v(x)|2 + δ

)(p−4)/2
(x · ∇)|v(x)|2 dx.

The integrand of the third term on the right-hand side is rewritten as

|v(x)|2
(
|v(x)|2 + δ

)(p−4)/2
(x · ∇)|v(x)|2

=
(
|v(x)|2 + δ

)(p−2)/2
(x · ∇)|v(x)|2

− δ
(
|v(x)|2 + δ

)(p−4)/2
(x · ∇)|v(x)|2

=
2

p
(x · ∇)

(
|v(x)|2 + δ

)p/2 − 2 δ

p− 2
(x · ∇)

(
|v(x)|2 + δ

)(p−2)/2
.
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Therefore integration by parts gives

N

p

∫
RN

|v(x)|2
(
|v(x)|2 + δ

)(p−4)/2
(x · ∇)|v(x)|2 dx

= − 2N2

p2

∫
B(0,R)

(
|v(x)|2 + δ

)p/2
dx

− 2N2δ

p(2− p)

∫
B(0,R)

(
|v(x)|2 + δ

)(p−2)/2
dx.

Thus we obtain (5.4).

Lemma 5.3. Let T = −∆ and A = |x|−2. Then (5.1) holds :

Re (Tu, F (Aεu)) ≥ −β0(p)‖Aεu‖2, u ∈ C∞
0 (RN ), ε > 0.

Proof. For u ∈ C∞
0 (RN ) and ε > 0 let v := (|x|2 + ε)−1u = Aεu ∈ C∞

0 (RN ).
Then we can express Tu in terms of v as follows:

Tu = TA−1
ε v = −2Nv(x)− 2 (x · ∇)v(x)− div[(|x|2 + ε)∇v(x)].

Therefore, instead of (5.1), we shall show that

(5.7) Re I0(δ) ≥ −β0(p)‖(|v|2 + δ)1/2‖pLp(B),

where we assume that supp v ⊂ B = B(0, R) for some R > 0 and

(5.8) I0(δ) := (TA−1
ε v, (|v|2 + δ)(p−2)/2v).

In addition δ > 0 if 1 < p < 2, while δ = 0 if p ≥ 2. First we have

I0(δ) + 2N

∫
RN

|v(x)|2(|v(x)|2 + δ)(p−2)/2 dx(5.9)

=

∫
RN

(
f01(x, δ) + g0(x, δ)

)
dx

+ δ

∫
RN

(|x|2 + ε)(|v(x)|2 + δ)(p−4)/2|∇v(x)|2 dx,

where f0j(x, δ) (j = 1, 2) and g0(x, δ) are defined as follows:

f01(x, δ) := (|x|2 + ε)|v(x)|2(|v(x)|2 + δ)(p−4)/2|∇v(x)|2

≥ (|x|2 + ε)|v(x)|2(|v(x)|2 + δ)(p−4)/2
∣∣∇|v(x)|

∣∣2 =: f02(x, δ),

g0(x, δ) :=
{
−2(|v(x)|2 + δ)x+

p− 2

2
(|x|2 + ε)∇|v(x)|2

}
· (|v(x)|2 + δ)(p−4)/2v(x)∇v(x).
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The definition of g0(x, δ) and (5.9) respectively yield

Re

∫
RN

g0(x, δ) dx =
2N

p
‖(|v|2 + δ)1/2‖pLp(B)(5.10)

+ (p− 2)

∫
RN

f02(x, δ) dx,

Im

∫
RN

g0(x, δ) dx =Im I0(δ).(5.11)

Now it follows from (5.9) and (5.10) that

Re I0(δ) +
2 (p− 1)

p
N‖(|v|2 + δ)1/2‖pLp(B)

≥
∫
RN

(
f01(x, δ) + (p− 2)f02(x, δ)

)
dx

=(p− 1)

∫
RN

f01(x, δ) dx− (p− 2)

∫
RN

(
f01(x, δ)− f02(x, δ)

)
dx

=(p− 1)

∫
RN

f02(x, δ) dx+

∫
RN

(
f01(x, δ)− f02(x, δ)

)
dx.

