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Abstract. Let G = (V,E) be a connected graph. For a set S ⊆ V , the
differential of S, denoted by ∂(S), is defined to be ∂(S) = |B(S)| − |S|, where
B(S) = N(S) ∩ (V − S). A set S ⊆ V is said to be a positive differential set if
∂(S) ≥ 0. A partition {V1, V2, . . . , Vk} of V is said to be a positive differential
chromatic partition of G if each Vi is both independent and positive differential.
The minimum order of a positive differential chromatic partition of G is called
the differential chromatic number of G and is denoted by χ∂(G). In this paper
we initiate a study of this parameter.
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§1. Introduction

By a graph G = (V,E), we mean a finite, undirected graph with neither loops
nor multiple edges. For graph theoretic terminology we refer to Chartrand
and Lesniak [1]. All graphs in this paper are assumed to be connected with
at least two vertices. For a vertex v ∈ V , the open neighborhood of v is the
set N(v) = {u ∈ V |uv ∈ E} and the closed neighborhood is the set N [v] =
N(v)∪ {v}. For a set S ⊆ V , its open neighborhood is N(S) = ∪v∈SN(u) and
the closed neighborhood is N [S] = N(S) ∪ S. The subgraph induced by S is
denoted as G[S].

Consider the game where you are allowed to buy as many tokens as you
like at a cost of $1 each. For example, suppose that you buy k tokens. You
then place the tokens on some subset of k vertices of G. For each vertex of G
which has no token on it, but is adjacent to a vertex with a token on it, you
receive $1 from the bank. Your objective is to maximize your profit, that is,
the total value received from the bank minus the cost of the tokens bought.
Notice that you do not receive any credit for the vertices in which you place
a token.
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The above game can be mathematically formulated as follows. For a set
S ⊆ V , the boundary B(S) of S is to be defined B(S) = N(S) ∩ (V − S) and
then the differential ∂(S) of S is to be defined ∂(S) = |B(S)| − |S|. Now,
the differential of the graph G, denoted by ∂(G), is defined to be ∂(G) =
max{∂(S) : S ⊆ V }. Thus, for the given graph G, maximizing the profit as
mentioned in the game is equivalent to determining the value of ∂(G).

The differential ∂(S) of a set was introduced by Hedetniemi [4] and also was
considered by Goddard and Henning [3] who denoted it by η(S). Obviously,
the differential of a set in a graph may be positive or negative or may be zero.
However, since it has been proved in [5] that ∂(G) ≥ ∆(G)− 1, it follows that
the differential of a graph without isolated vertices is either positive or zero.
Hence one need not consider the sets of negative differential while determining
∂(G) and so the sets of zero or positive differential play a vital role in the game.
Motivated by this observation we take interest on such sets, that is, the sets of
zero or positive differential and call these sets as positive differential set. (Here
we use the term “positive differential set” in the sense that by the choice of
those sets where the tokens bought are to be placed, one will not lose money,
whether or not one gains money). However, our main focus in this paper is not
on the study of the positive differential sets, but on the problem of partitioning
V into independent positive differential sets, that is, positive differential sets
in which no two vertices are adjacent. That is, we consider the partition
of V into independent positive differential sets and we call this partition as
positive differential chromatic partition and the minimum order of a positive
differential chromatic partition of G is called the differential chromatic number
of G and we denote it by χ∂(G). Also we use the term χ∂-partition to denote
a positive differential partition of order χ∂ . In this paper we initiate a study
of this parameter.

§2. Differential Chromatic Number

In this section, we determine the value of the differential chromatic number
for some families of graphs such as paths, cycles, complete graphs, wheels,
complete multipartite graphs and complete binary trees.

Since it is straightforward to determine the value of the differential chro-
matic number for the above mentioned graphs, we just state them without
proof.

Proposition 1. (i) For the paths Pn and cycles Cn on n vertices,

χ∂(Pn) = χ∂(Cn) =

{
3 if n is odd,

2 if n is even.
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(ii) If Wn is a wheel on n vertices, then

χ∂(Wn) =

{
4 if n is even,

3 if n is odd.

