Existence of constant sign solutions for the *p*-Laplacian problems in the resonant case with respect to Fučík spectrum

Mieko Tanaka

(Received October 7, 2009; Revised December 2, 2009)

Abstract. We consider the following the *p*-Laplacian equation in a bounded domain Ω :

$$\begin{cases} -\Delta_p u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

We treat the case of nonlinearity term f satisfying the following conditions

$$f(x,t) = \begin{cases} a_0 t_+^{p-1} - b_0 t_-^{p-1} + o(|t|^{p-1}) & \text{at } 0, \\ a t_+^{p-1} - b t_-^{p-1} + o(|t|^{p-1}) & \text{at } \infty, \end{cases}$$

for constants a_0 , b_0 , a and b. We prove the existence of a positive solution or a negative solution in the case of $(a_0 - \lambda_1)(a - \lambda_1) = 0$ or $(b_0 - \lambda_1)(b - \lambda_1) = 0$ respectively, where λ_1 is the first eigenvalue of $-\Delta_p$.

AMS 2000 Mathematics Subject Classification. 35J20, 58E05

Key words and phrases. Mountain pass theorem, constant sign solutions, Fučík spectrum of the p-Laplacian.

§1. Introduction and statements of results

1.1. Introduction

In this paper, we consider the equation

(P)
$$\begin{cases} -\Delta_p u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $1 , <math>\Omega \subset \mathbb{R}^N$ is a bounded domain, Δ_p denotes the *p*-Laplacian defined by $\Delta_p u := \operatorname{div} (|\nabla u|^{p-2} \nabla u)$. Our purpose is to show the existence

of constant sign solutions to (P). Here we say that $u \in W_0^{1,p}(\Omega)$ is a (weak) positive (resp. negative) solution of (P) if u(x) > 0 (resp. u(x) < 0) a.e. $x \in \Omega$ and

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi \, dx = \int_{\Omega} f(x, u) \varphi \, dx$$

holds for any $\varphi \in W_0^{1,p}(\Omega)$.

We will treat f satisfying f(x, 0) = 0 a.e. $x \in \Omega$ and (1.1)

$$f(x,t) = \begin{cases} a_0 t_+^{p-1} - b_0 t_-^{p-1} + o(|t|^{p-1}) & \text{as } |t| \to 0, \text{ uniformly in a.e. } x \in \Omega, \\ a t_+^{p-1} - b t_-^{p-1} + o(|t|^{p-1}) & \text{as } |t| \to \infty, \text{ uniformly in a.e. } x \in \Omega, \end{cases}$$

where $t_{\pm} = \max{\{\pm t, 0\}}$ and a_0 , a, b_0 and b are some real constants. Thus, we consider the case where (P) has a trivial solution u = 0.

Equation (P) in the case of $f(x,t) = at_{+}^{p-1} - bt_{-}^{p-1}$ (where $a, b \in \mathbb{R}$) has been considered by Fučík [6](p = 2) and by many authors (cf. [3], [2], [4]). The set Σ_p of the points $(a, b) \in \mathbb{R}^2$ for which the equation

(1.2)
$$-\Delta_p u = a u_+^{p-1} - b u_-^{p-1}, \quad u \in W_0^{1,p}(\Omega)$$

has a non-trivial weak solution is called Fučík spectrum of the *p*-Laplacian on $W_0^{1,p}(\Omega)$ $(1 ([2]). In the case of <math>a = b = \lambda \in \mathbb{R}$, the equation (1.2) reads $-\Delta_p u = \lambda |u|^{p-2}u$. Hence (λ, λ) belongs to Σ_p if and only if λ is an *eigenvalue* of $-\Delta_p$, i.e., there exists a non-zero weak solution $u \in W_0^{1,p}(\Omega)$ to $-\Delta_p u = \lambda |u|^{p-2}u$. The set of all eigenvalues of $-\Delta_p$ is, as usual, denoted by $\sigma(-\Delta_p)$. It is well known that the first eigenvalue λ_1 of $-\Delta_p$ is positive, simple, and has a positive eigenfunction $\varphi_1 \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega) \cap C^1(\Omega)$ with $\int_{\Omega} \varphi_1^p dx = 1$ (see [7, Proposition 1.5.19]). Therefore, Σ_p contains the lines $\{\lambda_1\} \times \mathbb{R}$ and $\mathbb{R} \times \{\lambda_1\}$ since φ_1 or $-\varphi_1$ becomes a solution to (1.2) with (a, b) = (λ_1, b) or (a, λ_1) , respectively. Furthermore, [2] gave a Lipschitz continuous curve contained in Σ_p which is called the first nontrivial curve \mathscr{C} . This result was proved by applying the mountain pass theorem to the functional defined on a manifold in $W_0^{1,p}(\Omega)$ (see [2] for details).

Many authors treated equation (P) for the nonlinear term f like (1.1) especially in the non-resonant case $((a_0, b_0) \notin \Sigma_p \text{ and } (a, b) \notin \Sigma_p)$ (cf. [4], [8], [10], [11], [14], [19], [20]). In the so-called resonant case where $(a, b) \in \Sigma_p$ or $(a_0, b_0) \in \Sigma_p$, there are a few existence results (cf. [9], [10], [11] where $a = b = \lambda_1$) and the present author obtained existence results of non-trivial solutions to (P) in [14], [15], [16] and [17], including both in resonant cases and non-resonant cases.

As for constant-sign solutions, [4] showed the existence of a positive (resp. negative) solution to (P) under the condition $(a_0 - \lambda_1)(a - \lambda_1) < 0$ (resp.

 $(b_0 - \lambda_1)(b - \lambda_1) < 0$. However, the results of [4] does not cover several cases where (a_0, b_0) or (a, b) belongs to Σ_p (that is, resonant case).

Thus, the purpose of the present paper is to show the existence of a positive solution or negative solution for (P) in the case of $(a_0 - \lambda_1)(a - \lambda_1) = 0$ or $(b_0 - \lambda_1)(b - \lambda_1) = 0$, respectively (containing possibly "doubly resonant" case).

