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Abstract. The purpose of this paper is to study the multipliers on modulation
spaces Mp,q(Rd) for 0 < p, q < ∞. In particular, it is shown in the case
0 < p < 1 that elements of BK (K > d/(2p) and K ∈ N), consisting of all
functions f ∈ CK whose derivatives ∂αf ∈ L∞ for any multi-index α such that
|α| 5 K, are multipliers on Mp,q.
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§1. Introduction

The modulation spaces Mp,q(Rd) for general 0 < p, q 5 ∞, which coincide
with the usual modulation spaces when 1 5 p, q 5 ∞, have been constructed
and several properties on Mp,q(Rd) have been studied in [5], [6]. The aim of
this paper is the study of the boundedness of the operators

σ(D)f =
∫
Rd

e2πix·ξσ(ξ)f̂(ξ)dξ

on Mp,q(Rd) for 0 < p, q < ∞.
When 1 < p, q < ∞, it was already studied in Gröchenig and Heil [2],

[4] and proved that σ(D) has a unique bounded extension on each Mp,q(Rd)
if σ ∈ M∞,1(Rd). However, as Gröchenig pointed it out in his paper [3],
their argument doesn’t cover when p or q = 1 or ∞, since they use the facts
that S(Rd) is dense in Mp,q(Rd) and the dual of Mp,q(Rd) is Mp′,q′(Rd) for
1 5 p, q < ∞ and 1

p + 1
p′ = 1 = 1

q + 1
q′ . So in this paper, we calculate the Mp,q-

norm of σ(D)f directly with our key lemma (Lemma 2.4) without using the
duality, and examine what conditions on σ to guarantee the Mp,q-boundedness
of σ(D). In particular, it is shown in the case 0 < p < 1 that elements of BK

(K > d/(2p) and K ∈ N), consisting of all functions f ∈ CK whose derivatives
∂αf ∈ L∞ for any multi-index α such that |α| 5 K, are multipliers on Mp,q.
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§2. Preliminaries

2.1. Basic definition

The following notations will be used throughout this article. Let S(Rd) be the
Schwartz space of all complex-valued rapidly decreasing infinitely differentiable
functions on Rd and S ′(Rd) be the topological dual of S(Rd). The Fourier
transform is f̂(ω) =

∫
f(t)e−2πiω·tdt, and the inverse Fourier transform is

f̌(t) = f̂(−t). We define for 0 < p < ∞

||f ||Lp =
( ∫

Rd

|f(t)|pdt
) 1

p

and ||f ||L∞ = ess. supt∈Rd |f(t)|. We use the pairing 〈f, g〉 between f ∈ S ′(Rd)
and g ∈ S(Rd), in a manner consistent with the inner product 〈f, g〉 =∫

f(t)g(t)dt on L2(Rd). For a function f on Rd, the translation and the
modulation operators are defined by

Txf(t) = f(t − x), and Mωf(t) = e2πiω·tf(t) (x, ω ∈ Rd),

respectively.

2.2. Modulation spaces and Basic properties

We recall the definition of the modulation spaces.
First for α > 0 we define Φα(Rd) to be the space of all g ∈ S(Rd) satisfying

supp ĝ ⊂ {ξ | |ξ| 5 1}, and
∑
k∈Zd

ĝ(ξ − αk) ≡ 1, ∀ξ ∈ Rd.

In the following, we choose a sufficiently small α > 0 so that the function
space Φα(Rd) is not empty. With this, we have defined the modulation spaces
as follows:

Definition 2.1. Given a g ∈ Φα(Rd), and 0 < p, q 5 ∞, we define the
modulation space Mp,q(Rd) to be the space of all tempered distributions f ∈
S ′(Rd) such that the quasi-norm

||f ||Mp,q :=
( ∫

Rd

( ∫
Rd

∣∣f ∗
(
Mωg

)
(x)

∣∣pdx
) q

p
dω

) 1
q

is finite, with obvious modifications if p or q = ∞.

We state basic properties of modulation spaces, which will play an impor-
tant role in this article (see [5]).
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Proposition 2.2. Let 0 < p, q 5 ∞ and g ∈ Φα(Rd).Then

(a)
( ∑

k∈Zd

( ∫
Rd

∣∣f ∗
(
Mαkg

)
(x)

∣∣pdx
) q

p
) 1

q

is an equivalent quasi-norm on Mp,q(Rd) with modifications if p or q = ∞.
(b) Different test functions g1, g2 ∈ Φα(Rd) define the same space and equiva-
lent quasi-norms on Mp,q(Rd).
(c) Let 0 < p0 5 p1 5 ∞ and 0 < q0 5 q1 5 ∞. Then

Mp0,q0(Rd) ⊂ Mp1,q1(Rd).

