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Abstract. Statistical structure of the fraction of symmetrical sm factorial
designs is investigated in some detail. In this paper, we show that the infor-
mation matrix of a fractional sm factorial design is determined completely by
its characteristic vector. We also give an explicit expression of the elements of
the infomation matrix of the design derived from s-symbol balanced arrays in
terms of its indices.
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§1. Introduction

In his pioneering work, Taguchi [12] contributed to the extensive use of or-
thogonal fraction of 2m factorial designs obtained by assigning the factors to
the appropriately selected column of saturated orthogonal arrays, or ‘orthog-
onal tables’. At that time, Box and Hunter [2, 3] investigated the structure of
the orthogonal fraction of 2m factorial designs at length. Orthogonal fractions,
however, require much more than desirable number of assemblies or treatment
combinations. Sometimes, it becomes infeasible if the higher power of resolu-
tion is expected. Balanced fractions based on the concept of balanced arrays
were investigated among others by Srivastava [10], Srivastava and Chopra [11]
and Yamamoto, Shirakura and Kuwada [13, 14]. These investigations were
concerned with the structure of balanced fractional 2m factorial designs. In
his work, Kuwada [5, 6, 7] contributed in the analysis of balanced fractional
3m factorial designs. His work was extended to the balanced fractional sm

factorial cases by Kuwada and Nishii [8, 9].
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In this paper, the structure of the fraction of symmetrical sm factorial de-
signs will be investigated in some detail. We shall show that the information
matrix of a fractional sm factorial design is determined completely by its char-
acteristic vector. We shall also give an explicit expression of the elements of
the infomation matrix of the design derived from s-symbol balanced arrays in
terms of its indices.

§2. sm factorial designs

Consider an sm factorial experiment with m factors F (p), p ∈ Ω = {1, 2,
· · · ,m}, each at levels ip ∈ S = {0, 1, · · · , s − 1}. Let y(j′) and η(j′) be the
observation and its expectation of an assembly or a treatment combination
j′ = (j1, j2, · · · , jm) expressed by an s-ary row vector, respectively.

Let Z be the arrangement of all possible sm s-ary row vectors in their
lexicographic order and let y(Z) and η(Z) be the observation and the expec-
tation of sm dimensional vector of corresponding assemblies on the complete
sm factorial design, respectively. The vector of factorial effects Θ(Z) and its
components θ(i′) for i′ = (i1, i2, · · · , im) based on the orthogonal decomposi-
tion of effects between levels may be defined as follows:

Θ(Z) =
1

sm
D′

(m)η(Z),(2.1)

where D(m) = D ⊗ D ⊗ · · · ⊗ D denotes the m-times Kronecker products of
an s× s matrix D = [d0, d1, · · · , ds−1]. Those s columns d′

i = (d0id1i · · · ds−1i)
of D with d′

0 = (11 · · · 1) satisfy the orthogonality condition d′
idk = sδik with

Kronecker δik for every i and k in S.
We may note that the definition of factorial effects here is designed to

keep homoscedasticity among their BLUE’s obtained under the complete sm

factorial design.
Solving (2.1), we have

η(Z) = D(m)Θ(Z).

Let Ux = {p|ip = x} be a subset of Ω in which the argument ip of θ(i′) is
equal to x for every x ∈ S. Then the factorial effect θ(i′) can be expressed
as θ(U0U1 · · ·U s−1) or alternatively as θ(U1U2 · · ·U s−1) by indicating s − 1
subsets Ux, x ∈ S′ = S − {0}, since dj0 = 1 for every j. Some of those Ux,
however, may be omitted if they are null.