1.2. Statements of results

In this paper, we assume that the nonlinear term f satisfies the following assumption (F):

(F) f is a Carathéodory function on $\Omega \times \mathbb{R}$ with f(x, 0) = 0 for a.e. $x \in \Omega$ and satisfies the following conditions for some constants $a_0, b_0, a, b \in \mathbb{R}$ and a positive constant C_0 :

(1.3)
$$f(x,u) = \begin{cases} a_0 u_+^{p-1} - b_0 u_-^{p-1} + g_0(x,u), \\ a u_+^{p-1} - b u_-^{p-1} + g(x,u), \end{cases}$$
$$g_0(x,t) = o(|t|^{p-1}) \quad \text{as } |t| \to 0, \text{ uniformly in a.e. } x \in \Omega, \\ g(x,t) = o(|t|^{p-1}) \quad \text{as } |t| \to \infty, \text{ uniformly in a.e. } x \in \Omega, \\ |f(x,t)| \le C_0 |t|^{p-1} \quad \text{for every } t \in \mathbb{R}, \text{ a.e. } x \in \Omega. \end{cases}$$

Setting $G(x, u) := \int_0^u g(x, s) \, ds$ and $G_0(x, u) := \int_0^u g_0(x, s) \, ds$ for the nonlinear terms g and g_0 in (1.3), we can now state relevant conditions on g(x, u)or $g_0(x, u)$, which are not necessarily simultaneously assumed in our results.

- $(G++) \quad pG(x,t)-g(x,t)t \to +\infty \quad \text{ as } t \to +\infty, \quad \text{uniformly in a.e. } x \in \Omega,$
- $(G-+) \quad pG(x,t)-g(x,t)t \to +\infty \quad \text{ as } t \to -\infty, \quad \text{uniformly in a.e. } x \in \Omega.$
- $(G+-) \quad pG(x,t)-g(x,t)t \to -\infty \quad \text{ as } t \to +\infty, \quad \text{uniformly in a.e. } x \in \Omega.$
- $(G--) \quad pG(x,t)-g(x,t)t \to -\infty \quad \text{ as } t \to -\infty, \quad \text{uniformly in a.e. } x \in \Omega.$
- $(G_0++)~$ there exist a $\delta>0$ and a measurable subset Ω' of Ω with $\mu(\Omega')>0$ such that

$$G_0(x,t) \ge 0 \quad \text{for } 0 \le t \le \delta, \text{ a.e. } x \in \Omega,$$

$$G_0(x,t) > 0 \quad \text{for } 0 < t \le \delta, \text{ a.e. } x \in \Omega',$$

where $\mu(\Omega')$ denotes the Lebesgue measure of Ω' .

 $(G_0 - +)$ there exist a $\delta > 0$ and a measurable subset Ω' of Ω with $\mu(\Omega') > 0$ such that

$$G_0(x,t) \ge 0$$
 for $-\delta \le t \le 0$, a.e. $x \in \Omega$,
 $G_0(x,t) > 0$ for $-\delta \le t < 0$, a.e. $x \in \Omega'$.

 (G_0+-) there exist positive constants δ , C and $q \in (p, p^*)$ such that

$$G_0(x,t) \leq -C|t|^q$$
 for $0 \leq t \leq \delta$, a.e. $x \in \Omega$,

where $p^* = pN/(N-p)$ if p < N, $p^* = +\infty$ if $p \ge N$.

 $(G_0 - -)$ there exist positive constants δ , C and $q \in (p, p^*)$ $(p^*$ is the number defined just above) such that

$$G_0(x,t) \leq -C|t|^q$$
 for $-\delta \leq t \leq 0$, a.e. $x \in \Omega$.

Now we can state our results.

Theorem 1 Assume that f satisfies (F) for some constants $a_0, b_0, a, b \in \mathbb{R}$ and a positive constant C_0 . Then, if one of the following conditions holds, (P) has at least one positive solution.

- (i) $a = \lambda_1 < a_0 \text{ and } (G+-);$
- (ii) $a = \lambda_1 > a_0 \text{ and } (G++);$
- (iii) $a < \lambda_1 = a_0 \text{ and } (G_0 + +);$
- (iv) $a > \lambda_1 = a_0 \text{ and } (G_0 + -);$
- (v) $a = a_0 = \lambda_1$, (G+-) and (G_0++) ;
- (vi) $a = a_0 = \lambda_1$, (G++) and (G_0+-).

Theorem 2 Assume that f satisfies (F) for some constants $a_0, b_0, a, b \in \mathbb{R}$ and a positive constant C_0 . Then, if one of the following conditions holds, (P) has at least one negative solution.

- (i) $b = \lambda_1 < b_0$ and (G -);
- (ii) $b = \lambda_1 > b_0$ and (G +);
- (iii) $b < \lambda_1 = b_0 \text{ and } (G_0 +);$
- (iv) $b > \lambda_1 = b_0$ and $(G_0 -);$

- (v) $b = b_0 = \lambda_1$, (G -) and $(G_0 +)$;
- (vi) $b = b_0 = \lambda_1$, (G +) and $(G_0 -)$.

We remark that many nonlinearities satisfy assumptions above, for example, $g(x, u) = \pm |u|^{q-2}u$ near infinity $(1 \le q < p)$ and $g_0(x, u) = \pm |u|^{r-2}u$ near zero $(p < r < p^*)$.

1.3. Notation and the structure of the paper

In what follows, we set $X = W_0^{1,p}(\Omega)$ with norm $||u|| = \left(\int_{\Omega} |\nabla u|^p dx\right)^{1/p}$ and define two functionals I^+ and I^- on X by

$$I^{\pm}(u) := \int_{\Omega} |\nabla u|^p \, dx - p \int_{\Omega} F_{\pm}(x, u) \, dx.$$

where

$$f_{\pm}(x,u) := \begin{cases} f(x,u) & \text{if } \pm u > 0, \\ 0 & \text{if } \pm u \le 0, \end{cases} \quad F_{\pm}(x,u) := \int_{0}^{u} f_{\pm}(x,s) \, ds \; .$$

For the sake of brevity, we use the notation I^{\pm} to denote either I^+ or I^- . f_{\pm} or F_{\pm} should be understood in the same way.

Moreover, $||u||_q$ denotes the L^q norm of $u \in L^q(\Omega)$ $(1 \le q \le \infty)$. Note that X is uniformly convex since we have assumed 1 .

