Existence of constant sign solutions for the p-Laplacian problems in the resonant case with respect to Fučík spectrum

Mieko Tanaka

(Received October 7, 2009; Revised December 2, 2009)

Abstract

We consider the following the p-Laplacian equation in a bounded

 domain Ω :$$
\begin{cases}-\Delta_{p} u=f(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

We treat the case of nonlinearity term f satisfying the following conditions

$$
f(x, t)= \begin{cases}a_{0} t_{+}^{p-1}-b_{0} t_{-}^{p-1}+o\left(|t|^{p-1}\right) & \text { at } 0 \\ a t_{+}^{p-1}-b t_{-}^{p-1}+o\left(|t|^{p-1}\right) & \text { at } \infty\end{cases}
$$

for constants a_{0}, b_{0}, a and b. We prove the existence of a positive solution or a negative solution in the case of $\left(a_{0}-\lambda_{1}\right)\left(a-\lambda_{1}\right)=0$ or $\left(b_{0}-\lambda_{1}\right)\left(b-\lambda_{1}\right)=0$ respectively, where λ_{1} is the first eigenvalue of $-\Delta_{p}$.

AMS 2000 Mathematics Subject Classification. 35J20, 58E05
Key words and phrases. Mountain pass theorem, constant sign solutions, Fučík spectrum of the p-Laplacian.

§1. Introduction and statements of results

1.1. Introduction

In this paper, we consider the equation

$$
\begin{cases}-\Delta_{p} u=f(x, u) & \text { in } \Omega, \tag{P}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where $1<p<\infty, \Omega \subset \mathbb{R}^{N}$ is a bounded domain, Δ_{p} denotes the p-Laplacian defined by $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$. Our purpose is to show the existence
of constant sign solutions to (P). Here we say that $u \in W_{0}^{1, p}(\Omega)$ is a (weak) positive (resp. negative) solution of (P) if $u(x)>0$ (resp. $u(x)<0$) a.e. $x \in \Omega$ and

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \varphi d x=\int_{\Omega} f(x, u) \varphi d x
$$

holds for any $\varphi \in W_{0}^{1, p}(\Omega)$.
We will treat f satisfying $f(x, 0)=0$ a.e. $x \in \Omega$ and $f(x, t)= \begin{cases}a_{0} t_{+}^{p-1}-b_{0} t_{-}^{p-1}+o\left(|t|^{p-1}\right) & \text { as }|t| \rightarrow 0, \text { uniformly in a.e. } x \in \Omega, \\ a t_{+}^{p-1}-b t_{-}^{p-1}+o\left(|t|^{p-1}\right) & \text { as }|t| \rightarrow \infty, \text { uniformly in a.e. } x \in \Omega,\end{cases}$
where $t_{ \pm}=\max \{ \pm t, 0\}$ and a_{0}, a, b_{0} and b are some real constants. Thus, we consider the case where (P) has a trivial solution $u=0$.

Equation (P) in the case of $f(x, t)=a t_{+}^{p-1}-b t_{-}^{p-1}($ where $a, b \in \mathbb{R})$ has been considered by Fučík $[6](p=2)$ and by many authors (cf. [3], [2], [4]). The set Σ_{p} of the points $(a, b) \in \mathbb{R}^{2}$ for which the equation

$$
\begin{equation*}
-\Delta_{p} u=a u_{+}^{p-1}-b u_{-}^{p-1}, \quad u \in W_{0}^{1, p}(\Omega) \tag{1.2}
\end{equation*}
$$

has a non-trivial weak solution is called Fučík spectrum of the p-Laplacian on $W_{0}^{1, p}(\Omega)(1<p<\infty)([2])$. In the case of $a=b=\lambda \in \mathbb{R}$, the equation (1.2) reads $-\Delta_{p} u=\lambda|u|^{p-2} u$. Hence (λ, λ) belongs to Σ_{p} if and only if λ is an eigenvalue of $-\Delta_{p}$, i.e., there exists a non-zero weak solution $u \in W_{0}^{1, p}(\Omega)$ to $-\Delta_{p} u=\lambda|u|^{p-2} u$. The set of all eigenvalues of $-\Delta_{p}$ is, as usual, denoted by $\sigma\left(-\Delta_{p}\right)$. It is well known that the first eigenvalue λ_{1} of $-\Delta_{p}$ is positive, simple, and has a positive eigenfunction $\varphi_{1} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega) \cap C^{1}(\Omega)$ with $\int_{\Omega} \varphi_{1}^{p} d x=1$ (see [7, Proposition 1.5.19]). Therefore, Σ_{p} contains the lines $\left\{\lambda_{1}\right\} \times \mathbb{R}$ and $\mathbb{R} \times\left\{\lambda_{1}\right\}$ since φ_{1} or $-\varphi_{1}$ becomes a solution to (1.2) with $(a, b)=$ $\left(\lambda_{1}, b\right)$ or $\left(a, \lambda_{1}\right)$, respectively. Furthermore, [2] gave a Lipschitz continuous curve contained in Σ_{p} which is called the first nontrivial curve \mathscr{C}. This result was proved by applying the mountain pass theorem to the functional defined on a manifold in $W_{0}^{1, p}(\Omega)$ (see [2] for details).

Many authors treated equation (P) for the nonlinear term f like (1.1) especially in the non-resonant case $\left(\left(a_{0}, b_{0}\right) \notin \Sigma_{p}\right.$ and $\left.(a, b) \notin \Sigma_{p}\right)(c f$. [4], [8], [10], [11], [14], [19], [20]). In the so-called resonant case where $(a, b) \in \Sigma_{p}$ or $\left(a_{0}, b_{0}\right) \in \Sigma_{p}$, there are a few existence results (cf. [9], [10], [11] where $a=b=\lambda_{1}$) and the present author obtained existence results of non-trivial solutions to (P) in [14], [15], [16] and [17], including both in resonant cases and non-resonant cases.

As for constant-sign solutions, [4] showed the existence of a positive (resp. negative) solution to (P) under the condition $\left(a_{0}-\lambda_{1}\right)\left(a-\lambda_{1}\right)<0$ (resp.
$\left.\left(b_{0}-\lambda_{1}\right)\left(b-\lambda_{1}\right)<0\right)$. However, the results of [4] does not cover several cases where $\left(a_{0}, b_{0}\right)$ or (a, b) belongs to Σ_{p} (that is, resonant case).

Thus, the purpose of the present paper is to show the existence of a positive solution or negative solution for (P) in the case of $\left(a_{0}-\lambda_{1}\right)\left(a-\lambda_{1}\right)=0$ or $\left(b_{0}-\lambda_{1}\right)\left(b-\lambda_{1}\right)=0$, respectively (containing possibly "doubly resonant" case).