Proposition 2. Let G = Km1,m2,...,mk
be a complete k-partite graph with

m1 ≥ m2 ≥ · · · ≥ mk ,mk ≥ 1,k ≥ 2 and let N =

k∑
i=2

mi. Then

χ∂(G) =

k +

⌈
m1 −N

N

⌉
if N < m1,

k otherwise.

Proof. Let G be a complete k-partite graph with k-partition (X1, X2, . . . , Xk).
Let |Xi| = mi, where i = 1, 2, . . . , k. Clearly each Xi, where 2 ≤ i ≤ k,
is a positive differential set. Now, if N ≥ m1, then X1 is also a positive
differential set so that the k-partition (X1, X2, . . . , Xk) ofG itself is a minimum
positive differential chromatic partition of G. Hence χ∂(G) = k. If N < m1,
let X1 = {x1, x2, . . . , xm1}. Then {{x1, x2, . . . , xN}, {xN+1, xN+2, . . . , x2N},
{x2N+1, x2N+2, . . . , x3N}, {x3N+1, x3N+2, . . . , x4N}, . . . , {xrN , xrN+1, xrN+2,
. . . , xm1}, X2, X3, . . . , Xk}, where r =

⌈
m1−N

N

⌉
is clearly a minimum positive

differential chromatic partition of G. Hence χ∂(G) = k +

⌈
m1 −N

N

⌉
.

Corollary 1. For a complete graph Kn on n vertices, χ∂(Kn) = n.

Proposition 3. If G is a complete binary tree, then χ∂(G) = 3.

Proof. Let G be a k-level complete binary tree, where k ≥ 1. Let vij denote
the jth vertex in the ith level. We consider the following cases.

Case 1. k is odd

Let A = {vkj : j = 1, 2, 5, 6, 9, 10, . . . , 2k− 3, 2k− 2},
B = {vk−1,j : j = 2, 4, 6, . . . , 2k− 1},
C = {vmj : 0 ≤ m ≤ k and 1 ≤ j ≤ 2m− 3,where m is odd},
V1 = A ∪B ∪ C,

V2 = {vmj : 0 ≤ m ≤ k and 1 ≤ j ≤ 2m− 2,where m is even},
V3 = V − {V1 ∪ V2}.
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Case 2. k is even

Let A = {vkj : j = 1, 2, 5, 6, 9, 10, . . . , 2k− 4, 2k− 3},
B = {vk−1,j : j = 2, 4, 6, . . . , 2k− 1},
V1 = A ∪B,

C = {vmj : 0 ≤ m ≤ k and 0 ≤ j ≤ 2m− 3,where m is odd},
D = {vk,k−2},
V2 = C ∪D,

V3 = V − {V1 ∪ V2}.

Thus in both the cases {V1, V2, V3} forms a positive differential chromatic
partition of G and hence χ∂(G) ≤ 3. Now, since a complete binary tree is a
bipartite graph with parts of unequal size, we have χ∂(G) ≥ 3 (see Theorem
1). Thus χ∂(G) = 3.

§3. Bounds on χ∂(G)

In this section, we establish some bounds on χ∂(G) in terms of order of the
graph and some well known parameters such as chromatic number, indepen-
dent domination number, induced paired domination number and packing
number. Further we obtain an upper bound for trees in terms of the maxi-
mum degree. All graphs considered in this section are of order n.

Theorem 1. For any graph G, we have 2 ≤ χ∂(G) ≤ n. Further, χ∂(G) = 2
if and only if G is a bipartite graph with parts of equal size and χ∂(G) = n if
and only if G is either a star or a complete graph.

Proof. Obviously 2 ≤ χ∂(G) ≤ n. Suppose χ∂(G) = 2. Let {V1, V2} be a
positive differential partition of G. Now, since V1 is a positive differential set,
we have |N(V1)| ≥ |V1| and since |N(V1)| ≤ |V2|, it follows that |V2| ≥ |V1|.
Similarly |V1| ≥ |V2| and hence |V1| = |V2|. Also if G is a bipartite graph with
parts of equal size, then χ∂(G) = 2.