(d) We have the continuous embeddings

S(Rd) ⊂ Mp,q(Rd) ⊂ S ′(Rd)

for 0 < p, q 5 ∞.
(e) Mp,q(Rd) is a quasi-Banach space if 0 < p, q 5 ∞ (Banach space if 1 5
p, q 5 ∞).
(f) If 0 < p, q < ∞, then S(Rd) is dense in Mp,q(Rd).

These facts have been derived from the following.
Let 0 < p 5 ∞, and Γ be a compact subset of Rd. Then Lp

Γ is defined by

Lp
Γ = {f ∈ S ′(Rd) | ∃ξ0 ∈ Rd, suppf̂ ⊂ ξ0 + Γ, ||f ||Lp < ∞}.

Lemma 2.3 ([5] Theorem 2.5). Let Γ be a compact subset of Rd and let 0 <
p 5 q 5 ∞. Then there exists a positive constant C (which depends only on
the diameter of Γ and p) such that

||f ||Lq 5 C||f ||Lp

holds for all f ∈ Lp
Γ.

Lemma 2.4 ([5] Lemma 2.6). Let 0 < p 5 1 and Γ, Γ′ be compact subsets
of Rd. Then there exists a positive constant C (which depends only on the
diameters of Γ, Γ′ and p) such that∣∣∣∣∣∣|f | ∗ |g|∣∣∣∣∣∣

Lp
5 C||f ||Lp ||g||Lp

holds for all f ∈ Lp
Γ and all g ∈ Lp

Γ′.

In the sequel, we shall not distinguish between equivalent quasi-norms of a
given quasi-normed space.
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2.3. Multiplier operators and Symbol classes

Definition 2.5. Let 0 < p, q < ∞ and σ ∈ S ′(Rd). If the operator σ(D),
initially defined in S(Rd) by the relation

(2.1) σ(D)f = (σ · f̂)∨,

satisfies the inequality

(2.2) ||σ(D)f ||Mp,q 5 C||f ||Mp,q , f ∈ Mp,q(Rd),

where C is independent of f , we say that σ is a multiplier on Mp,q and σ(D)
is a multiplier operator on Mp,q.

Definition 2.6. For g ∈ Φα(Rd) and 0 < p < ∞, we define S(p) to be the
space of all tempered distributions σ ∈ S ′(Rd) such that

(2.3) ||σ||S(p) := ||σ̌||Mp,∞ = sup
k∈Zd

( ∫
Rd

|(σ · Tαkĝ)∨(x)|pdx
) 1

p
< ∞.

2.4. Main results

We now formulate our results.
(i) Let 1 5 p < ∞, 0 < q < ∞ and σ ∈ S(1). Then σ(D) is a multiplier
operator on Mp,q(Rd).
(ii) Let 0 < p < 1, 0 < q < ∞ and σ ∈ S(p). Then σ(D) is a multiplier
operator on Mp,q(Rd).

Precise statements of these results and their proof are stated in §3.

2.5. Examples

Theorem 2.7. Let 0 < p 5 1 and δxn be the Dirac measure at a point xn ∈ Rd.
Then, for a sequence of complex numbers {cn}∞n=−∞ ∈ lp(Z),

σ =
( ∞∑

n=−∞
cnδxn

)̂
belongs to S(p).

Proof. A direct calculation shows that for each k ∈ Zd,

σ̌ ∗ Mαkg(x) =
∞∑

n=−∞
cn〈δxn , Mαkg(x − ·)〉 =

∞∑
n=−∞

cnMαkg(x − xn).
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Hence it follows that

||σ̌ ∗ Mαkg(x)||pLp =
∫
Rd

∣∣∣ ∞∑
n=−∞

cnMαkg(x − xn)
∣∣∣pdx

5
∞∑

n=−∞
|cn|p

∫
|e2πiαk·(x−xn)g(x − xn)|pdx

=
∞∑

n=−∞
|cn|p||g||pLp < ∞.

By taking 1
p -th power and l∞-norm, we see that σ ∈ S(p).

Remark. Oberlin in [7] has proved that every bounded linear operator T
on Lp(Rd) (0 < p < 1) which commutes with translations is represented by
Tf = σ(D)f with σ = (

∑
cnδxn)̂ , where {cn} ∈ lp(Z).

Theorem 2.8. Let 1 5 p < ∞. Then we have M∞,p(Rd) ⊂ S(p).