1.2. Statements of results

In this paper, we assume that the nonlinear term f satisfies the following assumption (F) :
$(F) f$ is a Carathéodory function on $\Omega \times \mathbb{R}$ with $f(x, 0)=0$ for a.e. $x \in \Omega$ and satisfies the following conditions for some constants $a_{0}, b_{0}, a, b \in \mathbb{R}$ and a positive constant C_{0} :

$$
\begin{align*}
& f(x, u)=\left\{\begin{array}{l}
a_{0} u_{+}^{p-1}-b_{0} u_{-}^{p-1}+g_{0}(x, u), \\
a u_{+}^{p-1}-b u_{-}^{p-1}+g(x, u),
\end{array}\right. \tag{1.3}\\
& g_{0}(x, t)=o\left(|t|^{p-1}\right) \quad \text { as }|t| \rightarrow 0, \text { uniformly in a.e. } x \in \Omega, \\
& g(x, t)=o\left(|t|^{p-1}\right) \quad \text { as }|t| \rightarrow \infty, \text { uniformly in a.e. } x \in \Omega, \\
& |f(x, t)| \leq C_{0}|t|^{p-1} \quad \text { for every } t \in \mathbb{R}, \text { a.e. } x \in \Omega .
\end{align*}
$$

Setting $G(x, u):=\int_{0}^{u} g(x, s) d s$ and $G_{0}(x, u):=\int_{0}^{u} g_{0}(x, s) d s$ for the nonlinear terms g and g_{0} in (1.3), we can now state relevant conditions on $g(x, u)$ or $g_{0}(x, u)$, which are not necessarily simultaneously assumed in our results.
$(G++) \quad p G(x, t)-g(x, t) t \rightarrow+\infty \quad$ as $t \rightarrow+\infty, \quad$ uniformly in a.e. $x \in \Omega$,
$(G-+) \quad p G(x, t)-g(x, t) t \rightarrow+\infty \quad$ as $t \rightarrow-\infty, \quad$ uniformly in a.e. $x \in \Omega$.
$(G+-) \quad p G(x, t)-g(x, t) t \rightarrow-\infty \quad$ as $t \rightarrow+\infty, \quad$ uniformly in a.e. $x \in \Omega$.
$(G--) \quad p G(x, t)-g(x, t) t \rightarrow-\infty \quad$ as $t \rightarrow-\infty, \quad$ uniformly in a.e. $x \in \Omega$.
$\left(G_{0}++\right)$ there exist a $\delta>0$ and a measurable subset Ω^{\prime} of Ω with $\mu\left(\Omega^{\prime}\right)>0$ such that

$$
\begin{array}{ll}
G_{0}(x, t) \geq 0 & \text { for } 0 \leq t \leq \delta, \text { a.e. } x \in \Omega \\
G_{0}(x, t)>0 & \text { for } 0<t \leq \delta, \text { a.e. } x \in \Omega^{\prime}
\end{array}
$$

where $\mu\left(\Omega^{\prime}\right)$ denotes the Lebesgue measure of Ω^{\prime}.
$\left(G_{0}-+\right)$ there exist a $\delta>0$ and a measurable subset Ω^{\prime} of Ω with $\mu\left(\Omega^{\prime}\right)>0$ such that

$$
\begin{aligned}
& G_{0}(x, t) \geq 0 \quad \text { for }-\delta \leq t \leq 0, \text { a.e. } x \in \Omega \\
& G_{0}(x, t)>0 \quad \text { for }-\delta \leq t<0, \text { a.e. } x \in \Omega^{\prime}
\end{aligned}
$$

$\left(G_{0}+-\right)$ there exist positive constants δ, C and $q \in\left(p, p^{*}\right)$ such that

$$
G_{0}(x, t) \leq-C|t|^{q} \quad \text { for } 0 \leq t \leq \delta, \text { a.e. } x \in \Omega
$$

where $p^{*}=p N /(N-p)$ if $p<N, p^{*}=+\infty$ if $p \geq N$.
$\left(G_{0}--\right)$ there exist positive constants δ, C and $q \in\left(p, p^{*}\right)\left(p^{*}\right.$ is the number defined just above) such that

$$
G_{0}(x, t) \leq-C|t|^{q} \quad \text { for }-\delta \leq t \leq 0, \text { a.e. } x \in \Omega
$$

Now we can state our results.
Theorem 1 Assume that f satisfies (F) for some constants $a_{0}, b_{0}, a, b \in \mathbb{R}$ and a positive constant C_{0}. Then, if one of the following conditions holds, (P) has at least one positive solution.
(i) $a=\lambda_{1}<a_{0}$ and $(G+-)$;
(ii) $a=\lambda_{1}>a_{0}$ and $(G++)$;
(iii) $a<\lambda_{1}=a_{0}$ and $\left(G_{0}++\right)$;
(iv) $a>\lambda_{1}=a_{0}$ and $\left(G_{0}+-\right)$;
(v) $a=a_{0}=\lambda_{1},(G+-)$ and $\left(G_{0}++\right)$;
(vi) $a=a_{0}=\lambda_{1},(G++)$ and $\left(G_{0}+-\right)$.

Theorem 2 Assume that f satisfies (F) for some constants $a_{0}, b_{0}, a, b \in \mathbb{R}$ and a positive constant C_{0}. Then, if one of the following conditions holds, (P) has at least one negative solution.
(i) $b=\lambda_{1}<b_{0}$ and $(G--)$;
(ii) $b=\lambda_{1}>b_{0}$ and $(G-+)$;
(iii) $b<\lambda_{1}=b_{0}$ and $\left(G_{0}-+\right)$;
(iv) $b>\lambda_{1}=b_{0}$ and $\left(G_{0}--\right)$;
(v) $b=b_{0}=\lambda_{1},(G--)$ and $\left(G_{0}-+\right)$;
(vi) $b=b_{0}=\lambda_{1},(G-+)$ and $\left(G_{0}--\right)$.

We remark that many nonlinearities satisfy assumptions above, for example, $g(x, u)= \pm|u|^{q-2} u$ near infinity $(1 \leq q<p)$ and $g_{0}(x, u)= \pm|u|^{r-2} u$ near zero $\left(p<r<p^{*}\right)$.

1.3. Notation and the structure of the paper

In what follows, we set $X=W_{0}^{1, p}(\Omega)$ with norm $\|u\|=\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{1 / p}$ and define two functionals I^{+}and I^{-}on X by

$$
I^{ \pm}(u):=\int_{\Omega}|\nabla u|^{p} d x-p \int_{\Omega} F_{ \pm}(x, u) d x
$$

where

$$
f_{ \pm}(x, u):=\left\{\begin{array}{ll}
f(x, u) & \text { if } \pm u>0, \\
0 & \text { if } \pm u \leq 0,
\end{array} \quad F_{ \pm}(x, u):=\int_{0}^{u} f_{ \pm}(x, s) d s\right.
$$

For the sake of brevity, we use the notation $I^{ \pm}$to denote either I^{+}or $I^{-} . f_{ \pm}$ or $F_{ \pm}$should be understood in the same way.

Moreover, $\|u\|_{q}$ denotes the L^{q} norm of $u \in L^{q}(\Omega) \quad(1 \leq q \leq \infty)$. Note that X is uniformly convex since we have assumed $1<p<\infty$.

Remark 3 Under condition (F), it is well known that $I^{ \pm}$are C^{1} functionals and non-trivial critical points of I^{+}and I^{-}correspond to (weak) positive solutions and negative solutions of equation (P), respectively. Indeed, let u be a critical point of I^{-}. Noting that $0=\left\langle\left(I^{-}\right)^{\prime}(u), u_{+}\right\rangle=p\left\|u_{+}\right\|^{p}$, we have $u \leq 0$, hence u is a non-positive weak solution to $-\Delta_{p} u=f(x, u)$. Therefore, u belongs to $L^{\infty}(\Omega) \cap C^{1}(\Omega)(c f$. [1], [5]). Moreover, we have $u<0$ or $u \equiv 0$ in Ω by Harnack inequality (cf. [18]). Thus, u is a negative solution of $-\Delta_{p} u=f(x, u)$ in Ω if $u \neq 0$. Similarly, if u is a non-trivial critical point of I^{+}, then $u>0$ in Ω holds.