Remark 3 Under condition (F), it is well known that I^{\pm} are C^1 functionals and non-trivial critical points of I^+ and I^- correspond to (weak) positive solutions and negative solutions of equation (P), respectively. Indeed, let ube a critical point of I^- . Noting that $0 = \langle (I^-)'(u), u_+ \rangle = p ||u_+||^p$, we have $u \leq 0$, hence u is a non-positive weak solution to $-\Delta_p u = f(x, u)$. Therefore, u belongs to $L^{\infty}(\Omega) \cap C^1(\Omega)$ (cf. [1], [5]). Moreover, we have u < 0 or $u \equiv 0$ in Ω by Harnack inequality (cf. [18]). Thus, u is a negative solution of $-\Delta_p u = f(x, u)$ in Ω if $u \neq 0$. Similarly, if u is a non-trivial critical point of I^+ , then u > 0 in Ω holds.

Firstly, in the next section, we prepare several results for our proofs. In Section 3, we can obtain a non-trivial critical point of I^+ (resp. I^-) under each conditions in Theorem 1 (resp. Theorem 2), whence follows the existence of a positive (resp. negative) solution for (P), respectively.

§2. Preliminaries

2.1. The Cerami condition

It is well known that the Palais–Smale condition and the Cerami condition imply the compactness of a critical set at any level $c \in \mathbb{R}$, and they play an important role in minimax argument. Here, we recall the definition of the Cerami condition.

Definition 4 A C^1 functional J on a Banach space E is said to satisfy the Cerami condition at $c \in \mathbb{R}$ if any sequence $\{u_n\} \subset E$ satisfying

 $J(u_n) \to c$ and $(1 + ||u_n||) ||J'(u_n)||_{E^*} \to 0$ as $n \to \infty$

has a convergent subsequence. We say that J satisfies the Cerami condition if J satisfies the Cerami condition at any $c \in \mathbb{R}$.

We note that the Cerami condition is weaker than the usual Palais–Smale condition.

Now we introduce assumption (g0) for the nonlinear term g in (1.3) to prepare the results concerning the Cerami condition.

(g0) g is a Carathéodory function on $\Omega \times \mathbb{R}$ such that $|g(x,t)| \leq C(1+|t|^{p-1})$ for every $t \in \mathbb{R}$, a.e. $x \in \Omega$ and $g(x,t) = o(|t|^{p-1})$ as $|t| \to \infty$ uniformly in a.e. $x \in \Omega$, where C is a positive constant.

For $a, b \in \mathbb{R}$ and a nonlinear term g satisfying (g0), we define two C^1 functionals on X as follows:

(2.1)
$$I_{(a,0)}^+(u) = \|u\|^p - a\|u_+\|_p^p - p \int_{\Omega} G_+(x,u) \, dx,$$

(2.2)
$$I_{(0,b)}^{-}(u) = ||u||^p - b||u_-||_p^p - p \int_{\Omega} G_{-}(x,u) \, dx,$$

where

$$g_{\pm}(x,u) := \begin{cases} g(x,u) & \text{if } \pm u > 0, \\ 0 & \text{if } \pm u \le 0, \end{cases} \quad G_{\pm}(x,u) := \int_0^u g_{\pm}(x,s) \, ds \; .$$

Then, the following result has been obtained concerning the Cerami condition or the Palais-Smale condition on the above two functionals.

Lemma 5 ([16, Lemma 16]) Let g satisfy (g0). Then the following assertions hold:

(i) if $a \neq \lambda_1$, then $I^+_{(a,0)}$ satisfies the Palais–Smale condition;

- (ii) if $b \neq \lambda_1$, then $I^-_{(0,b)}$ satisfies the Palais–Smale condition;
- (iii) if g satisfies (G++) or (G+-) (resp. (G-+) or (G--)), then $I^+_{(a,0)}$ (resp. $I^-_{(0,b)}$) satisfies the Cerami condition for every $a, b \in \mathbb{R}$.

2.2. The boundedness of a Cerami sequence

Under condition (g0), we define C^1 functional $I_{(a,b)}$ on X by

(2.3)
$$I_{(a,b)}(u) = \int_{\Omega} |\nabla u|^p \, dx - a \int_{\Omega} u_+^p \, dx - b \int_{\Omega} u_-^p \, dx - p \int_{\Omega} G(x,u) \, dx$$

for a and $b \in \mathbb{R}$. Here, we recall the following results to prove the boundedness of a Cerami sequence.

Lemma 6 ([16, Lemma 13]) We assume that g satisfies (g0). Let $I_{(a,b)}$ be the functional defined by (2.3) for $a, b \in \mathbb{R}$ and suppose that $\{u_n\} \subset X$ satisfy

 $||u_n|| \to \infty$ and $||I'_{(a,b)}(u_n)||_{X^*}/||u_n||^{p-1} \to 0$ as $n \to \infty$.

Then, $\{u_n/||u_n||\}$ has a subsequence converging to some $v_0 \in X$ which is a non-trivial solution of

$$-\Delta_p u = a u_+^{p-1} - b u_-^{p-1} \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial\Omega.$$

Using above result, we can prove the following lemma (see [16, Lemma 19] for the proof).

Lemma 7 ([16, Lemma 19]) Assume that g satisfies (g0) and (G - -) (resp. (G+-)). Moreover, let $\{u_n\} \subset X$ satisfy

$$\lim_{n \to \infty} \|u_n\| \| \left(I^-_{(0,\lambda_1 - 1/n)} \right)' (u_n)\|_{X^*} = 0 \quad and \quad \sup_n I^-_{(0,\lambda_1 - 1/n)} (u_n) < +\infty,$$

$$\left(resp. \lim_{n \to \infty} \|u_n\| \| \left(I^+_{(\lambda_1 - 1/n,0)} \right)' (u_n)\|_{X^*} = 0 \quad and \quad \sup_n I^+_{(\lambda_1 - 1/n,0)} (u_n) < +\infty \right),$$

where $I^-_{(0,\lambda_1-1/n)}$ and $I^+_{(\lambda_1-1/n,0)}$ are functionals defined by (2.2) and (2.1) with the nonlinear term g, respectively. Then, $\{u_n\}$ is bounded in X.

The following lemma can be shown by a similar argument as in the proof of Lemma 7. Here, we give a sketch of the proof for readers' convenience.