If | ∪x∈S′ Ux| = 0, the parameter or factorial effect θ(0, 0, · · · , 0, 0) is called
the general mean and is denoted alternatively by θ(φ). If | ∪x∈S′ Ux| = 1 and
U ip = {p} for a nonzero ip, then the parameter θ(0, 0, · · · , ip, · · · , 0) is called
the ipth order main effect of the factor F (p) and is denoted alternatively by
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θ(pip). If | ∪x∈S′ Ux| = 2 and ∪x∈S′Ux = {p, q}, then the parameter θ(i′)
having two nonzero ip and iq is called the ip × iq order two-factor interaction
of the factors F (p) and F (q). Such a two-factor interaction can be denoted
alternatively by θ(pipqiq). In general, if | ∪x∈S′ Ux| = k, then the parameter
θ(i′) having k nonzero arguments with respect to k factors is called the k-
factor interaction and is denoted as compact as possible by indicating the sets
of non-null arguments.

Let T be a fraction of sm factorial design with m factors and n assemblies
whose αth row is j(α)′ = (j(α)

1 , j
(α)
2 , · · · , j(α)

m ); j
(α)
p ∈ S, p ∈ Ω, α = 1, 2, · · · , n;

and suppose y(T ) is the corresponding vector of n observations. Then, y(T )
can be expressed as

y(T ) = E(T )Θ + e(T ),(2.2)

where Θ is the parameter vector obtained by rearranging Θ(Z) in a natural
order of the number of factors and the order of the levels of factors concerned,
E(T ) is the design matrix of size n×sm and e(T ) is the error vector with usual
assumption that the components are distributed independently with (0, σ2).

Since dj0 = 1 for every j, the column vector of the design matrix E(T )
corresponding to the factorial effect θ(U1U2 · · ·U s−1) is expressed as:

L(θ(U1U2 · · ·U s−1))(2.3)
= (

∏
x∈S′

∏
px∈Ux

d
j
(1)
px x

,
∏

x∈S′

∏
px∈Ux

d
j
(2)
px x

, · · · ,
∏

x∈S′

∏
px∈Ux

d
j
(n)
px x

)′.

Definition 2.1. For a fractional sm factorial design T , the vector L(θ(U1U2

· · ·U s−1)) is called the loading vector of a factorial effect θ(U1U2 · · ·U s−1).

Using loading vectors of m(s− 1) main effects, every loading vector can be
obtained by enumerating the Schur product (∗) of a certain number of related
loading vectors for main effects as is given in (2.3). For example, we have
L(θ(pipqiq)) = L(θ(pip)) ∗ L(θ(qiq)).

Let Sp[x] be the spur of a vector x being defined by the sum of its compo-
nents.

Definition 2.2. The spur Sp[L(θ(U1U2 · · ·U s−1))] of the loading vector of
an effect θ(U1U2 · · ·U s−1) given by

γ(θ(U1U2 · · ·U s−1)) =
n∑

α=1

∏
x∈S′

∏
px∈Ux

d
j
(α)
px x

is called the loading coefficient of the factorial effect θ(U1U2 · · ·U s−1) of the
design T .
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In particular, γ(θ(φ)) = n, γ(θ(pip)) =
∑n

α=1 d
j
(α)
p ip

and γ(θ(pipqiq)) =∑n
α=1 d

j
(α)
p ip

d
j
(α)
q iq

for p, q 6= p ∈ Ω and ip, iq ∈ S′.
The normal equation for estimating Θ is given by

M(T )Θ = E(T )′y(T ),(2.4)

where M(T ) = E(T )′E(T ) is the information matrix of a design T .

The following is a lemma due to Kuwada and Nishii [8].

Lemma 2.1. Every Schur product of two column vectors di and dk of the
matrix D is given by a linear combination of d` as follows:

di ∗ dk =
s−1∑
`=0

c`
ikd`, or djidjk =

s−1∑
`=0

c`
ikdj` holds for every j,

where the constant coefficients satisfy c`
ik = c`

ki and are given by c`
ik = d′

`(di ∗
dk)/s. In particular, c0

ik = δik.