Firstly, in the next section, we prepare several results for our proofs. In Section 3, we can obtain a non-trivial critical point of I^{+}(resp. I^{-}) under each conditions in Theorem 1 (resp. Theorem 2), whence follows the existence of a positive (resp. negative) solution for (P), respectively.

§2. Preliminaries

2.1. The Cerami condition

It is well known that the Palais-Smale condition and the Cerami condition imply the compactness of a critical set at any level $c \in \mathbb{R}$, and they play an important role in minimax argument. Here, we recall the definition of the Cerami condition.

Definition $4 A C^{1}$ functional J on a Banach space E is said to satisfy the Cerami condition at $c \in \mathbb{R}$ if any sequence $\left\{u_{n}\right\} \subset E$ satisfying

$$
J\left(u_{n}\right) \rightarrow c \quad \text { and } \quad\left(1+\left\|u_{n}\right\|\right)\left\|J^{\prime}\left(u_{n}\right)\right\|_{E^{*}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

has a convergent subsequence. We say that J satisfies the Cerami condition if J satisfies the Cerami condition at any $c \in \mathbb{R}$.

We note that the Cerami condition is weaker than the usual Palais-Smale condition.

Now we introduce assumption ($g 0$) for the nonlinear term g in (1.3) to prepare the results concerning the Cerami condition.
$(g 0) g$ is a Carathéodory function on $\Omega \times \mathbb{R}$ such that $|g(x, t)| \leq C\left(1+|t|^{p-1}\right)$ for every $t \in \mathbb{R}$, a.e. $x \in \Omega$ and $g(x, t)=o\left(|t|^{p-1}\right)$ as $|t| \rightarrow \infty$ uniformly in a.e. $x \in \Omega$, where C is a positive constant.

For $a, b \in \mathbb{R}$ and a nonlinear term g satisfying ($g 0$), we define two C^{1} functionals on X as follows:

$$
\begin{array}{r}
I_{(a, 0)}^{+}(u)=\|u\|^{p}-a\left\|u_{+}\right\|_{p}^{p}-p \int_{\Omega} G_{+}(x, u) d x \\
I_{(0, b)}^{-}(u)=\|u\|^{p}-b\left\|u_{-}\right\|_{p}^{p}-p \int_{\Omega} G_{-}(x, u) d x \tag{2.2}
\end{array}
$$

where

$$
g_{ \pm}(x, u):=\left\{\begin{array}{ll}
g(x, u) & \text { if } \pm u>0, \\
0 & \text { if } \pm u \leq 0,
\end{array} \quad G_{ \pm}(x, u):=\int_{0}^{u} g_{ \pm}(x, s) d s .\right.
$$

Then, the following result has been obtained concerning the Cerami condition or the Palais-Smale condition on the above two functionals.

Lemma 5 ([16, Lemma 16]) Let g satisfy (g0). Then the following assertions hold:
(i) if $a \neq \lambda_{1}$, then $I_{(a, 0)}^{+}$satisfies the Palais-Smale condition;
(ii) if $b \neq \lambda_{1}$, then $I_{(0, b)}^{-}$satisfies the Palais-Smale condition;
(iii) if g satisfies $(G++)$ or $(G+-)$ (resp. $(G-+)$ or $(G--))$, then $I_{(a, 0)}^{+}$ (resp. $\left.I_{(0, b)}^{-}\right)$satisfies the Cerami condition for every $a, b \in \mathbb{R}$.

2.2. The boundedness of a Cerami sequence

Under condition ($g 0$), we define C^{1} functional $I_{(a, b)}$ on X by

$$
\begin{equation*}
I_{(a, b)}(u)=\int_{\Omega}|\nabla u|^{p} d x-a \int_{\Omega} u_{+}^{p} d x-b \int_{\Omega} u_{-}^{p} d x-p \int_{\Omega} G(x, u) d x \tag{2.3}
\end{equation*}
$$

for a and $b \in \mathbb{R}$. Here, we recall the following results to prove the boundedness of a Cerami sequence.

Lemma 6 ([16, Lemma 13]) We assume that g satisfies ($g 0$). Let $I_{(a, b)}$ be the functional defined by (2.3) for $a, b \in \mathbb{R}$ and suppose that $\left\{u_{n}\right\} \subset X$ satisfy

$$
\left\|u_{n}\right\| \rightarrow \infty \quad \text { and } \quad\left\|I_{(a, b)}^{\prime}\left(u_{n}\right)\right\|_{X^{*}} /\left\|u_{n}\right\|^{p-1} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Then, $\left\{u_{n} /\left\|u_{n}\right\|\right\}$ has a subsequence converging to some $v_{0} \in X$ which is a non-trivial solution of

$$
-\Delta_{p} u=a u_{+}^{p-1}-b u_{-}^{p-1} \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega .
$$

Using above result, we can prove the following lemma (see [16, Lemma 19] for the proof).

Lemma 7 ([16, Lemma 19]) Assume that g satisfies (g0) and ($G--$) (resp. $(G+-))$. Moreover, let $\left\{u_{n}\right\} \subset X$ satisfy

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|u_{n}\right\|\left\|\left(I_{\left(0, \lambda_{1}-1 / n\right)}^{-}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0 \quad \text { and } \quad \sup _{n} I_{\left(0, \lambda_{1}-1 / n\right)}^{-}\left(u_{n}\right)<+\infty \\
& \left(\text { resp. } \lim _{n \rightarrow \infty}\left\|u_{n}\right\|\left\|\left(I_{\left(\lambda_{1}-1 / n, 0\right)}^{+}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0 \quad \text { and } \quad \sup _{n} I_{\left(\lambda_{1}-1 / n, 0\right)}^{+}\left(u_{n}\right)<+\infty\right),
\end{aligned}
$$

where $I_{\left(0, \lambda_{1}-1 / n\right)}^{-}$and $I_{\left(\lambda_{1}-1 / n, 0\right)}^{+}$are functionals defined by (2.2) and (2.1) with the nonlinear term g, respectively. Then, $\left\{u_{n}\right\}$ is bounded in X.

The following lemma can be shown by a similar argument as in the proof of Lemma 7. Here, we give a sketch of the proof for readers' convenience.

Lemma 8 Assume that g satisfies ($g 0$) and ($G++$) (resp. ($G-+$)). Moreover, let $\left\{u_{n}\right\} \subset X$ satisfy

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|u_{n}\right\|\left\|\left(I_{\left(\lambda_{1}+1 / n, 0\right)}^{+}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0 \quad \text { and } \quad \inf _{n} I_{\left(\lambda_{1}+1 / n, 0\right)}^{+}\left(u_{n}\right)>-\infty \\
& \left(\text { resp. } \lim _{n \rightarrow \infty}\left\|u_{n}\right\|\left\|\left(I_{\left(0, \lambda_{1}+1 / n\right)}^{-}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0 \quad \text { and } \quad \inf _{n} I_{\left(0, \lambda_{1}+1 / n\right)}^{-}\left(u_{n}\right)>-\infty\right),
\end{aligned}
$$

where $I_{\left(0, \lambda_{1}+1 / n\right)}^{-}$and $I_{\left(\lambda_{1}+1 / n, 0\right)}^{+}$are functionals defined by (2.2) and (2.1) with the nonlinear term g, respectively. Then, $\left\{u_{n}\right\}$ is bounded in X.