Thus (5.5) and (5.6) with v replaced with |v| apply to give

Re I0(δ) +
2 (p− 1)

p
N‖(|v|2 + δ)1/2‖pLp(B)

−
∫
RN

(
f01(x, δ)− f02(x, δ)

)
dx

≥ (p− 1)

∫
RN

|x|2|v(x)|2(|v(x)|2 + δ)(p−4)/2
∣∣∇|v(x)|

∣∣2 dx
≥ p− 1

p2
N2‖(|v|2 + δ)1/2‖pLp(B).

Therefore we obtain a useful inequality

Re I0(δ) + β0(p)‖(|v|2 + δ)1/2‖pLp(B) ≥
∫
RN

(
f01(x, δ)− f02(x, δ)

)
dx ≥ 0,

which is more precise than (5.7). Letting δ ↓ 0, we have

Re (TA−1
ε v, |v|p−2v) = lim

δ ↓ 0
Re I0(δ) ≥ −β0(p)‖v‖p.

This is equivalent to (5.1).
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Now set

J0(δ) :=Re I0(δ) + β0(p)‖(|v|2 + δ)1/2‖pLp(B),

K0(δ) :=

∫
RN

(
f01(x, δ)− f02(x, δ)

)
dx

=

∫
RN

(|x|2 + ε)|v(x)|2(|v(x)|2 + δ)(p−4)/2
(
|∇v(x)|2 −

∣∣∇|v(x)|
∣∣2) dx.

In the proof of the previous lemma we have established the following

Lemma 5.4. For v ∈ C∞
0 (RN ) let f0j(x, δ) be as in the proof of Lemma5.3

(j = 1, 2). Then one has∫
RN

f01(x, δ) dx−
(N
p

)2
‖(|v|2 + δ)1/2‖pLp(B) ≤

J0(δ)

p− 1
+

p− 2

p− 1
K0(δ);(5.12)

K0(δ)

p− 1
+

∫
RN

f02(x, δ) dx ≤ Re I0(δ)

p− 1
+

2N

p
‖(|v|2 + δ)1/2‖pLp(B);(5.13)

0 ≤ K0(δ) ≤ J0(δ).(5.14)

Next we can prepare a lemma in terms of f0j(x, δ) and K0(δ) that will be
basic for the precise estimate of Im (TA−1

ε v, |v|p−2v).

Lemma 5.5. For v ∈ C∞
0 (RN ) let f0j(x, δ), g0(x, δ) be as in the proof of

Lemma5.3 (j = 1, 2). Set

h0(x, δ) :=

∣∣∣∣p− 2

2
(|x|2 + ε)1/2∇|v(x)|2 − 2

|v(x)|2 + δ

(|x|2 + ε)1/2
x

∣∣∣∣2
× (|v(x)|2 + δ)(p−4)/2.

Assume that supp v ⊂ B(0, R) for some R > 0. Then one has∫
B(0,R)

h0(x, δ) dx(5.15)

≤
[
4 +

4N

p
(p− 2)

]
‖(|v|2 + δ)1/2‖pLp(B) + | p− 2 |2

∫
RN

f02(x, δ) dx;

(F1H)(δ)−
∣∣∣Re ∫

RN

g0(x, δ) dx
∣∣∣2(5.16)

≤ 4 ‖(|v|2 + δ)1/2‖pLp(B)

[∫
RN

f01(x, δ) dx−
(N
p

)2
‖(|v|2 + δ)1/2‖pLp(B)

]
+

[4N
p

(p− 2)‖(|v|2 + δ)1/2‖pLp(B) + | p− 2 |2
∫
RN

f02(x, δ) dx
]
K0(δ),
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where we have set

(F1H)(δ) :=
(∫

RN

f01(x, δ) dx
)(∫

B(0,R)
h0(x, δ) dx

)
.

Proof. It follows from the definition of h0(x, δ) that

h0(x, δ)− | p− 2 |2f02(x, δ)

=
4 |x|2

|x|2 + ε
(|v(x)|2 + δ)p/2 − 4

p
(p− 2)(x · ∇)(|v(x)|2 + δ)p/2.