M. TANAKA

Lemma 8 Assume that g satisfies (g0) and (G++) (resp. (G-+)). Moreover, let $\{u_n\} \subset X$ satisfy

$$\lim_{n \to \infty} \|u_n\| \left\| \left(I^+_{(\lambda_1 + 1/n, 0)} \right)'(u_n) \|_{X^*} = 0 \quad and \quad \inf_n I^+_{(\lambda_1 + 1/n, 0)}(u_n) > -\infty,$$

$$\left(resp. \quad \lim_{n \to \infty} \|u_n\| \left\| \left(I^-_{(0, \lambda_1 + 1/n)} \right)'(u_n) \|_{X^*} = 0 \quad and \quad \inf_n I^-_{(0, \lambda_1 + 1/n)}(u_n) > -\infty \right),$$

where $I^-_{(0,\lambda_1+1/n)}$ and $I^+_{(\lambda_1+1/n,0)}$ are functionals defined by (2.2) and (2.1) with the nonlinear term g, respectively. Then, $\{u_n\}$ is bounded in X.

Proof. We prove only the case where g satisfies (g0) and (G++) because another case is shown by a similar argument. Throughout this proof, we write $I_n^+ = I_{(\lambda_1+1/n,0)}^+$ for $n \in \mathbb{N}$ to simplify the notation.

We prove the boundedness of $\{u_n\}$ by contradiction. Thus, supposing that $\{u_n\}$ is not bounded, by taking a subsequence, we may assume that $||u_n|| \to \infty$ as $n \to \infty$. Setting $v_n = u_n/||u_n||$, we may suppose that there exists a $v \in X$ such that

$$v_n \rightarrow v$$
 in X and hence $v_n \rightarrow v$ in L^p

and $v_n(x) \to v(x)$ for a.e. $x \in \Omega$ as $n \to \infty$. Since g_+ also satisfies (g0) and

$$\| \left(I_{(\lambda_1,0)}^+ \right)'(u_n) \|_{X^*} \le \| (I_n^+)'(u_n) \|_{X^*} + \frac{p}{\lambda_1 n} \| u_{n+} \|^{p-1}$$

holds, Lemma 6 implies that v_n strongly converges to v being a non-trivial solution of $-\Delta_p u = \lambda_1 u_+^{p-1}$ in Ω , u = 0 on $\partial\Omega$. This yields that $v = \varphi_1/||\varphi_1||$ because λ_1 is simple. Hence $u_n(x) \to +\infty$ for a.e. $x \in \Omega$.

Now let us note the inequality

(2.4)

$$o(1) - \inf_{m} I_{m}^{+}(u_{m}) = \frac{1}{p} \langle (I_{n}^{+})'(u_{n}), u_{n} \rangle - \inf_{m} I_{m}^{+}(u_{m})$$

$$\geq \frac{1}{p} \langle (I_{n}^{+})'(u_{n}), u_{n} \rangle - I_{n}^{+}(u_{n})$$

$$= \int_{\Omega} pG_{+}(x, u_{n}) - g_{+}(x, u_{n})u_{n} dx.$$

On the other hand, by (g0) and (G++), we have

ess. inf {
$$pG_+(x,t) - g_+(x,t)t$$
 ; $x \in \Omega, t \in \mathbb{R}$ } > $-\infty$

and hence by (G++) and $u_n(x) \to +\infty$ for a.e. $x \in \Omega$,

$$\liminf_{n \to \infty} \int_{\Omega} pG_+(x, u_n) - g_+(x, u_n)u_n \, dx = +\infty$$

by Fatou's lemma. This gives a contradiction to (2.4).

2.3. Some key results

In this subsection, we prepare several results for the proofs of Theorems 1 and 2. At first, we state the following result concerning the mountain pass argument.

Lemma 9 Let f satisfy (F) and assume that $a_0 = \lambda_1$ and $(G_0 + -)$ hold. Then, there exists a positive constant δ_0 satisfying

$$\inf_{\|u\|=\delta_0} I^+(u) > 0,$$

where I^+ is the functional defined in section 1.3.

Proof. From (F) and (G_0+-), there exist $C_1 > 0$, $C_2 > 0$ and $p < q < r \le p^*$ such that

$$G_0(x,u) \leq -C_1 u^q + C_2 u^r$$
 for every $u \geq 0$, a.e. $x \in \Omega$.

Therefore,

(2.5)
$$I^{+}(u) \ge \|u_{-}\|^{p} + \|u_{+}\|^{p} - \lambda_{1}\|u_{+}\|^{p}_{p} + pC_{1}\|u_{+}\|^{q}_{q} - pC_{2}\|u_{+}\|^{r}_{r}$$

holds for every $u \in X$. In addition, we can get positive constants C_3 and C_4 satisfying

(2.6)
$$||u||_p \le C_3 ||u||_q$$
 and $||u||_r \le C_4 ||u||$ for every $u \in X$

by Höder's inequality and the continuity of the inclusion by X into $L^{r}(\Omega)$, respectively.

For every $u \in X$ with $\lambda_2 ||u_+||_p^p \le ||u_+||^p$ (where λ_2 is the second eigenvalue of $-\Delta_p$, we can get the following inequality

$$I^{+}(u) \ge \|u_{-}\|^{p} + \|u_{+}\|^{p} \left(1 - \lambda_{1}/\lambda_{2} - pC_{2}C_{4}^{r}\|u_{+}\|^{r-p}\right)$$

by (2.5) and (2.6). Because of $\lambda_2 > \lambda_1$ and p < r, there exist positive constants δ_1 and C_5 such that

(2.7)
$$I^+(u) \ge ||u_-||^p + C_5 ||u_+||^p \ge \min\{1, C_5\} ||u||^p$$

for every $u \in X$ provided $\lambda_2 ||u_+||_p^p \le ||u_+||_p^p \le \delta_1^p$. Next, let $u \in X$ satisfy $\lambda_2 ||u_+||_p^p > ||u_+||_p^p$. Then, noting the inequality

 $||u_+||_q^q \ge (||u_+||_p/C_3)^q > (||u_+||/(C_3\lambda_2^{1/p}))^q,$

we obtain

$$I^{+}(u) \ge \|u_{-}\|^{p} + \|u_{+}\|^{q} \left(\frac{pC_{1}}{C_{3}^{q}\lambda_{2}^{q/p}} - pC_{2}C_{4}^{r}\|u_{+}\|^{r-q}\right)$$

by (2.5), (2.6) and $||u_+||^p \ge \lambda_1 ||u_+||_p^p$, and hence there exist $\delta_2 \in (0,1]$ and $C_6 > 0$ such that

(2.8)
$$I^{+}(u) \ge ||u_{-}||^{p} + C_{6}||u_{+}||^{q} \ge \min\{1, C_{6}\}||u||^{q}$$

for every $u \in X$ provided $||u_+|| \leq \delta_2$ and $\lambda_2 ||u_+||_p^p > ||u_+||_p^p$. Put $\delta_0 = \min\{\delta_1, \delta_2\} > 0$. Then, the inequalities (2.7) and (2.8) imply

$$I^+(u) \ge \min\{1, C_5, C_6\} ||u||^q = \min\{1, C_5, C_6\} \delta_0^q > 0$$

for every $u \in X$ with $||u|| = \delta_0$.