Proof. We prove only the case where g satisfies $(g 0)$ and $(G++)$ because another case is shown by a similar argument. Throughout this proof, we write $I_{n}^{+}=I_{\left(\lambda_{1}+1 / n, 0\right)}^{+}$for $n \in \mathbb{N}$ to simplify the notation.

We prove the boundedness of $\left\{u_{n}\right\}$ by contradiction. Thus, supposing that $\left\{u_{n}\right\}$ is not bounded, by taking a subsequence, we may assume that $\left\|u_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. Setting $v_{n}=u_{n} /\left\|u_{n}\right\|$, we may suppose that there exists a $v \in X$ such that

$$
v_{n} \rightharpoonup v \text { in } X \text { and hence } v_{n} \rightarrow v \text { in } L^{p}
$$

and $v_{n}(x) \rightarrow v(x)$ for a.e. $x \in \Omega$ as $n \rightarrow \infty$.
Since g_{+}also satisfies ($g 0$) and

$$
\left\|\left(I_{\left(\lambda_{1}, 0\right)}^{+}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}} \leq\left\|\left(I_{n}^{+}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}}+\frac{p}{\lambda_{1} n}\left\|u_{n+}\right\|^{p-1}
$$

holds, Lemma 6 implies that v_{n} strongly converges to v being a non-trivial solution of $-\Delta_{p} u=\lambda_{1} u_{+}^{p-1}$ in $\Omega, u=0$ on $\partial \Omega$. This yields that $v=\varphi_{1} /\left\|\varphi_{1}\right\|$ because λ_{1} is simple. Hence $u_{n}(x) \rightarrow+\infty$ for a.e. $x \in \Omega$.

Now let us note the inequality

$$
\begin{align*}
o(1)-\inf _{m} I_{m}^{+}\left(u_{m}\right) & =\frac{1}{p}\left\langle\left(I_{n}^{+}\right)^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\inf _{m} I_{m}^{+}\left(u_{m}\right) \\
& \geq \frac{1}{p}\left\langle\left(I_{n}^{+}\right)^{\prime}\left(u_{n}\right), u_{n}\right\rangle-I_{n}^{+}\left(u_{n}\right) \tag{2.4}\\
& =\int_{\Omega} p G_{+}\left(x, u_{n}\right)-g_{+}\left(x, u_{n}\right) u_{n} d x .
\end{align*}
$$

On the other hand, by $(g 0)$ and $(G++)$, we have

$$
\text { ess. } \inf \left\{p G_{+}(x, t)-g_{+}(x, t) t ; x \in \Omega, t \in \mathbb{R}\right\}>-\infty
$$

and hence by $(G++)$ and $u_{n}(x) \rightarrow+\infty$ for a.e. $x \in \Omega$,

$$
\liminf _{n \rightarrow \infty} \int_{\Omega} p G_{+}\left(x, u_{n}\right)-g_{+}\left(x, u_{n}\right) u_{n} d x=+\infty
$$

by Fatou's lemma. This gives a contradiction to (2.4).

2.3. Some key results

In this subsection, we prepare several results for the proofs of Theorems 1 and 2. At first, we state the following result concerning the mountain pass argument.

Lemma 9 Let f satisfy (F) and assume that $a_{0}=\lambda_{1}$ and $\left(G_{0}+-\right)$ hold. Then, there exists a positive constant δ_{0} satisfying

$$
\inf _{\|u\|=\delta_{0}} I^{+}(u)>0
$$

where I^{+}is the functional defined in section 1.3.
Proof. From (F) and $\left(G_{0}+-\right)$, there exist $C_{1}>0, C_{2}>0$ and $p<q<r \leq p^{*}$ such that

$$
G_{0}(x, u) \leq-C_{1} u^{q}+C_{2} u^{r} \quad \text { for every } u \geq 0, \text { a.e. } x \in \Omega
$$

Therefore,

$$
\begin{equation*}
I^{+}(u) \geq\left\|u_{-}\right\|^{p}+\left\|u_{+}\right\|^{p}-\lambda_{1}\left\|u_{+}\right\|_{p}^{p}+p C_{1}\left\|u_{+}\right\|_{q}^{q}-p C_{2}\left\|u_{+}\right\|_{r}^{r} \tag{2.5}
\end{equation*}
$$

holds for every $u \in X$. In addition, we can get positive constants C_{3} and C_{4} satisfying

$$
\begin{equation*}
\|u\|_{p} \leq C_{3}\|u\|_{q} \quad \text { and } \quad\|u\|_{r} \leq C_{4}\|u\| \quad \text { for every } u \in X \tag{2.6}
\end{equation*}
$$

by Höder's inequality and the continuity of the inclusion by X into $L^{r}(\Omega)$, respectively.

For every $u \in X$ with $\lambda_{2}\left\|u_{+}\right\|_{p}^{p} \leq\left\|u_{+}\right\|^{p}$ (where λ_{2} is the second eigenvalue of $-\Delta_{p}$), we can get the following inequality

$$
I^{+}(u) \geq\left\|u_{-}\right\|^{p}+\left\|u_{+}\right\|^{p}\left(1-\lambda_{1} / \lambda_{2}-p C_{2} C_{4}^{r}\left\|u_{+}\right\|^{r-p}\right)
$$

by (2.5) and (2.6). Because of $\lambda_{2}>\lambda_{1}$ and $p<r$, there exist positive constants δ_{1} and C_{5} such that

$$
\begin{equation*}
I^{+}(u) \geq\left\|u_{-}\right\|^{p}+C_{5}\left\|u_{+}\right\|^{p} \geq \min \left\{1, C_{5}\right\}\|u\|^{p} \tag{2.7}
\end{equation*}
$$

for every $u \in X$ provided $\lambda_{2}\left\|u_{+}\right\|_{p}^{p} \leq\left\|u_{+}\right\|^{p} \leq \delta_{1}^{p}$.
Next, let $u \in X$ satisfy $\lambda_{2}\left\|u_{+}\right\|_{p}^{p}>\left\|u_{+}\right\|^{p}$. Then, noting the inequality

$$
\left\|u_{+}\right\|_{q}^{q} \geq\left(\left\|u_{+}\right\|_{p} / C_{3}\right)^{q}>\left(\left\|u_{+}\right\| /\left(C_{3} \lambda_{2}^{1 / p}\right)\right)^{q}
$$

we obtain

$$
I^{+}(u) \geq\left\|u_{-}\right\|^{p}+\left\|u_{+}\right\|^{q}\left(\frac{p C_{1}}{C_{3}^{q} \lambda_{2}^{q / p}}-p C_{2} C_{4}^{r}\left\|u_{+}\right\|^{r-q}\right)
$$

by (2.5), (2.6) and $\left\|u_{+}\right\|^{p} \geq \lambda_{1}\left\|u_{+}\right\|_{p}^{p}$, and hence there exist $\delta_{2} \in(0,1]$ and $C_{6}>0$ such that

$$
\begin{equation*}
I^{+}(u) \geq\left\|u_{-}\right\|^{p}+C_{6}\left\|u_{+}\right\|^{q} \geq \min \left\{1, C_{6}\right\}\|u\|^{q} \tag{2.8}
\end{equation*}
$$

for every $u \in X$ provided $\left\|u_{+}\right\| \leq \delta_{2}$ and $\lambda_{2}\left\|u_{+}\right\|_{p}^{p}>\left\|u_{+}\right\|^{p}$.
Put $\delta_{0}=\min \left\{\delta_{1}, \delta_{2}\right\}>0$. Then, the inequalities (2.7) and (2.8) imply

$$
I^{+}(u) \geq \min \left\{1, C_{5}, C_{6}\right\}\|u\|^{q}=\min \left\{1, C_{5}, C_{6}\right\} \delta_{0}^{q}>0
$$

for every $u \in X$ with $\|u\|=\delta_{0}$.
Because the following lemma concerning I^{-}defined in section 1.3 can be shown by a similar argument as for Lemma 9 , we omit the proof here.