Now, suppose χ∂(G) = n. Then G has no independent positive differential
set with more than one vertex. If G is a star we are through. Otherwise we
claim that G is complete. Suppose G has two non-adjacent vertices, say u and
v. If x and y are neighbours of u and v respectively, then x = y, for otherwise
{u, v} will be an independent positive differential set in G. Further, since G
is connected and is not a star, either u or v is adjacent to a vertex w other
than x so that {u, v} is again an independent positive differential set, which
is a contradiction and hence G is complete. Conversely if G is either complete
or a star then clearly χ∂(G) = n.
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Theorem 2. Let G be a non-complete graph. Then χ∂(G) = n−1 if and only
if G contains Kn−1 as an induced subgraph, where n ≥ 4.

Proof. Suppose G contains Kn−1 as an induced subgraph. Let V = {v1,
v2, . . . , vn}. Since G is a non-complete graph, there exist two vertices vi and
vj , where 1 ≤ i, j ≤ n, which are not adjacent. Without loss of generality,
let vn and v1 be non-adjacent. Then {{v1, vn}, {v2}, {v3}, . . . , {vn−1}} is a
positive differential chromatic partition of G so that χ∂(G) = n− 1.

Conversely suppose χ∂(G) = n − 1. Let {V1, V2, . . . , Vχ∂(G)} be a χ∂-
partition of G. Then exactly one of these sets in this partition, say V1, con-
tains two vertices and all other sets have exactly one vertex. Let V1 = {v1, v2},
Vi = {vi+1}, for i ≥ 2, and let H = G[{v3, v4, . . . , vn}]. We now prove the
following claims.

Claim 1. Either v1 or v2 is adjacent to all the vertices in H.

Suppose there exist two vertices vi and vm (i < m) in H such that vi is not
adjacent to v1 and vm is not adjacent to v2. Then clearly {v1, vi} and {v2, vm}
are positive differential sets so that χ∂(G) ≤ n − 2, which is a contradiction.
If vi = vm, then vi is not adjacent to v1 and v2. Since G is connected, vi is
adjacent to some vj in H. Now {vi, v1} or {vi, v2} forms a positive differential
set, provided v1 and v2 have vj as the only neighbor in H. Otherwise choose a
vertex vs not adjacent to vj in H, so that {vs, vj} forms a postive differential
set. If vj is adjacent to all the vertices in H and if N(vj) is independent,
then G is a star. Then χ∂(G) = n, which is a contradiction. Hence at least 2
neighbors say x and y of vj in H are adjacent. Now {x, v1} forms a positive
differential set. Hence χ∂(G) < n− 1 which is a contradiction.

Claim 2. H is complete.

Without loss of generality let us assume that v1 is adjacent to all the vertices
in H. Suppose H is not complete then there exists two vertices x, y in H,
which are not adjacent. If deg x = deg y = 1, then since G is connected and
v1, v2 are not adjacent, there exists z ∈ H such that v2 is adjacent to z.
Hence {x, z} is a positive differential set, which is a contradiction. If deg x or
deg y > 1, then there exists at least one vertex say w in H which is adjacent
to either x or y. Hence {x, y} forms a positive differential set, which is a
contradiction. Hence, H is complete.

Now by claim 1 and claim 2 we see that the subgraph induced by {v1, v3,
v4, . . . , vn} is Kn−1, as desired.

Remark 1. Since a χ∂-partition of a graph G is a chromatic partition, it
follows that χ(G) ≤ χ∂(G). Further, the difference between these parameters
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can be made as large as possible. For the star K1,n−1, we have χ∂(G) = n and
χ(G) = 2.

A subset S ⊆ V is called a 2-packing if the distance between any two distinct
vertices of S is at least three. The maximum cardinality of a 2-packing set of
G is called the packing number of G and is denoted by ρ(G). The following
theorem relates χ∂ with the packing number ρ.

Theorem 3. For any graph G, we have χ∂(G) ≤ n− ρ(G) + 1.

Proof. Let S be a 2-packing with |S| = ρ(G). Then obviously S is independent.
Since G is connected it follows that every vertex in S has a neighbor in V −S.
Also, by the definition of 2-packing no two vertices in S have a common
neighbor so that S is a positive differential set in G. Hence the set S together
with the singleton sets of vertices in V −S form a positive differential chromatic
partition of G so that χ∂(G) ≤ n− ρ(G) + 1.