Using Lemma 2.1, we have:

Theorem 2.2. The element ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1)) of the in-
formation matrix M(T ) of a fractional sm factorial design T corresponding to
the θ(U1U2 · · ·U s−1) row and θ(V 1V 2 · · ·V s−1) column is given by

ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1))(2.5)

=
n∑

α=1

∏
x,y∈S

∏
pxy∈Kxy

(
s−1∑
`=0

c`
xydj

(α)
pxy `

),

where Kxy = Ux ∩ V y for every pair of x, y ∈ S.

Definition 2.3. The first row Γ(T ) of the information matrix M(T ) which
is composed of all loading coefficients γ(θ(U1U2 · · ·U s−1))’s arranged in a
natural order of θ(U1U2 · · ·U s−1)’s is called the characteristic vector of the
design T .

Theorem 2.3. The information matrix M(T ) of the design T is completely
determined by its characteristic vector Γ(T ).

Proof. The formula (2.5) shows that every component of M(T ) is a linear
combination of the terms each composed of the sum of the product of at most
m d

j
(α)
p ip

’s with respect to α, i.e., a loading coefficient. 2
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The first member of the normal equation (2.4) is given by

nθ(φ) +
m∑

k=1

∑
|∪s−1

r=1V r|=k

γ(θ(V 1V 2 · · ·V s−1))θ(V 1V 2 · · ·V s−1)(2.6)

= L(θ(φ))′y(T ).

In some sense, the left hand member of the equation (2.6) may be called the
defining formula of the fractional sm factorial design T . This is an extension
of the defining relation introduced by Box and Hunter [2, 3] in the case of
fractional 2m factorial designs.

The member corresponding to an effect θ(U1U2 · · ·U s−1) is given by
m∑

k=0

∑
|∪s−1

r=1V r|=k

ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1))θ(V 1V 2 · · ·V s−1)(2.7)

= L(θ(U1U2 · · ·U s−1))′y(T ).

Those left hand member of (2.7) may be called the derived formulas of the
design.

§3. Designs derived from s-symbol orthogonal arrays and
balanced arrays

Let T be a fractional sm factorial design composed of n assemblies j(α)′, α =
1, 2, · · · , n, and consider the characteristic vector Γ(T ) of the design, that is
the first row vector of its information matrix M(T ).

Consider a subarray TΩ1 composed of the t columns of T indexed by a
t-subset Ω1 = {p1, p2, · · · , pt} of Ω and let λ(pjp1

1 p
jp2
2 · · · pjpt

t ) be the frequency
of occurrence of a row (jp1jp2 · · · jpt) in the subarray. Consider every element
γ(θ(U1U2 · · ·U s−1)) of Γ(T ) whose arguments satisfy ∪x∈S′Ux ⊂ Ω1. Since
dj0 = 1 for every j, γ(θ(U1U2 · · ·U s−1)) may be denoted alternatively as
γ(θ(pip1

1 p
ip2
2 · · · pipt

t )) by the connection Ux = {pk|ipk
= x} for x ∈ S′ and

U0 = Ω1 − ∪x∈S′Ux = {pk|ipk
= 0}.

Let γΩ1
and λΩ1 be two column vectors obtained by arranging those γ’s and

λ’s in the lexicographic order of (ip1ip2 · · · ipt) and (jp1jp2 · · · jpt), respectively.
Then, since,

γ(θ(pip1
1 p

ip2
2 · · · pipt

t )) =
n∑

α=1

t∏
k=1

d
j
(α)
pk

ipk

=
∑

jp1jp2 ···jpt

t∏
k=1

djpk
ipk

λ(pjp1
1 p

jp2
2 · · · pjpt

t ),

we have:



300 Y. HYODO, H. YUMIBA AND S. YAMAMOTO

Lemma 3.1. For any subarray TΩ1 of T , two column vectors γΩ1
and λΩ1

are linked to each other as follows:

γΩ1
= D′

(t)λΩ1 and λΩ1 =
1
st

D(t)γΩ1
,(3.1)

where D(t) denotes the t-times Kronecker product of D.