Because the following lemma concerning I^- defined in section 1.3 can be shown by a similar argument as for Lemma 9, we omit the proof here.

Lemma 10 Let f satisfy (F) and we assume that $b_0 = \lambda_1$ and $(G_0 - -)$ hold. Then, there exists a positive constant δ_0 satisfying

$$\inf_{\|u\|=\delta_0} I^-(u) > 0.$$

A similar result to the following proposition can be found as in [16, Proposition 18]. Here, we sketch the proof for readers' convenience.

Proposition 11 Assume that f satisfies (F) with $a = \lambda_1$ (resp. $b = \lambda_1$) and (G+-) (resp. (G--)). Then, I^+ (resp. I^-) has a global minimum.

Proof. At first, we consider I^+ . Let us set

$$I_n^+(u) = I_{(\lambda_1 - 1/n, 0)}^+(u) = I^+(u) + \frac{1}{n} ||u_+||_p^p$$

for $u \in X$ and $n \in \mathbb{N}$ to simplify the notation.

For each $n \in \mathbb{N}$, it is easy to see that I_n^+ is bounded from below on X since $\int_{\Omega} G_+(x, u) \, dx = o(\|u_+\|_p^p)$ as $\|u_+\|_p^p \to \infty$ and $\|u\|^p \ge \lambda_1 \|u\|_p^p$ for every $u \in X$. Moreover, let us note that I_n^+ satisfies the Palais–Smale condition for every $n \in \mathbb{N}$ by Lemma 5. Therefore, by a standard argument ([13, Theorem 4.2]) and by the Palais–Smale condition, for every $n \in \mathbb{N}$, there exists a $u_n \in X$ such that

$$||(I_n^+)'(u_n)||_{X^*} = 0$$
 and $I_n^+(u_n) = \inf_X I_n^+ \le I_n^+(0) = 0.$

Since g satisfies (G+-), by Lemma 7, $\{u_n\}$ is a bounded sequence in X, and hence we may assume that there exists a $u_0 \in X$ such that

 $u_n \rightharpoonup u_0$ in X and $u_n \rightarrow u_0$ in L^p

by taking a subsequence. Furthermore, for every $w \in X$ and $n \in \mathbb{N}$,

$$I^+(u_n) \le I_n^+(u_n) \le I_n^+(w) = I^+(w) + \frac{1}{n} ||w_+||_p^p$$

holds (where we use the fact that u_n is a global minimizer of I_n^+ in the second inequality). By taking the limit inferior with respect to n in the above inequality, $I^+(u_0) \leq I^+(w)$ holds for every $w \in X$ since I^+ is weakly sequentially lower semi-continuous. This shows that u_0 is a global minimum point of I^+ .

Next, we consider I^- . By using $I^-_{(0,\lambda_1-1/n)}$ (see (2.2) for the definition) instead of $I^+_{(\lambda_1-1/n,0)}$, we can obtain a bounded sequence $\{u_n\}$ such that u_n is a global minimum point of $I^-_{(0,\lambda_1-1/n)}$ for each n. Because Lemma 7 gives the boundedness of $\{u_n\}$, we may assume that $\{u_n\}$ weakly converges to some $u_0 \in X$, by choosing a subsequence. Then, by the same argument as that for I^+ , we can prove that u_0 is a global minimizer of I^- .

§3. Proofs of Theorems

3.1. Proof of Theorem 1

Now, we start to prove Theorem 1.

Proof of Theorem 1. Case (i) $a = \lambda_1 < a_0$ and (G+-) hold: In this case, we note that I^+ has a global minimum point $u_0 \in X$ by Proposition 11. So, we shall prove that $\inf_X I^+$ is negative to obtain $u_0 \neq 0$.

From (F), for any ε and r satisfying $0 < \varepsilon < (a_0 - \lambda_1)/p$ and r > p, there exists a C > 0 such that

$$G_0(x,u) \ge -\varepsilon |u|^p - C|u|^r$$
 for every $u \in \mathbb{R}$, a.e. $x \in \Omega$.

Thus, we have for t > 0

$$I^{+}(t\varphi_{1}) \leq t^{p} \left(\|\varphi_{1}\|^{p} - a_{0} \|\varphi_{1}\|^{p}_{p} + \varepsilon p \|\varphi_{1}\|^{p}_{p} + pCt^{r-p} \|\varphi_{1}\|^{r}_{r} \right)$$

= $t^{p} \left(\lambda_{1} - a_{0} + \varepsilon p + pCt^{r-p} \|\varphi_{1}\|^{r}_{r} \right).$

Because $\lambda_1 - a_0 + \varepsilon p < 0$ and r > p, this inequality shows that $I^+(t\varphi_1) < 0$ for sufficiently small t > 0, and hence $I^+(u_0) = \inf_X I^+ < 0$. Therefore, (P) has a positive solution (see Remark 3).

Case(ii) $a = \lambda_1 > a_0$ and (G++) hold: In this case, by applying the mountain pass theorem to

$$I_{-n}^{+}(u) := I^{+}(u) - \frac{1}{n} \|u_{+}\|_{p}^{p} = I_{(\lambda_{1}+1/n,0)}^{+}(u) \quad \text{for } u \in X$$

(see (2.1) for the definition of $I^+_{(\lambda_1+1/n,0)}$ with g), we shall construct a Cerami sequence for I^+ .