D.S. Studer et al. [6] introduced the concept of induced paired domination
in graphs. A subset S ⊆ V is said to be an induced paired dominating set if
G[S] is a perfect matching. The minimum cardinality of an induced paired
dominating set of G is called the induced paired domination number of G and
is denoted by γipr(G). In the next theorem we present an upper bound on χ∂

in terms of γipr(G).

Theorem 4. If G is a graph for which γipr(G) is defined, then χ∂(G) ≤
n− γipr(G) + 2.

Proof. Let S = {x1, x2, . . . , x γipr
2

, y1, y2, . . . , y γipr
2

} be a minimum induced

paired dominating set of G. Then S1 = {x1, x2, . . . , x γipr
2

} and S2 = {y1, y2,
. . . , y γipr

2

} are positive differential sets of G and hence {S1, S2} ∪ {{v} : v ∈
V − S} is a positive differential chromatic partition of G so that χ∂(G) ≤
n− γipr(G) + 2.

We now give an upper bound on χ∂(G) in terms of independent domination
number of a graph. A set of vertices S in a graph G is a dominating set if every
vertex not in S is adjacent to at least one vertex in S. A dominating set which
is also independent is called an independent dominating set and the minimum
cardinality of an independent dominating set of G is called the independent
domination number of G and is denoted by i(G).

Theorem 5. If G is a graph with i(G) ≤ n/2, then χ∂(G) ≤ n− i(G) + 1.

Proof. Let S be a minimum independent dominating set of G. Since i(G) ≤
n/2, it follows |N(S)| ≥ n/2 and so S is a positive differential set. Hence
{S} ∪ {{v} : v ∈ V − S} is a positive differential chromatic partition of G so
that χ∂(G) ≤ n− i(G) + 1.
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Corollary 2. For any bipartite graph G, we have χ∂(G) ≤ n− i(G) + 1.

Proof. Since i(G) ≤ n/2 for any bipartite graph G, the result follows from the
above theorem.

A graph G is called well-covered if every maximal independent set is also
maximum. That is i(G) = β0(G), where β0(G) is the independence number
which is defined to be the maximum cardinality of an independent set of G.

Corollary 3. If G is a well-covered graph, then χ∂(G) ≤ n− i(G) + 1.

Proof. Since G is well-covered, we have i(G) = β0(G). Also it has been proved
in [7] that, for a graph G, if i(G) = β0(G) then i(G) ≤ n/2 and hence the
result follows from Theorem 5.

In [2], it has been proved that regular graphs on n vertices of degree at
least n− 7 admit at least two disjoint independent dominating sets and hence
the independent domination number is bounded by n/2 so that we have:

Corollary 4. If G is a regular graph on n vertices of degree at least n − 7,
then χ∂(G) ≤ n− i(G) + 1.

§4. Realizability

A graph G = (V,E) is called a split graph if the vertex set has a bipartition
V = X∪Y , where X is an independent set (no two vertices in X are adjacent)
and G[Y ] is a complete graph (every pair of vertices are adjacent).

We have already observed in Theorem 1 that 2 ≤ χ∂(G) ≤ n and also char-
acterized the extremal graphs. We now show that the differential chromatic
number χ∂(G) can assume any value between 2 and n. That is,

Theorem 6. Given positive integers k and n with 2 ≤ k < n, there exists a
graph G on n vertices with χ∂(G) = k.

Proof. If n− k is even, let G be a graph with vertex set V = V1 ∪V2 ∪V3 with
|V1| = |V2| = r, |V3| = n − 2r, where r = n−k+2

2 such that G[V1 ∪ V2] = Kr,r

and G[Vi ∪ V3], i = 1, 2 is a split graph with bipartition (Vi, V3), i = 1, 2,
where Vi is an independent set and V3 is complete. Suppose n− k is odd and
if n = k + i, i = 1, 3, let G be a split graph with bipartition (X,Y ) where
|X| = i and |Y | = k, where Y is complete and X is an independent set. For
the remaining cases, let G be the graph given in Figure 1. It can be easily
verified that χ∂(G) = k in all the cases.
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It has been observed in section 3 that χ(G) ≤ χ∂(G) and that the difference
between these parameters can be made arbitrarily large. But in fact these
two parameters can assume any arbitrary values which we now prove in the
following theorem.

z2 z3

n−k−1
2

y

x2 x3 xk−1x1

n−k−1
2

zz1

y2y1 y3

z

x

. . .