Integrating this equality over the ball B(0, R), we obtain (5.15). Then it
follows from (5.15) and the definition of K0(δ) that

(F1H)(δ)

≤
[
4 +

4N

p
(p− 2)

]
‖(|v|2 + δ)1/2‖pLp(B)

(∫
RN

f01(x, δ) dx
)

+ | p− 2 |2
(∫

RN

f01(x, δ) dx
)(∫

RN

f02(x, δ) dx
)

=4 ‖(|v|2 + δ)1/2‖pLp(B)

(∫
RN

f01(x, δ) dx
)
−

(2N
p

)2
‖(|v|2 + δ)1/2‖2pLp(B)

+
[4N

p
(p− 2)‖(|v|2 + δ)1/2‖pLp(B) + | p− 2 |2

∫
RN

f02(x, δ) dx
]
K0(δ)

+

∣∣∣∣2Np ‖(|v|2 + δ)1/2‖pLp(B) + (p− 2)
(∫

RN

f02(x, δ) dx
)∣∣∣∣2.

Therefore (5.16) is a consequence of (5.10).

Now we are in a position to derive the estimate of Im (TA−1
ε v, |v|p−2v) in

terms of Re (TA−1
ε v, |v|p−2v).

Lemma 5.6. Let T = −∆ and A = |x|−2. Then the inequality (5.2) holds :
for all u ∈ C∞

0 (RN ), ε > 0,

|Im (Tu, F (Aεu))|2 ≤
{
Re (Tu, F (Aεu)) + β0(p)‖Aεu‖2

}
×

{ | p− 2 |2

p− 1
Re (Tu, F (Aεu)) + β1(p)‖Aεu‖2

}
.

Proof. As in the proof of Lemma5.3 we set v := (|x|2 + ε)−1u = Aεu ∈
C∞
0 (RN ) for u ∈ C∞

0 (RN ). Let I0(δ) be as defined in (5.8). Then we shall
show that for v with supp v ⊂ B = B(0, R) for some R > 0,

|Im I0(δ)|2 ≤
{
Re I0(δ) + β0(p)‖(|v|2 + δ)1/2‖pLp(B)

}
(5.17)

×
{ | p− 2 |2

p− 1
Re I0(δ) + β1(p)‖(|v|2 + δ)1/2‖pLp(B)

}
.
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Since |g0(x, δ)| ≤
√
f01(x, δ)

√
h0(x, δ), the Cauchy-Schwarz inequality yields

(5.18)
∣∣∣∫

RN

g0(x, δ) dx
∣∣∣2 ≤ (F1H)(δ).

It then follows from (5.12) and (5.16) that

(F1H)(δ)−
∣∣∣Re ∫

RN

g0(x, δ) dx
∣∣∣2(5.19)

≤ 4

p− 1
‖(|v|2 + δ)1/2‖pLp(B)J0(δ)

+
[
4
(N
p

+
1

p− 1

)
(p− 2)‖(|v|2 + δ)1/2‖pLp(B)

+ | p− 2 |2
∫
RN

f02(x, δ) dx
]
K0(δ).

In this way we can compute |Im I0(δ)|. In fact, (5.11) and (5.18) yield that

|Im I0(δ)|2 =
∣∣∣∫

RN

g0(x, δ) dx
∣∣∣2−∣∣∣Re ∫

RN

g0(x, δ) dx
∣∣∣2

≤ (F1H)(δ)−
∣∣∣Re ∫

RN

g0(x, δ) dx
∣∣∣2.

Therefore we see from (5.19) that

|Im I0(δ)|2 ≤
4

p− 1
‖(|v|2 + δ)1/2‖pLp(B)J0(δ)(5.20)

+ 4
(N
p

+
1

p− 1

)
(p− 2)‖(|v|2 + δ)1/2‖pLp(B)K0(δ)

+ | p− 2 |2
{K0(δ)

p− 1
+

∫
RN

f02(x, δ) dx
}
K0(δ)

− | p− 2 |2

p− 1
[K0(δ)]

2.

Applying (5.13) to the third term (and dropping the fourth term) on the
right-hand side of (5.20), we have

|Im I0(δ)|2 ≤
4

p− 1
‖(|v|2 + δ)1/2‖pLp(B)J0(δ)(5.21)

+ 4
(N
p

+
1

p− 1

)
(p− 2)‖(|v|2 + δ)1/2‖pLp(B)K0(δ)

+ | p− 2 |2
{ Re I0(δ)

p− 1
+

2N

p
‖(|v|2 + δ)1/2‖pLp(B)

}
K0(δ).
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Now in order to use (5.14) we have to divide our computation into two cases.
In fact, the second term on the right-hand side of (5.21) contains the factor
(p− 2) so that the computation depends on its sign.