Definition 3.1. The n×m array T with entries from the set of s symbols is
called an orthogonal array of strength t, size n, m constraints, s symbols and
index λ, if every subarray composed of t columns of T contains every possible
1× t s-ary vector with the same frequency λ. Clearly, n = λst. Traditionally,
such an array has been denoted as OA(n,m, s, t) : λ.

Let wx(a′) be the frequency of x among the components of a vector a′ and
let w(a′) be the weight vector (w0(a′), w1(a′), · · · , ws−1(a′)) of a′.

Definition 3.2. The array T is called a balanced array of strength t, size
n, m constraints, s symbols and index set {µ(t)

e0e1···es−1 |e0 +e1 + · · ·+es−1 = t},
if every subarray composed of t columns of T contains every possible 1 × t
s-ary vector having the weight vector w((jp1jp2 · · · jpt)) = (e0, e1, · · · , es−1)
exactly µ

(t)
e0e1···es−1 times as a row of the subarray. The array is denoted as

BA(n,m, s, t) : {µ(t)
e0e1···es−1}. Clearly,

n =
∑∑
er=t

t!
e0!e1! · · · es−1!

µ
(t)
e0e1···es−1 .

Theorem 3.2. In a fractional sm factorial design T , every component
γ(θ(U1U2 · · ·U s−1)) of the characteristic vector Γ(T ) corresponding up to the
t-factor interactions but γ(θ(φ)) vanishes if and only if T is an orthogonal
array of strength t.

Proof. (Necessity) From Lemma 3.1, we have

D′
(t)λΩ1 =

[
γ(θ(p0

1p
0
2 · · · p0

t ))
0

]
=

[
n
0

]
for every TΩ1 .

Thus we have λΩ1 = 1
st D(t)

[
n
0

]
= 1

st nJst , and this implies that every com-

ponent λ(pjp1
1 p

jp2
2 · · · pjpt

t ) = 1
st n must be an integral constant λ, irrespective

of the subarray TΩ1 . Hereafter, Jx denotes the x-dimensional column vector
whose components are all unity.
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(Sufficiency) If T is an OA(n,m, s, t) : λ, then we have λΩ1 = λJst for every

TΩ1 . Thus from (3.1) we have γΩ1
= D′

(t)λΩ1 = λD′
(t)Jst =

[
λst

0

]
. This

implies that every γ(θ(U1U2 · · ·U s−1)) corresponding up to the t-factor inter-
actions but γ(θ(φ)) vanishes. 2

Theorem 3.3. Every off-diagonal element of the information matrix M(T )
of a design T , i.e., ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1)) satisfying the restric-
tion 0 < | ∪x∈S′ (Ux ∪ V x)| ≤ t, vanishes if and only if every element of the
characteristic vector Γ(T ) corresponding up to the t-factor interactions but
γ(θ(φ)) vanishes. The latter implies that T is an orthogonal array of strength
t.

Proof. The formula given by (2.5) shows that every one of the elements
stated in the former part of the above can be expressed as a linear combination
of those elements stated in the latter and satisfies the required condition. The
converse is trivial. 2

Theorem 3.4. In a fractional sm factorial design, a necessary and sufficient

condition that every element γ(θ(pip1
1 p

ip2
2 · · · pipt

t )) of the characteristic vector
Γ(T ) corresponding up to the t-factor interactions depends on s subsets Ux =
{pk|ipk

= x} only through |Ux| = ux for x ∈ S irrespective of the subarray
indexed by a t-subset Ω1 = {p1, p2, · · · , pt} of Ω, or, equivalently, that every
element γ(θ(U1U2 · · ·U s−1)) of Γ(T ) satisfying |∪x∈S′Ux| ≤ t is invariant with
respect to the symmetric group of permutation on Ω, is that T is a balanced
array of strength t.