. . .

. . .

Figure 1:

Theorem 7. For any two positive integers a and b with a ≤ b, where a ≥ 2,
there exists a graph G such that χ(G) = a and χ∂(G) = b.

Proof. Let a and b be two positive integers with a ≤ b. We now construct the
graph G with χ∂(G) = b and χ(G) = a as follows.

Consider the complete graph Ka with V (Ka) = {u1, u2, . . . , ua}. At each
vertex ui, 1 ≤ i ≤ a, attach b pendant edges, say uiu

j
i , 1 ≤ j ≤ b, (By a

pendant edge we mean an edge which is incident to a vertex of degree one).
Again attach k = (a − 2)(a + b − 2) + 2(b − a) pendant edges at the vertex
u11 (for convenience we choose u11 and in fact this may be any uji ). Let S be
the set of these k newly added vertices. Further join each vertex of S to a
vertex on Ka except u1, say u2. For a = 4 and b = 5, the graph G is given in
Figure 2.

Figure 2:
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Now let

S1 = {u2, u11, u21, . . . , ub1} ∪

 a⋃
i=3

 b⋃
j=1

{uji}

 ,

S2 = {u1, u12, u22, . . . , ub2}
and S3 = {u3} ∪ S′

3,

where S′
3 is the set consisting of any a + b − 2 vertices in S. Also, for i =

4, 5, . . . , a, let Si = {ui} ∪ S′
i, where S′

i is the set consisting of any a + b − 2
vertices in S but not in the set ∪i−1

j=3S
′
j . Now, let w1, w2, . . . , w2(b−a) be the

vertices in S which are not yet included in the above defined sets and let Ai =
{w2i−1, w2i}, for all i = 1, 2, . . . , b− a. Now, clearly the sets Si’s and Ai’s are
independent positive differential so that {S1, S2, . . . , Sa, A1, A2, . . . , Ab−a} is a
positive differential chromatic partition of minimum order and hence χ∂(G) =
b. Also clearly χ(G) = a.

§5. Split Graphs with χ∂(G) = 3

In section 3, we have observed that the value of the differential chromatic
number of a graph is at least two and also characterized the extremal graphs.
In the following theorem we characterize split graphs for which χ∂ = 3.

Theorem 8. Let G be a split graph with bipartition (X,Y ), where X is inde-
pendent and Y is complete and deg(x) ≤ |Y | − 1 for all x ∈ X. Let u1 ∈ V
with deg u1 = ∆, where ∆ is the maximum degree of G. Then χ∂(G) = 3 if
and only if the following conditions hold.

(i) |Y | ≤ 3.

(ii) When |Y | = 2, deg u1 = deg u2 + 1, where Y = {u1, u2}.

(iii) When |Y | = 3, deg u1 ≤ deg u2 + deg u3 where Y = {u1, u2, u3}, further
|N(u1) ∩N(u2)| ≤ deg u3 − 1 and |N(u1) ∩N(u3)| ≤ deg u2 − 1.

Proof. Suppose χ∂(G) = 3. Since Y is complete, |Y | ≤ 3. If |Y | = 2, let
Y = {u1, u2} and deg u2 = m. We now claim that ∆ = m + 1. Suppose not.
Then either ∆ = m or ∆ > m + 1. Let N(u2) = {u1, v1, v2, . . . , vm−1}. If
∆ = m, then {{u1, v1, v2, . . . , vm−1}, S∪{u2}}, where S = X−N(u2), forms a
positive differential chromatic partition of G and hence χ∂(G) = 2, which is a
contradiction. If ∆ > m+1, let N(u1) = {u2, w1, w2, . . . , w∆−1}. Then clearly
{{u2, w1, w2, . . . , wm−1}, {u1, v1, v2, . . . , vm−1}, {wm}, {wm+1}, . . . ,
{w∆−1}} form a positive differential chromatic partition of G and hence χ∂(G) >
3, which is a contradiction. Hence deg u1 = deg u2 + 1.