Since $\int_{\Omega} G_{0+}(x, u) \, dx = o(||u_+||^p)$ as $||u_+|| \to 0$, we have $I^+(u) \ge ||u_-||^p + (1 - a_0/\lambda_1)||u_+||^p - o(||u_+||^p)$ as $||u_+|| \to 0$. Thus, there exists a positive constant δ_0 satisfying

$$\alpha := \inf\{I^+(u); \|u\| = \delta_0\} > 0$$

since $a_0 < \lambda_1$.

On the other hand, noting that for each $n \in \mathbb{N}$

$$I^+_{-n}(t\varphi_1) = \int_{\Omega} G(x,t\varphi_1) \, dx - \frac{t^p}{n} = o(t^p) - \frac{t^p}{n} \quad \text{as } t \to +\infty,$$

we obtain a $T_n > \delta_0 / \|\varphi_1\|$ such that $I^+_{-n}(T_n \varphi_1) < 0$. Define

$$\Gamma_n := \{ \gamma \in C([0,1], X) ; \gamma(0) = 0, \ \gamma(1) = T_n \varphi_1 \}$$

and

$$c_n := \inf_{\gamma \in \Gamma_n} \max_{t \in [0,1]} I^+_{-n}(\gamma(t))$$

for $n \in \mathbb{N}$. Let us note that $\delta_0 < ||T_n \varphi_1||$ and

$$\inf\{I_{-n}^{+}(u); \|u\| = \delta_{0}\} \ge \inf\{I^{+}(u); \|u\| = \delta_{0}\} - \frac{\delta_{0}^{p}}{n\lambda_{1}} = \alpha - \frac{\delta_{0}^{p}}{n\lambda_{1}},$$

and so $\inf\{I_{-n}^+(u); \|u\| = \delta_0\} > 0$ for $n > \delta_0^p/(\alpha\lambda_1)$. Hence, by the mountain pass theorem, for each $n > \delta_0^p/(\alpha\lambda_1)$, we have that c_n is a critical value of I_{-n}^+ since I_{-n}^+ satisfies the Palais–Smale condition by Lemma 5 (note $\lambda_1 + 1/n \neq \lambda_1$). Therefore, there exists a $u_n \in X$ such that

$$(I_{-n}^+)'(u_n) = 0$$
 and $I_{-n}^+(u_n) = c_n \ge \inf\{I_{-n}^+(u); \|u\| = \delta_0\} \ge \alpha - \frac{\delta_0^p}{n\lambda_1}.$

Because $\{u_n\}$ is bounded in X by Lemma 8 (note $I^+_{-n} = I^+_{(\lambda_1+1/n,0)}$), we may assume that there exists a $u_0 \in X$ such that u_n weakly converges to u_0 in X by taking a subsequence. Also, by choosing a subsequence again, we may suppose

that $\{c_n\}$ is a convergent sequence since $c_n \in [0, I(u_n)]$ and I is bounded on any bounded subsets of X.

Furthermore, the following inequality

$$\|(I^+)'(u_n)\|_{X^*} = \|(I^+)'(u_n) - (I^+_{-n})'(u_n)\|_{X^*} \le \frac{p}{n\lambda_1} \|u_{n_+}\|^{p-1}$$

shows $||(I^+)'(u_n)||_{X^*} \to 0$ as $n \to \infty$. Thus, $\{u_n\}$ is a bounded Palais–Smale sequence of I^+ , that is to say that $\{u_n\}$ is a Cerami sequence of I^+ . Since I^+ satisfies the Cerami condition by Lemma 5, u_n strongly converges to a critical point u_0 of I^+ .

In addition, the following inequality

$$I^{+}(u_{n}) = I^{+}_{-n}(u_{n}) + \frac{1}{n} ||u_{n+}||_{p}^{p} \ge c_{n} \ge \alpha - \frac{\delta_{0}^{p}}{n\lambda_{1}}$$

implies $I^+(u_0) \ge \lim_{n\to\infty} c_n \ge \alpha > 0$, and hence u_0 is a non-trivial critical point of I^+ .

Case(iii) $a < \lambda_1 = a_0$ and $(G_0 + +)$ hold: From (F), we have $\int_{\Omega} G_+(x, u) dx = o(||u_+||_p^p)$ as $||u_+||_p^p \to \infty$. Hence, the following inequality

$$I^{+}(u) = \|u\|^{p} - a\|u_{+}\|_{p}^{p} - p \int_{\Omega} G_{+}(x, u) \, dx$$

$$\geq \|u_{-}\|^{p} + (1 - \frac{a}{\lambda_{1}})\|u_{+}\|^{p} - o(\|u_{+}\|_{p}^{p}) \quad \text{as } \|u_{+}\|_{p}^{p} \to \infty$$

and $a < \lambda_1$ show that I^+ is coercive and bounded from below on X. Moreover, it is easy to see that I^+ is weakly lower semi-continuous. It follows from the standard argument (*cf.* [13, Theorem 1.1]) that I^+ has a global minimum point.

On the other hand, for t > 0 such that $||t\varphi_1||_{\infty} \leq \delta$ where δ is a positive constant described in $(G_0 + +)$, we obtain

$$I^+(t\varphi_1) = -p \int_{\Omega} G_0(x, t\varphi_1) \, dx < 0,$$

and hence $\inf_X I^+ < 0$. Therefore, I^+ has a non-trivial critical point u_0 satisfying $I^+(u_0) = \min_X I^+ < 0$.

Case(iv) $a > \lambda_1 = a_0$ and $(G_0 + -)$ hold: It follows from Lemma 9 that there exists a $\delta_0 > 0$ satisfying $\inf\{I^+(u); ||u|| = \delta_0\} > 0$. On the other hand, we have for t > 0

$$I^+(t\varphi_1) = (\lambda_1 - a)t^p \|\varphi_1\|_p^p - o(t^p) \to -\infty \quad \text{as } t \to +\infty$$

by $\lambda_1 - a < 0$ and $\int_{\Omega} G_+(x, t\varphi_1) dx = o(t^p)$ as $t \to +\infty$. Thus, we can choose a positive constant T such that $T > \delta_0/\|\varphi_1\|$ and $I^+(T\varphi_1) < 0$. So, we define

$$\Gamma := \{ \gamma \in C([0,1], X) ; \, \gamma(0) = 0, \, \gamma(1) = T\varphi_1 \}$$

and

$$c := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I^+(\gamma(t)).$$

Then, by mountain pass theorem, c is a critical value of I^+ with

$$c \ge \inf\{I^+(u); \|u\| = \delta_0\} > 0$$

because $I^+(=I^+_{(a,0)})$ satisfies the Palais–Smale condition by Lemma 5. So, I^+ has a non-trivial critical point.