Lemma 10 Let f satisfy (F) and we assume that $b_{0}=\lambda_{1}$ and ($\left.G_{0}--\right)$ hold. Then, there exists a positive constant δ_{0} satisfying

$$
\inf _{\|u\|=\delta_{0}} I^{-}(u)>0 .
$$

A similar result to the following proposition can be found as in [16, Proposition 18]. Here, we sketch the proof for readers' convenience.

Proposition 11 Assume that f satisfies (F) with $a=\lambda_{1}$ (resp. $b=\lambda_{1}$) and $(G+-)$ (resp. (G--)). Then, I^{+}(resp. I^{-}) has a global minimium.

Proof. At first, we consider I^{+}. Let us set

$$
I_{n}^{+}(u)=I_{\left(\lambda_{1}-1 / n, 0\right)}^{+}(u)=I^{+}(u)+\frac{1}{n}\left\|u_{+}\right\|_{p}^{p}
$$

for $u \in X$ and $n \in \mathbb{N}$ to simplify the notation.
For each $n \in \mathbb{N}$, it is easy to see that I_{n}^{+}is bounded from below on X since $\int_{\Omega} G_{+}(x, u) d x=o\left(\left\|u_{+}\right\|_{p}^{p}\right)$ as $\left\|u_{+}\right\|_{p}^{p} \rightarrow \infty$ and $\|u\|^{p} \geq \lambda_{1}\|u\|_{p}^{p}$ for every $u \in X$. Moreover, let us note that I_{n}^{+}satisfies the Palais-Smale condition for every $n \in \mathbb{N}$ by Lemma 5 . Therefore, by a standard argument ([13, Theorem $4.2]$) and by the Palais-Smale condition, for every $n \in \mathbb{N}$, there exists a $u_{n} \in X$ such that

$$
\left\|\left(I_{n}^{+}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0 \quad \text { and } \quad I_{n}^{+}\left(u_{n}\right)=\inf _{X} I_{n}^{+} \leq I_{n}^{+}(0)=0 .
$$

Since g satisfies ($G+-$), by Lemma $7,\left\{u_{n}\right\}$ is a bounded sequence in X, and hence we may assume that there exists a $u_{0} \in X$ such that

$$
u_{n} \rightharpoonup u_{0} \quad \text { in } X \quad \text { and } \quad u_{n} \rightarrow u_{0} \quad \text { in } L^{p}
$$

by taking a subsequence. Furthermore, for every $w \in X$ and $n \in \mathbb{N}$,

$$
I^{+}\left(u_{n}\right) \leq I_{n}^{+}\left(u_{n}\right) \leq I_{n}^{+}(w)=I^{+}(w)+\frac{1}{n}\left\|w_{+}\right\|_{p}^{p}
$$

holds (where we use the fact that u_{n} is a global minimizer of I_{n}^{+}in the second inequality). By taking the limit inferior with respect to n in the above inequality, $I^{+}\left(u_{0}\right) \leq I^{+}(w)$ holds for every $w \in X$ since I^{+}is weakly sequentially lower semi-continuous. This shows that u_{0} is a global minimum point of I^{+}.

Next, we consider I^{-}. By using $I_{\left(0, \lambda_{1}-1 / n\right)}^{-}$(see (2.2) for the definition) instead of $I_{\left(\lambda_{1}-1 / n, 0\right)}^{+}$, we can obtain a bounded sequence $\left\{u_{n}\right\}$ such that u_{n} is a global minimum point of $I_{\left(0, \lambda_{1}-1 / n\right)}^{-}$for each n. Because Lemma 7 gives the boundedness of $\left\{u_{n}\right\}$, we may assume that $\left\{u_{n}\right\}$ weakly converges to some $u_{0} \in X$, by choosing a subsequence. Then, by the same argument as that for I^{+}, we can prove that u_{0} is a global minimizer of I^{-}.

§3. Proofs of Theorems

3.1. Proof of Theorem 1

Now, we start to prove Theorem 1.
Proof of Theorem 1. Case (i) $a=\lambda_{1}<a_{0}$ and ($G+-$) hold: In this case, we note that I^{+}has a global minimum point $u_{0} \in X$ by Proposition 11. So, we shall prove that $\inf _{X} I^{+}$is negative to obtain $u_{0} \neq 0$.

From (F), for any ε and r satisfying $0<\varepsilon<\left(a_{0}-\lambda_{1}\right) / p$ and $r>p$, there exists a $C>0$ such that

$$
G_{0}(x, u) \geq-\varepsilon|u|^{p}-C|u|^{r} \quad \text { for every } u \in \mathbb{R}, \text { a.e. } x \in \Omega \text {. }
$$

Thus, we have for $t>0$

$$
\begin{aligned}
I^{+}\left(t \varphi_{1}\right) & \leq t^{p}\left(\left\|\varphi_{1}\right\|^{p}-a_{0}\left\|\varphi_{1}\right\|_{p}^{p}+\varepsilon p\left\|\varphi_{1}\right\|_{p}^{p}+p C t^{r-p}\left\|\varphi_{1}\right\|_{r}^{r}\right) \\
& =t^{p}\left(\lambda_{1}-a_{0}+\varepsilon p+p C t^{r-p}\left\|\varphi_{1}\right\|_{r}^{r}\right) .
\end{aligned}
$$

Because $\lambda_{1}-a_{0}+\varepsilon p<0$ and $r>p$, this inequality shows that $I^{+}\left(t \varphi_{1}\right)<0$ for sufficiently small $t>0$, and hence $I^{+}\left(u_{0}\right)=\inf _{X} I^{+}<0$. Therefore, (P) has a positive solution (see Remark 3).

Case(ii) $a=\lambda_{1}>a_{0}$ and $(G++)$ hold: In this case, by applying the mountain pass theorem to

$$
I_{-n}^{+}(u):=I^{+}(u)-\frac{1}{n}\left\|u_{+}\right\|_{p}^{p}=I_{\left(\lambda_{1}+1 / n, 0\right)}^{+}(u) \quad \text { for } u \in X
$$

(see (2.1) for the definition of $I_{\left(\lambda_{1}+1 / n, 0\right)}^{+}$with g), we shall construct a Cerami sequence for I^{+}.