Proof. (Sufficiency) Suppose T is a BA(n,m, s, t) : {µ(t)
e0e1···es−1}. Let K(t) =

‖k((x1x2 · · ·xt), (y0y1 · · · ys−1))‖ be an st ×
(s+t−1

t

)
incidence matrix whose

row indexed by an s-ary t-vector (x1x2 · · ·xt) and column indexed by the
weight vector (y0y1 · · · ys−1) of some s-ary t-vector satisfying

∑s−1
i=0 yi = t, such

that k((x1x2 · · ·xt), (y0y1 · · · ys−1)) = 1 or 0 according as w((x1x2 · · ·xt)) =
(y0y1 · · · ys−1) or not. Then from (3.1) we have:

γ(θ(pip1
1 p

ip2
2 · · · pipt

t ))

=
∑∑
ei=t

∑
jp1jp2 ···jpt

t∏
`=1

djp`
ip`

k((jp1jp2 · · · jpt), (e0e1 · · · es−1))µ
(t)
e0e1···es−1

=
∑∑
ei=t

{ ∑
Dom(zβ

x )

s−1∏
x=0

ux!
z0
x!z1

x! · · · zs−1
x !

s−1∏
β=0

(dβx)zβ
x

}
µ

(t)
e0e1···es−1 ,
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where zβ
x denotes the frequency of j

(α)
pk ’s assuming β in Ux for x, β ∈ S. Here

the summation domain Dom(zβ
x ) of nonnegative integers zβ

x is characterized
by the following two-way restrictions:

s−1∑
β=0

zβ
x = ux for x ∈ S, and

s−1∑
x=0

zβ
x = eβ for β ∈ S.

The element γ(θ(pip1
1 p

ip2
2 · · · pipt

t )) can, therefore, be written as γ
(t)
u0u1···us−1

by indicating the cardinalities of s subsets Ux, i.e.,

γ
(t)
u0u1···us−1(3.2)

=
∑∑
ei=t

{ ∑
Dom(zβ

x )

s−1∏
x=0

ux!
z0
x!z1

x! · · · zs−1
x !

s−1∏
β=0

(dβx)zβ
x

}
µ

(t)
e0e1···es−1 .

(Necessity) If γ(θ(pip1
1 p

ip2
2 · · · pipt

t )) depends on s subsets Ux only through
their cardinalities |Ux| = ux, x ∈ S, then from (3.1) we have:

λ(θ(pjp1
1 p

jp2
2 · · · pjpt

t ))

=
1
st

∑∑
ui=t

∑
ip1 ···ipt

t∏
`=1

djp`
ip`

k((ip1ip2 · · · ipt), (u0u1 · · ·us−1))γ
(t)
u0u1···us−1

=
1
st

∑∑
ui=t

{ ∑
Dom(zβ

x )

s−1∏
β=0

eβ !

zβ
0 !zβ

1 ! · · · zβ
s−1!

s−1∏
x=0

(dβx)zβ
x

}
γ

(t)
u0u1···us−1 .

Here the domain Dom(zβ
x ) is also characterized by the following two-way re-

strictions:
s−1∑
x=0

zβ
x = eβ for β ∈ S and

s−1∑
β=0

zβ
x = ux for x ∈ S.

This implies T is a BA(N,m, s, t) : {µ(t)
e0e1···es−1}, where

µ
(t)
e0e1···es−1(3.3)

=
1
st

∑∑
ui=t

{ ∑
Dom(zβ

x )

s−1∏
β=0

eβ !

zβ
0 !zβ

1 ! · · · zβ
s−1!

s−1∏
x=0

(dβx)zβ
x

}
γ

(t)
u0u1···us−1 .