Case(v) $a = a_0 = \lambda_1$, (G+-) and (G_0++) hold: In this case, we note that I^+ has a global minimum point by Proposition 11. Hence, we shall show that the minimum value of I^+ is negative.

Let δ be a positive constant described in (G_0++) . For t > 0 with $||t\varphi_1||_{\infty} \le \delta$, we get $I^+(t\varphi_1) = -p \int_{\Omega} G_0(x, t\varphi_1) dx < 0$, which implies that $\inf_X I^+ < 0$ holds, and so I^+ has a non-trivial critical point.

Case(vi) $a = a_0 = \lambda_1$, (G++) and (G_0+-) hold: Recall the definition of the approximate functional I^+_{-n} setting in case (ii) as follows:

$$I_{-n}^{+}(u) := I^{+}(u) - \frac{1}{n} \|u_{+}\|_{p}^{p} = I_{(\lambda_{1}+1/n,0)}^{+}(u) \quad \text{for } u \in X$$

Let δ_0 be a positive constant obtained by Lemma 9, that is, δ_0 satisfies

$$\alpha := \inf\{I^+(u) \, ; \, \|u\| = \delta_0 \, \} > 0.$$

By the same argument as in case (ii), we can obtain a $u_n \in X$ for each $n > \delta_0^p/(\alpha \lambda_1)$ such that

(3.1)
$$(I_{-n}^+)'(u_n) = 0$$
 and $I_{-n}^+(u_n) \ge \inf\{I_{-n}^+(u); \|u\| = \delta_0\} \ge \alpha - \frac{\delta_0^p}{n\lambda_1}.$

Furthermore, it can be shown that there exists a subsequence of $\{u_n\}$ (we write this subsequence again by $\{u_n\}$) that is a Cerami sequence at some level $c \in \mathbb{R}$ by the same argument as in case (ii) by Lemma 8. Since I^+ satisfies the Cerami condition by Lemma 5, $\{u_n\}$ has a subsequence strongly converging to some critical point u_0 of I^+ . By taking a limit with respect to n in (3.1), we have $I^+(u_0) \geq \alpha > 0$, and hence u_0 is a non-trivial critical point of I^+ .

3.2. Proof of Theorem 2

Next, we start to prove Theorem 2 which can be shown by a similar argument to Theorem 1. We give only a sketch of the proof.

Proof of Theorem 2. Case(i) $b = \lambda_1 < b_0$ and (G--) hold: In this case, it follows from Proposition 11 that I^- has a global minimizer. On the other hand, because we have for t > 0

$$I^{-}(-t\varphi_{1}) = t^{p}(\lambda_{1} - b_{0}) - p \int_{\Omega} G_{0}(x, -t\varphi_{1}) dx$$

and $\int_{\Omega} G_0(x, -t\varphi_1) dx = o(t^p)$ as $t \to +0$ by (F), $\min_X I^- < 0$ holds (note $\lambda_1 < b_0$). Hence I^- has a non-trivial critical point corresponding to a negative solution of (P) (see Remark 3).

Case(ii) $b = \lambda_1 > b_0$ and (G - +) hold: We shall construct a bounded Palais–Smale sequence for I^- by using the approximate functional I_n^- defined as follows:

$$I_n^-(u) := I^-(u) - \frac{1}{n} ||u_-||_p^p = I^-_{(0,\lambda_1 + 1/n)}(u) \quad \text{for } u \in X, \ n \in \mathbb{N}$$

(see (2.2) for the definition of $I^{-}_{(0,\lambda_1+1/n)}$ with g).

From $\int_{\Omega} G_{0-}(x, u) dx = o(||u_-||^p)$ as $||u_-|| \to 0$ and $b_0 < \lambda_1$, we can obtain a positive constant δ_0 satisfying $\alpha := \{I^-(u); ||u|| = \delta_0\} > 0$. Then, by applying the mountain pass theorem to I_n^- (note that for each n, we have $I_n^-(-t\varphi_1) \to -\infty$ as $t \to \infty$), we can get a Palais–Smale sequence $\{u_n\}$ such that

(3.2)
$$I^{-}(u_{n}) = I_{n}^{-}(u_{n}) + \frac{1}{n} \|u_{n-}\|_{p}^{p} \ge \alpha - \frac{\delta_{0}^{p}}{n\lambda_{1}}$$

for $n > \delta_0^p/(\alpha \lambda_1)$ and we have that $\{u_n\}$ is bounded by Lemma 8 (see the proof of Theorem 1 (ii) for details). Since I^- satisfies the Cerami condition by Lemma 5, we may assume, by taking a subsequence, that u_n strongly converges to some critical point u_0 of I^- . In addition, by taking $n \to \infty$ in (3.2), we have $I^-(u_0) \ge \alpha > 0$ and so u_0 is a non-trivial critical point of I^- .

Case(iii) $b < \lambda_1 = b_0$ and $(G_0 - +)$ hold: From $b < \lambda_1$ and $\int_{\Omega} G_-(x, u) dx = o(\|u_-\|_p^p)$ as $\|u_-\|_p \to \infty$, we can easily show that I^- is coercive and bounded from below on X. Because I^- is weakly lower semi-continuous, I^- has a global minimum point (cf. [13, Theorem 1.1]). Let δ be a positive constant as in $(G_0 - +)$ and let t > 0 satisfy $\|t\varphi_1\|_{\infty} \leq \delta$. Then $I^-(-t\varphi_1) = -p \int_{\Omega} G_0(x, -t\varphi_1) dx < 0$ holds, whence the minimum value of I^- is negative, that is, the global minimum point of I^- is a non-trivial critical point.