Proof. Since
(
σ · Tω ĝ

)∨(x) = e2πiω·xσ ∗
(
M−xI ĝ

)
(ω), where I ĝ(ξ) = ĝ(−ξ)

and M∞,p(Rd) (1 5 p < ∞) is independent of the choice of a window g ∈
S(Rd) r {0} (see [2] Proposition 11.3.2), it follows that

||σ||S(p) 5 c sup
ω∈Rd

( ∫
Rd

∣∣(σ · Tω ĝ
)∨(x)

∣∣pdx
) 1

p

5 c
( ∫

Rd

(
sup

ω∈Rd

∣∣σ ∗
(
M−xI ĝ

)
(ω)

∣∣)p
dx

) 1
p 5 c′||σ||M∞,p .

Theorem 2.9. Let 0 < p < ∞ and K be a positive integer. If K > d
2p then

BK :=
{
f ∈ CK(Rd)

∣∣ ∑
|α|5K

||∂αf ||L∞ < ∞
}

belongs to S(p).
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Proof. Let f ∈ BK and denote ∆ξ =
∑d

j=1(∂
2/∂ξ2

j ). Then we have

(1 + 4π2|x|2)K |
(
f · Tαkĝ

)∨(x)|

= (1 + 4π2|x|2)K
∣∣∣ ∫

Rd

f(ξ)ĝ(ξ − αk)e2πix·ξdξ
∣∣∣

=
∣∣∣ ∫

Rd

f(ξ)ĝ(ξ − αk)(1 − ∆ξ)Ke2πix·ξdξ
∣∣∣

=
∣∣∣ ∫

Rd

∑
|α+β|52K

Cα,β∂αf(ξ)∂β ĝ(ξ − αk)e2πix·ξdξ
∣∣∣

5
∑

|α+β|52K

Cα,β ||∂αf ||L∞

∫
Rd

|∂β ĝ(ξ)|dξ.

Since K > d
2p , we have

||f ||S(p) 5 C
∑

|α|52K

||∂αf ||L∞ .

§3. Proof of the main results

We now consider the behavior of σ(D) on Mp,q(Rd). Throughout this section,
g denotes a function in Φα(Rd).

3.1. The case 1 5 p < ∞

Theorem 3.1. Let 1 5 p < ∞, 0 < q < ∞ and σ ∈ S(1). Then the linear
operator σ(D), initially defined in the dense subspace S(Rd) of Mp,q(Rd), has
a unique bounded extension on Mp,q(Rd) and satisfies

(3.1) ||σ(D)f ||Mp,q 5 c||σ||S(1)||f ||Mp,q .

Proof. First note that there exists a constant N (depending only on the size
of supp ĝ, α > 0 and dimension d) such that Tαkĝ =

∑
|r|5N

Tα(k+r)ĝ · Tαkĝ for

all k ∈ Zd. Then for f ∈ S(Rd), we have

(σ · f̂)∨ ∗
(
Mαkg

)
(x) = (σ · f̂ · Tαkĝ)∨(x) =

∑
|r|5N

(σ · Tαkĝ · f̂ · Tα(k+r)ĝ)∨(x)

=
∑
|r|5N

(σ · Tαkĝ)∨ ∗ (f̂ · Tα(k+r)ĝ)∨(x)
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From this and Young’s inequality, we have

||(σ · f̂)∨ ∗ Mαkg(x)||Lp 5
∑
|r|5N

||(σ · Tαkĝ)∨(x)||L1 ||(f̂ · Tα(k+r)ĝ)∨(x)||Lp .

Taking the lq-norm on both sides, we obtain

||σ(D)f ||Mp,q 5 c sup
k∈Zd

||(σ · Tαkĝ)∨||L1 ||f ||Mp,q

Then, since S(Rd) is dense and Mp,q(Rd) is a quasi-Banach space, we have
the desired result.

3.2. The case 0 < p < 1

Theorem 3.2. Let 0 < p < 1, 0 < q < ∞ and σ ∈ S(p). Then the linear
operator σ(D), initially defined in the dense subspace S(Rd) of Mp,q(Rd), has
a unique bounded extension on Mp,q(Rd) and satisfies

(3.2) ||σ(D)f ||Mp,q 5 C||σ||S(p)||f ||Mp,q .

Proof. Let f ∈ S(Rd). Then we have

(σ · f̂)∨ ∗
(
Mαkg

)
(x) =

∑
|r|5N

(σ · Tαkĝ)∨ ∗ (f̂ · Tα(k+r)ĝ)∨(x).

From this and Lemma 2.4, we have

||(σ · f̂)∨ ∗ Mαkg(x)||Lp 5 C
∑
|r|5N

||(σ · Tαkĝ)∨(x)||Lp ||(f̂ · Tα(k+r)ĝ)∨(x)||Lp .

Taking the lq-norm on both sides, we obtain

||σ(D)f ||Mp,q 5 C ′ sup
k∈Zd

||(σ · Tαkĝ)∨||Lp ||f ||Mp,q .

Then, since S(Rd) is dense and Mp,q(Rd) is a quasi-Banach space, we have
the desired result.
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