Case 1: 2 ≤ p < ∞. Here we can set δ = 0 and apply (5.14) to (or replace
K0(0) with J0(0) in) the second and third terms on the right-hand side of
(5.21). Then |Im I0(0)|2 is less than or equal to J0(0) multiplied by

4

p− 1
‖v‖p + | p− 2 |2

p− 1
Re I0(0)

+ 2
(2N

p
+

2

p− 1
+

N

p
(p− 2)

)
(p− 2)‖v‖p

=
(p− 2)2

p− 1
Re I0(0) + [4 + 2N(p− 2)]‖v‖p.

Thus we obtain (5.17) (with p ≥ 2 and δ = 0) which is equivalent to (5.2).

Case 2: 1 < p < 2. In this case we note that the second term on the right-
hand side of (5.21) is nonpositive. So we have

|Im I0(δ)|2 ≤
4

p− 1
‖(|v|2 + δ)1/2‖pLp(B)J0(δ)

+ | p− 2 |2
{ Re I0(δ)

p− 1
+

2N

p
‖(|v|2 + δ)1/2‖pLp(B)

}
K0(δ).

Now (5.14) yields that |Im I0(δ)|2 is less than or equal to J0(δ) multiplied by

4

p− 1
‖(|v|2 + δ)1/2‖pLp(B) +

| p− 2 |2

p− 1
Re I0(δ)

+
2N

p
| p− 2 |2‖(|v|2 + δ)1/2‖pLp(B)

=
(2− p)2

p− 1
Re I0(δ) +

[ 4

p− 1
+

2N

p
(2− p)2

]
‖(|v|2 + δ)1/2‖pLp(B).

Letting δ ↓ 0, we can obtain the inequality which is equivalent to (5.2) with
p ∈ (1, 2).

§6. Concluding remark

Here we want to give a rough description of the solvability of the Cauchy
problem for N ≥ 3:

(6.1)


∂u

∂t
−∆u+

κ

|x|2
u = 0, (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(x), x ∈ RN
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together with a conjecture. Let Σp be the region as in Section 5. Then, since
T + κA = −∆+ κ|x|−2 is m-accretive in Lp for κ ∈ Σ c

p with Reκ ≥ −γ0(p),
−(T + κA) generates a contraction semigroup {exp(−t(T + κA)); t ≥ 0} on
Lp. Therefore for every u0 ∈ W 2,p(RN ) ∩D(|x|−2) a unique solution to (6.1)
is given by exp(−t(T + κA))u0. Here we note that

−γ0(2) = −(N − 2)2

4
≤ −(N − 2)2

p p′
= −γ0(p) ∀ p ∈ [1,∞).

In fact, we have
1

p p′
≤ p− 1

p2
+
(1
p
− 1

2

)2
=

1

4
.

Thus the lower bound of Re κ for which (6.1) is solvable may be given by
−γ0(2). Therefore we may restrict ourselves to the case of p = 2.

Let κ ∈ Σ2 with Reκ ≥ −γ0(2) and assume that there exists θ with |θ| <
π/2 such that

|Imκ| ≤ (tan θ)(Reκ+ γ0(2)).

Then we can show that T +κA is sectorial in L2. In fact, it follows from (5.3)
that

|Im ((T + κA)u, u)| = |Imκ|(Au, u)

≤ (tan θ)(Reκ+ γ0(2))(Au, u)

≤ (tan θ)
(
(Au, u)Reκ+ (Tu, u)

)
=(tan θ)Re ((T + κA)u, u).

Now let F be the Friedrichs extension of T+κA (see, e.g., [7] or [17]). Then F
is m-sectorial in L2 and hence −F generates an analytic contraction semigroup
{exp(−tF ); t ≥ 0} on L2. Therefore a unique solution to (6.1) is given by
exp(−tF )u0 for every u0 ∈ L2. Though the argument is not perfect, the above
observation roughly explains the solvability of (6.1) for κ with Reκ ≥ −γ0(2).

On the other hand, Baras-Goldstein [1] have shown that there exists no
solution to (6.1) with u0 ≥ 0 (u0 6≡ 0) for κ ∈ R with κ < −γ0(2). Thus we
may conjecture that there exists no solution to (6.1) with u0 ≥ 0 (u0 6≡ 0) for
κ ∈ C with Reκ < −γ0(2).
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