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Abstract. The purpose of this paper is to show the existence of unique global
C1-solutions to the time-dependent complex Ginzburg-Landau equation. We
regard the equation as a genuinely nonlinear equation and simultaneously as a
semilinear equation.
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1. Introduction

In this paper we consider the generalized complex Ginzburg-Landau equa-
tion (see e.g. Temam [3])

(1)
∂u

∂t
− (λ + iα)∆u + (κ + iβ)|u|p−1u − γu = 0, (x, t) ∈ Ω × R+,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, i =
√
−1 and

u is a complex-valued unknown function. The equation will be supplemented
with the homogeneous Dirichlet boundary condition

(2-a) u = 0 on ∂Ω × R+,

or the homogeneous Neumann boundary condition

(2-b)
∂u

∂ν
= 0 on ∂Ω × R+,

where ν is the unit outward normal on ∂Ω, and the initial value of u:

(3) u(x, 0) = u0(x), x ∈ Ω.
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Recently in [4], we proved that the initial-boundary value problem (1)−(3)
has a unique strong global solution in X := L2(Ω;C) under some conditions on
the exponent p > 1 and the real parameters λ, κ, α, β, γ. We used the theory
of nonlinear semi-groups in [4]. Therefore the solution u(t) to the problem
(1)−(3) exists globally, but there is no guarantee that u(t) is differentiable for
any t ∈ [0,∞) (u(t) is differentiable for almost every t ∈ [0,∞)).

The purpose of this paper is to show the differentiability for any t ∈ [0,∞)
of the solution u(t) to the problem (1)−(3) under additional restrictions on
the exponent p and the dimension n.

The basic idea is that we regard (1) as a genuinely nonlinear equation
and simultaneously as a semilinear equation (Lipschitz perturbations of linear
equations). As mentioned above, we can obtain a unique global strong solution
by the theory of nonlinear semi-groups. On the other hand, we can prove the
existence of a unique local C1-solution (continuously differentiable solution)
by the theory of semilinear equations. Hence, by combining these two facts,
namely the global existence by the theory of nonlinear semi-groups and the
continuous differentiability by the theory of semilinear equations, we can prove
the existence of a unique global C1-solution to the problem (1)−(3).

2. The Main Result and Proof

For the abstract setting we define three operators A1, B, A in the complex
Hilbert space X := L2(Ω;C) with norm and inner product denoted by ‖ · ‖
and (·, ·), respectively:

D(A1) := H1
0 (Ω;C) ∩ H2(Ω;C) (in case of (2-a)),

D(A1) :=
{
u ∈ H2(Ω;C);

∂u

∂ν
= 0 on ∂Ω

}
(in case of (2-b)),

A1u := −∆u for u ∈ D(A1),

D(B) :=
{
u ∈ X; |u|p−1u ∈ X

}
= L2p(Ω;C),

Bu := |u|p−1u for u ∈ D(B),

D(A) := D(A1) ∩ D(B),

Au := (λ + iα)A1u + (κ + iβ)Bu − γu for u ∈ D(A),

where H2(Ω;C) and H1
0 (Ω;C) are the usual Sobolev Hilbert spaces.

The problem (1)−(3) is now equivalent to the following initial value problem
for the abstract evolution equation

d

dt
u(t) + Au(t) = 0, t ≥ 0,(4)

u(0) = u0.

For convenience we quote the existence theorem from [4]. It is summarized as
follows:
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Theorem A ([4]). Let λ > 0, κ > 0, p > 1,
|β|
κ

≤
2
√

p

p − 1
, λκ + αβ > 0.

Then for any T > 0 and u0 ∈ D(A) there exists a unique strong solution
u(t) (t ∈ [0, T ]) to the problem (4) such that
(a) u(t) ∈ D(A) for t ∈ [0, T ].
(b) u(t) is Lipschitz continuous for t ∈ [0, T ].
(c) u(t) is strongly differentiable for almost every t ∈ [0, T ] and satisfies (4).
(d) Au(t) is weakly continuous for t ∈ [0, T ] (see [5, Theorem 31.A]).

At the same time we can regard (1)−(3) as a semilinear evolution equation

d

dt
u(t) + (λ + iα)A1u(t) = −(κ + iβ)Bu(t) + γu(t), t ≥ 0,(5)

u(0) = u0.