Since $\int_{\Omega} G_{0+}(x, u) d x=o\left(\left\|u_{+}\right\|^{p}\right)$ as $\left\|u_{+}\right\| \rightarrow 0$, we have $I^{+}(u) \geq\left\|u_{-}\right\|^{p}+$ $\left(1-a_{0} / \lambda_{1}\right)\left\|u_{+}\right\|^{p}-o\left(\left\|u_{+}\right\|^{p}\right)$ as $\left\|u_{+}\right\| \rightarrow 0$. Thus, there exists a positive constant δ_{0} satisfying

$$
\alpha:=\inf \left\{I^{+}(u) ;\|u\|=\delta_{0}\right\}>0
$$

since $a_{0}<\lambda_{1}$.
On the other hand, noting that for each $n \in \mathbb{N}$

$$
I_{-n}^{+}\left(t \varphi_{1}\right)=\int_{\Omega} G\left(x, t \varphi_{1}\right) d x-\frac{t^{p}}{n}=o\left(t^{p}\right)-\frac{t^{p}}{n} \quad \text { as } t \rightarrow+\infty,
$$

we obtain a $T_{n}>\delta_{0} /\left\|\varphi_{1}\right\|$ such that $I_{-n}^{+}\left(T_{n} \varphi_{1}\right)<0$. Define

$$
\Gamma_{n}:=\left\{\gamma \in C([0,1], X) ; \gamma(0)=0, \gamma(1)=T_{n} \varphi_{1}\right\}
$$

and

$$
c_{n}:=\inf _{\gamma \in \Gamma_{n}} \max _{t \in[0,1]} I_{-n}^{+}(\gamma(t))
$$

for $n \in \mathbb{N}$. Let us note that $\delta_{0}<\left\|T_{n} \varphi_{1}\right\|$ and

$$
\inf \left\{I_{-n}^{+}(u) ;\|u\|=\delta_{0}\right\} \geq \inf \left\{I^{+}(u) ;\|u\|=\delta_{0}\right\}-\frac{\delta_{0}^{p}}{n \lambda_{1}}=\alpha-\frac{\delta_{0}^{p}}{n \lambda_{1}},
$$

and so $\inf \left\{I_{-n}^{+}(u) ;\|u\|=\delta_{0}\right\}>0$ for $n>\delta_{0}^{p} /\left(\alpha \lambda_{1}\right)$. Hence, by the mountain pass theorem, for each $n>\delta_{0}^{p} /\left(\alpha \lambda_{1}\right)$, we have that c_{n} is a critical value of I_{-n}^{+} since I_{-n}^{+}satisfies the Palais-Smale condition by Lemma 5 (note $\lambda_{1}+1 / n \neq$ $\left.\lambda_{1}\right)$. Therefore, there exists a $u_{n} \in X$ such that

$$
\left(I_{-n}^{+}\right)^{\prime}\left(u_{n}\right)=0 \quad \text { and } \quad I_{-n}^{+}\left(u_{n}\right)=c_{n} \geq \inf \left\{I_{-n}^{+}(u) ;\|u\|=\delta_{0}\right\} \geq \alpha-\frac{\delta_{0}^{p}}{n \lambda_{1}}
$$

Because $\left\{u_{n}\right\}$ is bounded in X by Lemma 8 (note $I_{-n}^{+}=I_{\left(\lambda_{1}+1 / n, 0\right)}^{+}$), we may assume that there exists a $u_{0} \in X$ such that u_{n} weakly converges to u_{0} in X by taking a subsequence. Also, by choosing a subsequence again, we may suppose
that $\left\{c_{n}\right\}$ is a convergent sequence since $c_{n} \in\left[0, I\left(u_{n}\right)\right]$ and I is bounded on any bounded subsets of X.

Furthermore, the following inequality

$$
\left\|\left(I^{+}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=\left\|\left(I^{+}\right)^{\prime}\left(u_{n}\right)-\left(I_{-n}^{+}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}} \leq \frac{p}{n \lambda_{1}}\left\|u_{n_{+}}\right\|^{p-1}
$$

shows $\left\|\left(I^{+}\right)^{\prime}\left(u_{n}\right)\right\|_{X^{*}} \rightarrow 0$ as $n \rightarrow \infty$. Thus, $\left\{u_{n}\right\}$ is a bounded Palais-Smale sequence of I^{+}, that is to say that $\left\{u_{n}\right\}$ is a Cerami sequence of I^{+}. Since I^{+} satisfies the Cerami condition by Lemma $5, u_{n}$ strongly converges to a critical point u_{0} of I^{+}.

In addition, the following inequality

$$
I^{+}\left(u_{n}\right)=I_{-n}^{+}\left(u_{n}\right)+\frac{1}{n}\left\|u_{n+}\right\|_{p}^{p} \geq c_{n} \geq \alpha-\frac{\delta_{0}^{p}}{n \lambda_{1}}
$$

implies $I^{+}\left(u_{0}\right) \geq \lim _{n \rightarrow \infty} c_{n} \geq \alpha>0$, and hence u_{0} is a non-trivial critical point of I^{+}.

Case(iii) $a<\lambda_{1}=a_{0}$ and $\left(G_{0}++\right)$ hold: From (F), we have $\int_{\Omega} G_{+}(x, u) d x=$ $o\left(\left\|u_{+}\right\|_{p}^{p}\right)$ as $\left\|u_{+}\right\|_{p}^{p} \rightarrow \infty$. Hence, the following inequality

$$
\begin{aligned}
I^{+}(u) & =\|u\|^{p}-a\left\|u_{+}\right\|_{p}^{p}-p \int_{\Omega} G_{+}(x, u) d x \\
& \geq\left\|u_{-}\right\|^{p}+\left(1-\frac{a}{\lambda_{1}}\right)\left\|u_{+}\right\|^{p}-o\left(\left\|u_{+}\right\|_{p}^{p}\right) \quad \text { as }\left\|u_{+}\right\|_{p}^{p} \rightarrow \infty
\end{aligned}
$$

and $a<\lambda_{1}$ show that I^{+}is coercive and bounded from below on X. Moreover, it is easy to see that I^{+}is weakly lower semi-continuous. It follows from the standard argument (cf. [13, Theorem 1.1]) that I^{+}has a global minimum point.

On the other hand, for $t>0$ such that $\left\|t \varphi_{1}\right\|_{\infty} \leq \delta$ where δ is a positive constant described in $\left(G_{0}++\right)$, we obtain

$$
I^{+}\left(t \varphi_{1}\right)=-p \int_{\Omega} G_{0}\left(x, t \varphi_{1}\right) d x<0
$$

and hence $\inf _{X} I^{+}<0$. Therefore, I^{+}has a non-trivial critical point u_{0} satisfying $I^{+}\left(u_{0}\right)=\min _{X} I^{+}<0$.

Case(iv) $a>\lambda_{1}=a_{0}$ and ($G_{0}+-$) hold: It follows from Lemma 9 that there exists a $\delta_{0}>0$ satisfying $\inf \left\{I^{+}(u) ;\|u\|=\delta_{0}\right\}>0$. On the other hand, we have for $t>0$

$$
I^{+}\left(t \varphi_{1}\right)=\left(\lambda_{1}-a\right) t^{p}\left\|\varphi_{1}\right\|_{p}^{p}-o\left(t^{p}\right) \rightarrow-\infty \quad \text { as } t \rightarrow+\infty
$$

by $\lambda_{1}-a<0$ and $\int_{\Omega} G_{+}\left(x, t \varphi_{1}\right) d x=o\left(t^{p}\right)$ as $t \rightarrow+\infty$. Thus, we can choose a positive constant T such that $T>\delta_{0} /\left\|\varphi_{1}\right\|$ and $I^{+}\left(T \varphi_{1}\right)<0$. So, we define

$$
\Gamma:=\left\{\gamma \in C([0,1], X) ; \gamma(0)=0, \gamma(1)=T \varphi_{1}\right\}
$$

and

$$
c:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I^{+}(\gamma(t)) .
$$

Then, by mountain pass theorem, c is a critical value of I^{+}with

$$
c \geq \inf \left\{I^{+}(u) ;\|u\|=\delta_{0}\right\}>0
$$

because $I^{+}\left(=I_{(a, 0)}^{+}\right)$satisfies the Palais-Smale condition by Lemma 5. So, I^{+} has a non-trivial critical point.