170 P. R. L. PUSHPAM, I. S. HAMID AND D. YOKESH

Suppose |Y | = 3. Let Y = {u1, u2, u3} with deg u1 = m1, deg u2 = m2,
deg u3 = m3 and m1 ≤ m2 ≤ m3. Now we claim that deg u1 ≤ deg u2 +
deg u3. If deg u1 > deg u2 + deg u3, then there exists at least one member of
N(u1), which does not belong to ∪3

i=1Si where Si is the positive differential
set containing ui (1 ≤ i ≤ 3) which implies that χ∂(G) > 3, which is a
contradiction. We claim that |N(u1) ∩ N(u2)| ≤ deg u3 − 1. If not, then at
least one member of N(u1) ∩N(u2) does not belong to ∪3

i=1Si, which implies
that χ∂(G) > 3, which is a contradiction. Hence |N(u1)∩N(u2)| ≤ deg u3− 1
and similarly |N(u1) ∩N(u3)| ≤ deg u2 − 1.

Conversely, suppose G satisfies the given conditions. Now χ∂(G) = 2 only
when deg u1 = deg u2 and N(u1) ∩ N(u2) = φ which is not possible by the
condition given in the theorem and hence χ∂(G) ≥ 3. Let

`1 = |N(u1) ∩N(u2)|
`2 = |N(u2) ∩N(u3)|
`3 = |N(u3) ∩N(u1)|

and S1 = {u1} ∪ (N(u2) ∩N(u3)) ∪ S′
1 ∪ S′

2,

where S′
1 is the set consisting of the vertices which are adjacent to u3 only,

and S′
2 is the set consisting of m1 − `1 − |S′

1| − 1 vertices which are adjacent
to u2 only. Let S2 = {u3} ∪ [N(u1) ∩ N(u2)] ∪ S′′

1 ∪ S′′
2 where S′′

1 is the set
consisting of vertices which are adjacent to u2 only (which are not in S′

2) and
S′′
2 consists of m3 − `3 − |S′′

1 | − 2 vertices which are adjacent to u1 only. Let
S3 = {u2} ∪ [N(u1) ∩ N(u3)] ∪ S′′′

1 where S′′′
1 is the set consisting of vertices

which are adjacent to u1 only (which are not in S′′
2 ). Then {S1, S2, S3} is a

positive differential chromatic partition of G. Hence χ∂(G) = 3.

§6. Differential Chromatic Number of Product
Graphs

In this section we determine the value of differential chromatic number for
some product graphs such as Pn × Cm, Cn × Cm, Pm × Pn and Km ×Kn.

Theorem 9.

χ∂(Pn × Cm) =

{
2 if m is even,

3 if m is odd.

Proof. Let the vertices of Pn × Cm be {v11, v12, . . . , v1n, v21, v22, . . . , v2n, . . . ,
vm1, vm2, . . . , vmn}.

Case 1. m is even
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If n is odd

Let V1 = {vij : 1 ≤ i ≤ n and 1 ≤ j ≤ m− 1,where both i and j are odd}

If n is even

Let V1 = {vij : 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m− 1,where both i and j are odd}

and V2 = V − V1. Then {V1, V2} is a positive differential chromatic partition
of G. Hence χ∂(G) = 2.

Case 2. m is odd and n is even

Let A = {vij : 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m− 2,where both i and j are odd},
B = {vij : 2 ≤ i ≤ n and 2 ≤ j ≤ m− 1,where both i and j are even},
C = {vim : 2 ≤ i ≤ n, where i is even},
D = {vij : 1 ≤ i ≤ n− 1 and 2 ≤ j ≤ m− 1,where i is odd and j is even},
V1 = A ∪B,

V2 = C ∪D,

V3 = V − {V1, V2}.

Case 3. Both m and n are odd

Let A = {vij : 1 ≤ i ≤ n and 1 ≤ j ≤ m− 2,where both i and j are odd},
B = {vij : 1 ≤ i ≤ n− 1 and 2 ≤ j ≤ m− 1,where both i and j are even},
C = {vim : 2 ≤ i ≤ n− 1, where i is even},
D = {vij : 1 ≤ i ≤ n and 2 ≤ j ≤ m− 1,where i is odd and j is even},
V1 = A ∪B,

V2 = C ∪D,

V3 = V − {V1, V2}.

Then {V1, V2, V3} is a positive chromatic differential partition of Pn × Cm, so
that χ∂(Pn×Cm) ≤ 3. Further, since m is odd it follows that Pn×Cm contains
an odd cycle so that χ∂(Pn × Cm) ≥ 3. Thus χ∂(Pn × Cm) = 3.