Case(iv) $b > \lambda_1 = b_0$ and $(G_0 - -)$ hold: Let δ_0 be a positive constant obtained in Lemma 10, that is, δ_0 is a number such that $\inf\{I^-(u); \|u\| = \delta_0\} > 0$ holds. Because it follows from $b > \lambda_1$ and (F) that $I^-(-t\varphi_1) \to -\infty$ as $t \to \infty$, there exists a T > 0 such that $T > \delta_0 / \|\varphi_1\|$ and $I^-(-T\varphi_1) < 0$. Since I^- satisfies the Palais–Smale condition by Lemma 5, we can obtain a

M. TANAKA

critical value c of I^- with $c \ge \inf\{I^-(u); \|u\| = \delta_0\} > 0$ by the mountain pass theorem (see the proof of case (iv) in Theorem 1 for details).

Case(v) $b = b_0 = \lambda_1$, (G - -) and $(G_0 - +)$ hold: In this case, we already get a global minimum point of I^- by Proposition 11. Furthermore, if we take a t > 0 satisfying $||t\varphi_1||_{\infty} \leq \delta$ where δ is a positive constant described in $(G_0 - +)$, then we have $I^-(-t\varphi_1) = -p \int_{\Omega} G_0(x, -t\varphi_1) dx < 0$. Hence, the minimum value of I^- is negative, and so I^- has a non-trivial critical point.

Case(vi) $b = b_0 = \lambda_1$, (G - +) and $(G_0 - -)$ hold: Let δ_0 be a constant as in Lemma 10, that is, $\alpha := \inf\{I^-(u); \|u\| = \delta_0\} > 0$. Recall the definition of the approximate function I_n^- introducing in case (ii) as follows:

$$I_n^-(u) := I^-(u) - \frac{1}{n} \|u_-\|_p^p = I^-_{(0,\lambda_1 + 1/n)}(u) \quad \text{for } u \in X, \ n \in \mathbb{N}.$$

Then, for each $n \in \mathbb{N}$ there exists a number $T_n > 0$ satisfying $||T_n\varphi_1|| > \delta_0$ and $I_n^-(-T_n\varphi_1) < 0$ by (F). Therefore, we can construct a *bounded* Palais–Smale sequence $\{u_n\}$ for I^- such that

(3.3)
$$I^{-}(u_{n}) = I_{n}^{-}(u_{n}) + \frac{1}{n} \|u_{n-}\|_{p}^{p} \ge \alpha - \frac{\delta_{0}^{p}}{n\lambda_{1}} \quad \text{for } n > \frac{\delta_{0}^{p}}{\alpha\lambda_{1}}$$

by applying the mountain pass theorem to I_n^- and by Lemma 8 (see the proof of case (vi) or (ii) in Theorem 1 for details). Since I^- satisfies the Cerami condition by Lemma 5 and $\{I^-(u_n)\}$ is bounded by the boundedness of $\{u_n\}$, we may assume that u_n strongly converges to some critical point u_0 of $I^$ by choosing a subsequence. In addition, by taking $n \to \infty$ in (3.3), we have $I^-(u_0) \ge \alpha > 0$ and hence u_0 is a non-trivial critical point of I^- .

Acknowledgements. The author would like to express her sincere thanks to Professor Shizuo Miyajima for helpful comments and encouragement.

References

- A. Anane, "Etude des valeurs propres et de la résonnance pour l'opérateur *p*laplacien", Ph. D. thesis, Université Libre de Bruxelles, 1987, C. R. Acad. Sci. Paris Sér, **305**(1987), 725–728.
- [2] M. Cuesta, D. de Figueiredo, and J.-P. Gossez, The beginning of the Fučik spectrum for the p-Laplacian, J. Differential Equations, 159(1999), 212–238.
- [3] E. Dancer, On the Dirichlet problem for weak nonlinear elliptic partial differential equations, Proc. Royal Soc. Edinburgh, 76A(1977), 283–300.
- [4] N. Dancer and K. Perera, Some Remarks on the Fučík Spectrum of the p-Laplacian and Critical Groups, J. Math. Anal. Appl., 254(2001), 164–177.

- [5] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7(1983), 827–850.
- [6] S. Fučík, Boundary value problems with jumping nonlinearities, Casopis Pest. Mat., 101(1976), 69–87.
- [7] L. Gasiński and N. S. Papageorgiou, "Nonsmooth critical point theory and nonlinear boundary value problems", vol 8, Chapman & Hall/CRC, Boca Raton, Florida, 2005.
- [8] M. Y. Jiang, Critical groups and multiple solutions of the p-Laplacian equations, Nonlinear Anal. TMA, 59(2004), 1221–1241.
- Q. Jiu and J. Su, Existence and multiplicity results for Dirichlet problems with p-Laplacian, J. Math. Anal. Appl., 281(2003), 587–601.
- [10] S. Liu and S. Li, The existence of multiple solutions to quasilinear elliptic equations, Bull. London Math. Soc., 37(2005), 592–600.
- [11] J. Liu and J. Su, Remarks on Multiple Solutions for Quasi-Linear Resonant Problems, J. Math. Anal. Appl., 258(2001), 209–222.
- [12] D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations, Manuscripta Math., 124(2007), 507–531.
- [13] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian System", Springer-Verlag, New York, 1989.
- [14] M. Tanaka, On the existence of a non-trivial solution for the p-Laplacian equation with a jumping nonlinearity, Tokyo J. Math., 31(2008), 333–341.
- [15] M. Tanaka, Existence of a non-trivial solution for the p-Laplacian equation with Fučík type resonance at infinity. II, Nonlinear Anal. TMA, 71(2009), 3018–3030.
- [16] M. Tanaka, Existence of a non-trivial solution for the p-Laplacian equation with Fučík type resonance at infinity. III, Nonlinear Anal. TMA, 72(2010), 507–526.
- [17] M. Tanaka, Multiple existence of non-trivial solutions for the p-Laplacian problems in the nonresonant case with respect to Fučík spectrum (preprint).
- [18] N. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20(1967), 721–747.
- [19] Z. Zhang, J. Chen and S. Li, Construction of pseudo-gradient vector field and sign-changing multiple solutions involving p-Laplacian, J. Differential Equations, 201(2004), 287–303.
- [20] Z. Zhang and S. Li, On sign-changing and multiple solutions of the p-Laplacian, J. Fun. Anal., 197(2003), 447–468.

M. TANAKA

Mieko Tanaka

Department of Mathematics, Tokyo University of Science Wakamiya-cho 26, Shinjuku-ku, Tokyo 162-0827, Japan *E-mail:* tanaka@ma.kagu.tus.ac.jp