Case(v) $a=a_{0}=\lambda_{1},(G+-)$ and $\left(G_{0}++\right)$ hold: In this case, we note that I^{+}has a global minimum point by Proposition 11. Hence, we shall show that the minimum value of I^{+}is negative.

Let δ be a positive constant described in $\left(G_{0}++\right)$. For $t>0$ with $\left\|t \varphi_{1}\right\|_{\infty} \leq$ δ, we get $I^{+}\left(t \varphi_{1}\right)=-p \int_{\Omega} G_{0}\left(x, t \varphi_{1}\right) d x<0$, which implies that $\inf _{X} I^{+}<0$ holds, and so I^{+}has a non-trivial critical point.

Case(vi) $a=a_{0}=\lambda_{1},(G++)$ and $\left(G_{0}+-\right)$ hold: Recall the definition of the approximate functional I_{-n}^{+}setting in case (ii) as follows:

$$
I_{-n}^{+}(u):=I^{+}(u)-\frac{1}{n}\left\|u_{+}\right\|_{p}^{p}=I_{\left(\lambda_{1}+1 / n, 0\right)}^{+}(u) \quad \text { for } u \in X
$$

Let δ_{0} be a positive constant obtained by Lemma 9 , that is, δ_{0} satisfies

$$
\alpha:=\inf \left\{I^{+}(u) ;\|u\|=\delta_{0}\right\}>0
$$

By the same argument as in case (ii), we can obtain a $u_{n} \in X$ for each $n>\delta_{0}^{p} /\left(\alpha \lambda_{1}\right)$ such that

$$
\begin{equation*}
\left(I_{-n}^{+}\right)^{\prime}\left(u_{n}\right)=0 \quad \text { and } \quad I_{-n}^{+}\left(u_{n}\right) \geq \inf \left\{I_{-n}^{+}(u) ;\|u\|=\delta_{0}\right\} \geq \alpha-\frac{\delta_{0}^{p}}{n \lambda_{1}} \tag{3.1}
\end{equation*}
$$

Furthermore, it can be shown that there exists a subsequence of $\left\{u_{n}\right\}$ (we write this subsequence again by $\left\{u_{n}\right\}$) that is a Cerami sequence at some level $c \in \mathbb{R}$ by the same argument as in case (ii) by Lemma 8. Since I^{+}satisfies the Cerami condition by Lemma $5,\left\{u_{n}\right\}$ has a subsequence strongly converging to some critical point u_{0} of I^{+}. By taking a limit with respect to n in (3.1), we have $I^{+}\left(u_{0}\right) \geq \alpha>0$, and hence u_{0} is a non-trivial critical point of I^{+}.

3.2. Proof of Theorem 2

Next, we start to prove Theorem 2 which can be shown by a similar argument to Theorem 1. We give only a sketch of the proof.

Proof of Theorem 2. Case(i) $b=\lambda_{1}<b_{0}$ and ($G--$) hold: In this case, it follows from Proposition 11 that I^{-}has a global minimizer. On the other hand, because we have for $t>0$

$$
I^{-}\left(-t \varphi_{1}\right)=t^{p}\left(\lambda_{1}-b_{0}\right)-p \int_{\Omega} G_{0}\left(x,-t \varphi_{1}\right) d x
$$

and $\int_{\Omega} G_{0}\left(x,-t \varphi_{1}\right) d x=o\left(t^{p}\right)$ as $t \rightarrow+0$ by $(F), \min _{X} I^{-}<0$ holds (note $\lambda_{1}<b_{0}$). Hence I^{-}has a non-trivial critical point corresponding to a negative solution of (P) (see Remark 3).

Case(ii) $b=\lambda_{1}>b_{0}$ and $(G-+)$ hold: We shall construct a bounded Palais-Smale sequence for I^{-}by using the approximate functional I_{n}^{-}defined as follows:

$$
I_{n}^{-}(u):=I^{-}(u)-\frac{1}{n}\left\|u_{-}\right\|_{p}^{p}=I_{\left(0, \lambda_{1}+1 / n\right)}^{-}(u) \quad \text { for } u \in X, n \in \mathbb{N}
$$

(see (2.2) for the definition of $I_{\left(0, \lambda_{1}+1 / n\right)}^{-}$with g).
From $\int_{\Omega} G_{0-}(x, u) d x=o\left(\left\|u_{-}\right\|^{p}\right)$ as $\left\|u_{-}\right\| \rightarrow 0$ and $b_{0}<\lambda_{1}$, we can obtain a positive constant δ_{0} satisfying $\alpha:=\left\{I^{-}(u) ;\|u\|=\delta_{0}\right\}>0$. Then, by applying the mountain pass theorem to I_{n}^{-}(note that for each n, we have $I_{n}^{-}\left(-t \varphi_{1}\right) \rightarrow-\infty$ as $\left.t \rightarrow \infty\right)$, we can get a Palais-Smale sequence $\left\{u_{n}\right\}$ such that

$$
\begin{equation*}
I^{-}\left(u_{n}\right)=I_{n}^{-}\left(u_{n}\right)+\frac{1}{n}\left\|u_{n-}\right\|_{p}^{p} \geq \alpha-\frac{\delta_{0}^{p}}{n \lambda_{1}} \tag{3.2}
\end{equation*}
$$

for $n>\delta_{0}^{p} /\left(\alpha \lambda_{1}\right)$ and we have that $\left\{u_{n}\right\}$ is bounded by Lemma 8 (see the proof of Theorem 1 (ii) for details). Since I^{-}satisfies the Cerami condition by Lemma 5 , we may assume, by taking a subsequence, that u_{n} strongly converges to some critical point u_{0} of I^{-}. In addition, by taking $n \rightarrow \infty$ in (3.2), we have $I^{-}\left(u_{0}\right) \geq \alpha>0$ and so u_{0} is a non-trivial critical point of I^{-}.

Case(iii) $b<\lambda_{1}=b_{0}$ and $\left(G_{0}-+\right)$ hold: From $b<\lambda_{1}$ and $\int_{\Omega} G_{-}(x, u) d x=$ $o\left(\left\|u_{-}\right\|_{p}^{p}\right)$ as $\left\|u_{-}\right\|_{p} \rightarrow \infty$, we can easily show that I^{-}is coercive and bounded from below on X. Because I^{-}is weakly lower semi-continuous, I^{-}has a global minimum point (cf. [13, Theorem 1.1]). Let δ be a positive constant as in $\left(G_{0}-+\right)$ and let $t>0$ satisfy $\left\|t \varphi_{1}\right\|_{\infty} \leq \delta$. Then $I^{-}\left(-t \varphi_{1}\right)=$ $-p \int_{\Omega} G_{0}\left(x,-t \varphi_{1}\right) d x<0$ holds, whence the minimum value of I^{-}is negative, that is, the global minimum point of I^{-}is a non-trivial critical point.