Let n = 1, 2, 3. Then H2(Ω;C) is embedded in L∞(Ω;C), and therefore
D(A1) ⊂ D(B) (consequently, D(A) = D(A1) ∩ D(B) = D(A1)). Since the
function f(s) = |s|p−1s (p ≥ 3) is three times continuously differentiable,
we can see that the operator B is locally Lipschitz continuous on D(A1) with
graph norm ‖ · ‖D(A1). Hence applying general theory of semilinear equations
(see e.g. Ôtani [1, Theorem B] or Pazy [2, Remark after Theorem 6.1.7]), we
have

Theorem B. Let n = 1, 2, 3. Assume that λ > 0 and p ≥ 3. Then for any
u0 ∈ D(A1) there exists Tm (0 < Tm ≤ ∞) such that the problem (5) has a
unique C1-solution u(·) ∈ C1

(
[0, Tm) : X

)
∩ C

(
[0, Tm) : D(A1)

)
∩ C

(
[0, Tm) :

D(A)
)
. Furthermore, if Tm < ∞ then limt↑Tm

(
‖u(t)‖ + ‖A1u(t)‖

)
= ∞.

As a combination of Theorem A and Theorem B, our theorem is stated as
follows:

Theorem. Let n = 1, 2, 3. Assume that λ > 0, κ > 0, p ≥ 3,
|β|
κ

≤
2
√

p

p − 1
, and λκ + αβ > 0. Then for any u0 ∈ D(A) the problem (4) (or (5))

has a unique global C1-solution u(t) such that

u(·) ∈ C1
(
[0,∞);X

)
∩ C

(
[0,∞);D(A)

)
∩ C

(
[0,∞);D(A1)

)
.

Proof. Under the assumption of our Theorem we can simultaneously apply
Theorem A and Theorem B to the poblem (4) (or (5)). Hence it is easy to see
that the solution obtained by Theorem A coincides with the one obtained by
Theorem B in the common time interval [0, Tm). Using the properties (a)-(d)
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(especially (d)) of the solution u(t) (0 ≤ t < ∞) in Theorem A, we shall prove
that Tm = ∞. To this end, it suffices by Theorem B to show that if Tm < ∞,
then

(6) sup
0≤t<Tm

(
‖u(t)‖ + ‖A1u(t)‖

)
< ∞.

We know that u(t) satisfies the following equation

d

dt
u(t) − (λ + iα)∆u(t) + (κ + iβ)|u(t)|p−1u(t) − γu(t) = 0, 0 ≤ t < Tm.

Dividing by (λ + iα) and taking inner product with |u|p−1u, we have

1
λ + iα

( d

dt
u(t), |u(t)|p−1u(t)

)
−

(
∆u(t), |u(t)|p−1u(t)

)
(7)

+
κ + iβ

λ + iα
‖u(t)‖2p

L2p − γ

λ + iα

∫
Ω

|u(t)|p+1 dx = 0.

Integration by parts yields

−Re
(
∆u(t), |u(t)|p−1u(t)

)
=

∫
Ω

|u(t)|p−1|∇u(t)|2 dx(8)

+ (p − 1)
∫

Ω

|u(t)|p−3
n∑

j=1

{Re(u(t) · ∂

∂xj
u(t))}2 dx ≥ 0,

where Re(·) and u(t) mean the real part of (·) and the complex conjugate of
u(t), respectively. In view of (7), (8) we obtain for any ε > 0

λκ + αβ

λ2 + α2
‖u(t)‖2p

L2p ≤
∣∣∣∣ 1
λ + iα

∣∣∣∣ ∫
Ω

∣∣ d

dt
u(t)

∣∣ · |u(t)|pdx +
λγ

λ2 + α2

∫
Ω

|u(t)|p+1dx

≤ 1√
λ2 + α2

∫
Ω

(
1
4ε

∣∣ d

dt
u(t)

∣∣2 + ε|u(t)|2p

)
dx

+
λ|γ|

λ2 + α2

∫
Ω

(
ε|u(t)|2p +

1
4ε

|u(t)|2
)

dx.

Thus we have

1
λ2 + α2

{
(λκ + αβ) − ε(

√
λ2 + α2 + λ|γ|)

}
‖u(t)‖2p

L2p(9)

≤ 1
4ε

1√
λ2 + α2

∥∥ d

dt
u(t)

∥∥2 +
1
4ε

λ|γ|
λ2 + α2

‖u(t)‖2

=
1
4ε

(
1√

λ2 + α2

∥∥Au(t)
∥∥2 +

λ|γ|
λ2 + α2

‖u(t)‖2

)
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for 0 ≤ t < Tm. Choose ε > 0 small enough in such a way that the left hand
side of (9) is positive. We know from Theorem A (d) that {‖Au(t)‖; t ∈ [0, T )}
is bounded for evry T > 0. In particular, it follows that

(10) sup
0≤t<Tm

‖Au(t)‖ < ∞.

Moreover, it is not difficult to see that

(11) sup
0≤t<Tm

‖u(t)‖ ≤ eγTm‖u0‖ < ∞.

From (9), (10), (11) we have

sup
0≤t<Tm

‖u(t)‖L2p < ∞.

Finally, in view of the definition of the operator A, we obtain (6). This com-
pletes the proof of Theorem. ¤
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