Theorem 10.

χ∂(Cn × Cm) =

{
2 if both m and n are even,

3 otherwise.
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Proof. Let the vertices of Cn × Cm be {v11, v12, . . . , v1n, v21, v22, . . . , v2n, . . . ,
vm1, vm2, . . . , vmn}.

Case 1. m and n are odd

Let A = {v1j : 1 ≤ j ≤ m− 2,where j is odd},
B = {vij : 2 ≤ i ≤ n− 1 and 2 ≤ j ≤ m− 1,where both i and j are even},
C = {vij : 3 ≤ i ≤ n− 2 and 1 ≤ j ≤ m,where both i and j are odd},
D = {vnj : 3 ≤ j ≤ m,where j is odd},
V1 = A ∪B ∪ C ∪D,

V2 = {v1n, v21, vn1} ∪ {vim : 4 ≤ i ≤ n− 1,where i is even},
V3 = V − {V1 ∪ V2}.

Case 2. m is even and n is odd

Let A = {vij : 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ m− 1,where both i and j are odd},
B = {vij : 2 ≤ i ≤ n− 1 and 2 ≤ j ≤ m,where both i and j are even},
C = {vij : 2 ≤ i ≤ n− 1 and 1 ≤ j ≤ m− 1,where i is even and j is odd},
D = {vij : 3 ≤ i ≤ n and 2 ≤ j ≤ m,where i is odd and j is even},
V1 = A ∪B,

V2 = C ∪D,

V3 = V − {V1 ∪ V2}.

Case 3. m is odd and n is even

Let A = {vij : 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m,where both i and j are odd},
B = {vij : 2 ≤ i ≤ n and 2 ≤ j ≤ m− 1,where both i and j are even},
V1 = A ∪B,

V2 = {vim : 2 ≤ i ≤ n,where i is even},
V3 = V − {V1 ∪ V2}.

Then in all the above cases, {V1, V2, V3} is a positive differential chromatic
partition of Cn × Cm and since, in each case Cn × Cm contains an odd cycle
it follows that χ∂(Cn × Cm) = 3.

Case 4. m and n are even

Let V1 = {vij : 1 ≤ i ≤ n and 1 ≤ j ≤ m− 1,where j is odd},
V2 = V − V1.
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Then {V1, V2} is a positive differential chromatic partition of Cn × Cm and
hence χ∂(G) = 2.

Theorem 11.

χ∂(Pm × Pn) =

{
3 if both m and n are odd,

2 otherwise.

Proof. Let G = Pm × Pn. Clearly G is a bipartite graph. When both m and
n are odd, the number of vertices in G is odd. Hence G is a bipartite graph
with bipartition (X,Y ) and ||X| − |Y || = 1. Then clearly χ∂(G) = 3. In all
other cases the number of vertices in G is even. Hence G is a bipartite graph
with equal parts. Hence by Theorem 1, χ∂(G) = 2.

§7. Conclusion and Scope

Graph coloring theory is an important branch of discrete mathematics and
is of interest for its applications in several areas. Several variations of graph
colorings such as edge coloring, total coloring, acyclic coloring, list coloring,
equitable coloring, star chromatic number, subchromatic number and game
chromatic number have been investigated by several authors. In this sequence
we have introduced another type of coloring namely differential coloring and
we have just initiated a study of this new colouring parameter. However,
there is an abundant scope for further research on this topic. Here we list
some interesting problems for further investigation.

1. Characterize graphs for which χ∂(G) = 3.

2. Characterize trees for which χ∂(G) = ∆+ 1.

3. Characterize graphs for which

(i) χ∂(G) = n− ρ(G) + 1.

(ii) χ∂(G) = n− γipr(G) + 2.

4. Characterize graphs with i(G) ≤ n/2 for which χ∂(G) = n− i(G) + 1.

5. Characterize graphs for which χ∂(G) = χ(G).

For any graph theoretic parameter the effect of removal of a vertex or an edge
on the parameter is of practical importance. Hence one can investigate the
criticality concepts and the effect of an edge removal and vertex removal as
done in the case of chromatic number.
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