Case(iv) $b>\lambda_{1}=b_{0}$ and ($G_{0}--$) hold: Let δ_{0} be a positive constant obtained in Lemma 10, that is, δ_{0} is a number such that $\inf \left\{I^{-}(u) ;\|u\|=\right.$ $\left.\delta_{0}\right\}>0$ holds. Because it follows from $b>\lambda_{1}$ and (F) that $I^{-}\left(-t \varphi_{1}\right) \rightarrow-\infty$ as $t \rightarrow \infty$, there exists a $T>0$ such that $T>\delta_{0} /\left\|\varphi_{1}\right\|$ and $I^{-}\left(-T \varphi_{1}\right)<0$. Since I^{-}satisfies the Palais-Smale condition by Lemma 5, we can obtain a
critical value c of I^{-}with $c \geq \inf \left\{I^{-}(u) ;\|u\|=\delta_{0}\right\}>0$ by the mountain pass theorem (see the proof of case (iv) in Theorem 1 for details).

Case(v) $b=b_{0}=\lambda_{1},(G--)$ and ($G_{0}-+$) hold: In this case, we already get a global minimum point of I^{-}by Proposition 11. Furthermore, if we take a $t>0$ satisfying $\left\|t \varphi_{1}\right\|_{\infty} \leq \delta$ where δ is a positive constant described in $\left(G_{0}-+\right)$, then we have $I^{-}\left(-t \varphi_{1}\right)=-p \int_{\Omega} G_{0}\left(x,-t \varphi_{1}\right) d x<0$. Hence, the minimum value of I^{-}is negative, and so I^{-}has a non-trivial critical point.

Case(vi) $b=b_{0}=\lambda_{1},(G-+)$ and ($\left.G_{0}--\right)$ hold: Let δ_{0} be a constant as in Lemma 10, that is, $\alpha:=\inf \left\{I^{-}(u) ;\|u\|=\delta_{0}\right\}>0$. Recall the definition of the approximate function I_{n}^{-}introducing in case (ii) as follows:

$$
I_{n}^{-}(u):=I^{-}(u)-\frac{1}{n}\left\|u_{-}\right\|_{p}^{p}=I_{\left(0, \lambda_{1}+1 / n\right)}^{-}(u) \quad \text { for } u \in X, n \in \mathbb{N} .
$$

Then, for each $n \in \mathbb{N}$ there exists a number $T_{n}>0$ satisfying $\left\|T_{n} \varphi_{1}\right\|>\delta_{0}$ and $I_{n}^{-}\left(-T_{n} \varphi_{1}\right)<0$ by (F). Therefore, we can construct a bounded Palais-Smale sequence $\left\{u_{n}\right\}$ for I^{-}such that

$$
\begin{equation*}
I^{-}\left(u_{n}\right)=I_{n}^{-}\left(u_{n}\right)+\frac{1}{n}\left\|u_{n-}\right\|_{p}^{p} \geq \alpha-\frac{\delta_{0}^{p}}{n \lambda_{1}} \quad \text { for } n>\frac{\delta_{0}^{p}}{\alpha \lambda_{1}} \tag{3.3}
\end{equation*}
$$

by applying the mountain pass theorem to I_{n}^{-}and by Lemma 8 (see the proof of case (vi) or (ii) in Theorem 1 for details). Since I^{-}satisfies the Cerami condition by Lemma 5 and $\left\{I^{-}\left(u_{n}\right)\right\}$ is bounded by the boundedness of $\left\{u_{n}\right\}$, we may assume that u_{n} strongly converges to some critical point u_{0} of I^{-} by choosing a subsequence. In addition, by taking $n \rightarrow \infty$ in (3.3), we have $I^{-}\left(u_{0}\right) \geq \alpha>0$ and hence u_{0} is a non-trivial critical point of I^{-}.

Acknowledgements. The author would like to express her sincere thanks to Professor Shizuo Miyajima for helpful comments and encouragement.

References

[1] A. Anane, "Etude des valeurs propres et de la résonnance pour l'opérateur p laplacien", Ph. D. thesis, Université Libre de Bruxelles, 1987, C. R. Acad. Sci. Paris Sér, 305(1987), 725-728.
[2] M. Cuesta, D. de Figueiredo, and J.-P. Gossez, The beginning of the Fučik spectrum for the p-Laplacian, J. Differential Equations, 159(1999), 212-238.
[3] E. Dancer, On the Dirichlet problem for weak nonlinear elliptic partial differential equations, Proc. Royal Soc. Edinburgh, 76A(1977), 283-300.
[4] N. Dancer and K. Perera, Some Remarks on the Fučik Spectrum of the pLaplacian and Critical Groups, J. Math. Anal. Appl., 254(2001), 164-177.
[5] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7(1983), 827-850.
[6] S. Fučík, Boundary value problems with jumping nonlinearities, Casopis Pest. Mat., 101(1976), 69-87.
[7] L. Gasiński and N. S. Papageorgiou, "Nonsmooth critical point theory and nonlinear boundary value problems", vol 8, Chapman \& Hall/CRC, Boca Raton, Florida, 2005.
[8] M. Y. Jiang, Critical groups and multiple solutions of the p-Laplacian equations, Nonlinear Anal. TMA, 59(2004), 1221-1241.
[9] Q. Jiu and J. Su, Existence and multiplicity results for Dirichlet problems with p-Laplacian, J. Math. Anal. Appl., 281(2003), 587-601.
[10] S. Liu and S. Li, The existence of multiple solutions to quasilinear elliptic equations, Bull. London Math. Soc., 37(2005), 592-600.
[11] J. Liu and J. Su, Remarks on Multiple Solutions for Quasi-Linear Resonant Problems, J. Math. Anal. Appl., 258(2001), 209-222.
[12] D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations, Manuscripta Math., 124(2007), 507-531.
[13] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian System", Springer-Verlag, New York, 1989.
[14] M. Tanaka, On the existence of a non-trivial solution for the p-Laplacian equation with a jumping nonlinearity, Tokyo J. Math., 31(2008), 333-341.
[15] M. Tanaka, Existence of a non-trivial solution for the p-Laplacian equation with Fučik type resonance at infinity. II, Nonlinear Anal. TMA, 71(2009), 3018-3030.
[16] M. Tanaka, Existence of a non-trivial solution for the p-Laplacian equation with Fučik type resonance at infinity. III, Nonlinear Anal. TMA, 72(2010), 507-526.
[17] M. Tanaka, Multiple existence of non-trivial solutions for the p-Laplacian problems in the nonresonant case with respect to Fučik spectrum (preprint).
[18] N. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20(1967), 721-747.
[19] Z. Zhang, J. Chen and S. Li, Construction of pseudo-gradient vector field and sign-changing multiple solutions involving p-Laplacian, J. Differential Equations, 201(2004), 287-303.
[20] Z. Zhang and S. Li, On sign-changing and multiple solutions of the p-Laplacian, J. Fun. Anal., 197 (2003), 447-468.

Mieko Tanaka
Department of Mathematics, Tokyo University of Science Wakamiya-cho 26, Shinjuku-ku, Tokyo 162-0827, Japan
E-mail: tanaka@ma.kagu.tus.ac.jp

