SUT Journal of Mathematics Vol. 33, No. 1 (1997), 115–119

A REMARK ON TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS

Akihito Unai

(Received May 12, 1997)

Abstract. The purpose of this paper is to show the existence of unique global C^1 -solutions to the time-dependent complex Ginzburg-Landau equation. We regard the equation as a genuinely nonlinear equation and simultaneously as a semilinear equation.

AMS 1991 Mathematics Subject Classification. Primary 47H20, Secondary 34G20.

Key words and phrases. Ginzburg-Landau equations, global C^1 -solutions, non-linear evolution equations, semilinear evolution equations.

1. Introduction

In this paper we consider the generalized complex Ginzburg-Landau equation (see e.g. Temam [3])

(1)
$$\frac{\partial u}{\partial t} - (\lambda + i\alpha)\Delta u + (\kappa + i\beta)|u|^{p-1}u - \gamma u = 0, \quad (x,t) \in \Omega \times \mathbf{R}_+,$$

where Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$, $i = \sqrt{-1}$ and u is a complex-valued unknown function. The equation will be supplemented with the homogeneous Dirichlet boundary condition

(2-a)
$$u = 0$$
 on $\partial \Omega \times \mathbf{R}_+,$

or the homogeneous Neumann boundary condition

(2-b)
$$\frac{\partial u}{\partial \nu} = 0 \quad \text{on} \quad \partial \Omega \times \mathbf{R}_+,$$

where ν is the unit outward normal on $\partial\Omega$, and the initial value of u:

(3)
$$u(x,0) = u_0(x), \quad x \in \Omega.$$

A. UNAI

Recently in [4], we proved that the initial-boundary value problem (1)-(3)has a unique strong global solution in $X := L^2(\Omega; \mathbb{C})$ under some conditions on the exponent p > 1 and the real parameters λ , κ , α , β , γ . We used the theory of nonlinear semi-groups in [4]. Therefore the solution u(t) to the problem (1)-(3) exists globally, but there is no guarantee that u(t) is differentiable for any $t \in [0, \infty)$ (u(t) is differentiable for almost every $t \in [0, \infty)$).

The purpose of this paper is to show the differentiability for any $t \in [0, \infty)$ of the solution u(t) to the problem (1)-(3) under additional restrictions on the exponent p and the dimension n.

The basic idea is that we regard (1) as a genuinely nonlinear equation and simultaneously as a semilinear equation (Lipschitz perturbations of linear equations). As mentioned above, we can obtain a unique global strong solution by the theory of nonlinear semi-groups. On the other hand, we can prove the existence of a unique local C^1 -solution (continuously differentiable solution) by the theory of semilinear equations. Hence, by combining these two facts, namely the global existence by the theory of nonlinear semi-groups and the continuous differentiability by the theory of semilinear equations, we can prove the existence of a unique global C^1 -solution to the problem (1)-(3).

2. The Main Result and Proof

For the abstract setting we define three operators A_1 , B, A in the complex Hilbert space $X := L^2(\Omega; \mathbb{C})$ with norm and inner product denoted by $\|\cdot\|$ and (\cdot, \cdot) , respectively:

$$D(A_1) := H_0^1(\Omega; \mathbf{C}) \cap H^2(\Omega; \mathbf{C}) \quad \text{(in case of (2-a))},$$

$$D(A_1) := \left\{ u \in H^2(\Omega; \mathbf{C}); \ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \right\} \quad \text{(in case of (2-b))},$$

$$A_1 u := -\Delta u \quad \text{for} \quad u \in D(A_1),$$

$$D(B) := \left\{ u \in X; \ |u|^{p-1}u \in X \right\} = L^{2p}(\Omega; \mathbf{C}),$$

$$Bu := |u|^{p-1}u \quad \text{for} \quad u \in D(B),$$

$$D(A) := D(A_1) \cap D(B),$$

$$Au := (\lambda + i\alpha)A_1u + (\kappa + i\beta)Bu - \gamma u \quad \text{for} \ u \in D(A),$$

where $H^2(\Omega; \mathbf{C})$ and $H^1_0(\Omega; \mathbf{C})$ are the usual Sobolev Hilbert spaces.

The problem (1)-(3) is now equivalent to the following initial value problem for the abstract evolution equation

(4)
$$\frac{d}{dt}u(t) + Au(t) = 0, \qquad t \ge 0,$$
$$u(0) = u_0.$$

For convenience we quote the existence theorem from [4]. It is summarized as follows:

Theorem A ([4]). Let $\lambda > 0$, $\kappa > 0$, p > 1, $\frac{|\beta|}{\kappa} \le \frac{2\sqrt{p}}{p-1}$, $\lambda \kappa + \alpha \beta > 0$. Then for any T > 0 and $u_0 \in D(A)$ there exists a unique strong solution u(t) ($t \in [0,T]$) to the problem (4) such that (a) $u(t) \in D(A)$ for $t \in [0,T]$. (b) u(t) is Lipschitz continuous for $t \in [0,T]$. (c) u(t) is strongly differentiable for almost every $t \in [0,T]$ and satisfies (4). (d) Au(t) is weakly continuous for $t \in [0,T]$ (see [5, Theorem 31.A]).

At the same time we can regard (1)-(3) as a semilinear evolution equation

(5)
$$\frac{d}{dt}u(t) + (\lambda + i\alpha)A_1u(t) = -(\kappa + i\beta)Bu(t) + \gamma u(t), \quad t \ge 0,$$
$$u(0) = u_0.$$

Let n = 1, 2, 3. Then $H^2(\Omega; \mathbf{C})$ is embedded in $L^{\infty}(\Omega; \mathbf{C})$, and therefore $D(A_1) \subset D(B)$ (consequently, $D(A) = D(A_1) \cap D(B) = D(A_1)$). Since the function $f(s) = |s|^{p-1}s$ ($p \geq 3$) is three times continuously differentiable, we can see that the operator B is locally Lipschitz continuous on $D(A_1)$ with graph norm $\|\cdot\|_{D(A_1)}$. Hence applying general theory of semilinear equations (see e.g. Ôtani [1, Theorem B] or Pazy [2, Remark after Theorem 6.1.7]), we have

Theorem B. Let n = 1, 2, 3. Assume that $\lambda > 0$ and $p \ge 3$. Then for any $u_0 \in D(A_1)$ there exists T_m $(0 < T_m \le \infty)$ such that the problem (5) has a unique C^1 -solution $u(\cdot) \in \mathbf{C}^1([0, T_m) : X) \cap \mathbf{C}([0, T_m) : D(A_1)) \cap \mathbf{C}([0, T_m) : D(A))$. Furthermore, if $T_m < \infty$ then $\lim_{t \uparrow T_m} (||u(t)|| + ||A_1u(t)||) = \infty$.

As a combination of Theorem A and Theorem B, our theorem is stated as follows:

Theorem. Let n = 1, 2, 3. Assume that $\lambda > 0$, $\kappa > 0$, $p \ge 3$, $\frac{|\beta|}{\kappa} \le \frac{2\sqrt{p}}{p-1}$, and $\lambda \kappa + \alpha \beta > 0$. Then for any $u_0 \in D(A)$ the problem (4) (or (5)) has a unique global C^1 -solution u(t) such that

$$u(\cdot) \in C^1([0,\infty); X) \cap C([0,\infty); D(A)) \cap C([0,\infty); D(A_1))$$

Proof. Under the assumption of our Theorem we can simultaneously apply Theorem A and Theorem B to the poblem (4) (or (5)). Hence it is easy to see that the solution obtained by Theorem A coincides with the one obtained by Theorem B in the common time interval $[0, T_m)$. Using the properties (a)-(d)

A. UNAI

(especially (d)) of the solution u(t) $(0 \le t < \infty)$ in Theorem A, we shall prove that $T_m = \infty$. To this end, it suffices by Theorem B to show that if $T_m < \infty$, then

(6)
$$\sup_{0 \le t < T_m} \left(\|u(t)\| + \|A_1 u(t)\| \right) < \infty.$$

We know that u(t) satisfies the following equation

$$\frac{d}{dt}u(t) - (\lambda + i\alpha)\Delta u(t) + (\kappa + i\beta)|u(t)|^{p-1}u(t) - \gamma u(t) = 0, \quad 0 \le t < T_m.$$

Dividing by $(\lambda + i\alpha)$ and taking inner product with $|u|^{p-1}u$, we have

(7)
$$\frac{1}{\lambda + i\alpha} \left(\frac{d}{dt} u(t), \ |u(t)|^{p-1} u(t) \right) - \left(\Delta u(t), \ |u(t)|^{p-1} u(t) \right) \\ + \frac{\kappa + i\beta}{\lambda + i\alpha} \|u(t)\|_{L^{2p}}^{2p} - \frac{\gamma}{\lambda + i\alpha} \int_{\Omega} |u(t)|^{p+1} \ dx = 0.$$

Integration by parts yields

(8)
$$-\operatorname{Re}\left(\Delta u(t), \ |u(t)|^{p-1}u(t)\right) = \int_{\Omega} |u(t)|^{p-1} |\nabla u(t)|^2 \ dx$$
$$+ (p-1) \int_{\Omega} |u(t)|^{p-3} \sum_{j=1}^n \{\operatorname{Re}(\overline{u(t)} \cdot \frac{\partial}{\partial x_j} u(t))\}^2 \ dx \ge 0,$$

where $\operatorname{Re}(\cdot)$ and $\overline{u(t)}$ mean the real part of (\cdot) and the complex conjugate of u(t), respectively. In view of (7), (8) we obtain for any $\varepsilon > 0$

$$\begin{split} \frac{\lambda\kappa + \alpha\beta}{\lambda^2 + \alpha^2} \|u(t)\|_{L^{2p}}^{2p} &\leq \left|\frac{1}{\lambda + i\alpha}\right| \int_{\Omega} \left|\frac{d}{dt}u(t)\right| \cdot |u(t)|^p dx + \frac{\lambda\gamma}{\lambda^2 + \alpha^2} \int_{\Omega} |u(t)|^{p+1} dx \\ &\leq \frac{1}{\sqrt{\lambda^2 + \alpha^2}} \int_{\Omega} \left(\frac{1}{4\varepsilon} \left|\frac{d}{dt}u(t)\right|^2 + \varepsilon |u(t)|^{2p}\right) dx \\ &\quad + \frac{\lambda|\gamma|}{\lambda^2 + \alpha^2} \int_{\Omega} \left(\varepsilon |u(t)|^{2p} + \frac{1}{4\varepsilon} |u(t)|^2\right) dx. \end{split}$$

Thus we have

(9)
$$\frac{1}{\lambda^{2} + \alpha^{2}} \left\{ (\lambda \kappa + \alpha \beta) - \varepsilon (\sqrt{\lambda^{2} + \alpha^{2}} + \lambda |\gamma|) \right\} \|u(t)\|_{L^{2p}}^{2p}$$
$$\leq \frac{1}{4\varepsilon} \frac{1}{\sqrt{\lambda^{2} + \alpha^{2}}} \left\| \frac{d}{dt} u(t) \right\|^{2} + \frac{1}{4\varepsilon} \frac{\lambda |\gamma|}{\lambda^{2} + \alpha^{2}} \|u(t)\|^{2}$$
$$= \frac{1}{4\varepsilon} \left(\frac{1}{\sqrt{\lambda^{2} + \alpha^{2}}} \left\| Au(t) \right\|^{2} + \frac{\lambda |\gamma|}{\lambda^{2} + \alpha^{2}} \|u(t)\|^{2} \right)$$

118

for $0 \le t < T_m$. Choose $\varepsilon > 0$ small enough in such a way that the left hand side of (9) is positive. We know from Theorem A (d) that $\{||Au(t)||; t \in [0,T)\}$ is bounded for evry T > 0. In particular, it follows that

(10)
$$\sup_{0 \le t < T_m} \|Au(t)\| < \infty.$$

Moreover, it is not difficult to see that

(11)
$$\sup_{0 \le t < T_m} \|u(t)\| \le e^{\gamma T_m} \|u_0\| < \infty.$$

From (9), (10), (11) we have

$$\sup_{0 \le t < T_m} \|u(t)\|_{L^{2p}} < \infty.$$

Finally, in view of the definition of the operator A, we obtain (6). This completes the proof of Theorem. \Box

Acknowledgement

The author would like to thank the referee for his helpful comments and suggestions.

References

- M. Ôtani, An Introduction to Nonlinear Evolution Equations, Summer Seminar Notes, 1983 (in Japanese).
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Math. Sci., vol. 44, Springer-Verlag, Berlin and New York, 1983.
- 3. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Math. Sci., vol.68, Springer-Verlag, Berlin and New York, 1988.
- 4. A. Unai and N. Okazawa, Perturbations of nonlinear m-sectorial operators and timedependent Ginzburg-Landau equations, Dynamical Systems and Differential Equations (Springfield, 1996), Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1997 (to appear).
- E. Zeidler, Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators, Springer-Verlag, Berlin and New York, 1989.

Akihito Unai

Department of Applied Mathematics, Science University of Tokyo 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162, Japan