The maximal invariant function of (U1U2 · · ·U s−1) of Ω satisfying | ∪x∈S′

Ux| ≤ t with respect to the symmetric group of permutation on Ω is the set of
s−1 nonnegative integers ux satisfying

∑s−1
x=1 ux ≤ t and that of (I1I2 · · · Is−1)

is the set of s−1 nonnegative integers eβ satisfying
∑s−1

β=1 eβ ≤ t. The formulas
(3.2) and (3.3), therefore, show that the last statement of the Theorem holds
true. 2
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Consider, in general, an element ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1)) of
the information matrix M(T ) whose arguments satisfy | ∪x∈S′ (Ux ∪ V x)| ≤ t.
Let TΩ1 be a subarray composed of t columns of T satisfying Ω1 ⊃ ∪x∈S′(Ux∪
V x) and let U0 and V 0 be Ω1−∪x∈S′Ux and Ω1−∪y∈S′V y, respectively. Let zβ

xy

be the frequency of j
(α)
pxy ’s assuming β in Kxy = Ux ∩ V y for β ∈ S, then they

satisfy the restriction
∑s−1

β=0 zβ
xy = |Kxy| = kxy for every x, y ∈ S. Suppose

λt(zβ
xy|x, y, β = 0, 1, · · · , s − 1) be the frequency of rows in the subarray in

which j
(α)
pxy ’s satisfy the above condition. Then, we have,

ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1))(3.4)

=
n∑

α=1

s−1∏
x=0

s−1∏
y=0

∏
pxy∈Kxy

(s−1∑
`=0

c`
xydj

(α)
pxy `

)

=
∑
zβ
xy

s−1∏
x=0

s−1∏
y=0

s−1∏
β=0

(s−1∑
`=0

c`
xydβ`

)zβ
xy

λt(zβ
xy|x, y, β = 0, 1, · · · , s − 1)

Using (3.4), we have:

Theorem 3.5. If the design T is composed of a balanced array of strength

t with index set {µ(t)
e0e1···es−1 |e0 + e1 + · · · + es−1 = t}, then we have,

ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1))(3.5)

=
∑∑
ei=t

{ ∑
Dom(zβ

xy)

s−1∏
x=0

s−1∏
y=0

kxy!
z0
xy!z1

xy! · · · zs−1
xy !

s−1∏
β=0

(s−1∑
`=0

c`
xydβ`

)zβ
xy

}
µ

(t)
e0e1···es−1 .

Here, the summation extends over the domain Dom(zβ
xy) of nonnegative inte-

gers zβ
xy defined by the s2 integers kxy, x, y ∈ S, which are specified by the pa-

rameters θ(U1U2 · · ·U s−1) and θ(V 1V 2 · · ·V s−1) satisfying |∪x∈S′ (Ux∪V x)| ≤
t, and by the s integers eβ , β = 0, 1, · · · , s−1, specified by the index µ

(t)
e0e1···es−1

of the array as follows:

s−1∑
β=0

zβ
xy = kxy, x, y ∈ S and

s−1∑
x=0

s−1∑
y=0

zβ
xy = eβ , β ∈ S.

The formula (3.5) shows that ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1)) satis-
fying | ∪x∈S′ (Ux ∪V x)| ≤ t depends on s2 −1 nonnegative integers ux, vy and
kxy = |Kxy| with restriction

∑s−1
x=0

∑s−1
y=0 kxy = t for x, y ∈ S irrespective of

the selected subarray TΩ1 .
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Consider a subarray TΩ1 composed of t columns of T which covers the
set ∪x∈S′(Ux ∪ V x) and let U0 and V 0 be Ω1 − ∪x∈S′Ux and Ω1 − ∪y∈S′V y,
respectively. From (3.4) we have,

ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1))

=
n∑

α=1

s−1∏
x=0

s−1∏
y=0

∏
pxy∈Kxy

(s−1∑
`=0

c`
xydj

(α)
pxy `

)

=
n∑

α=1

( s−1∑
`00(1)=1

· · ·
s−1∑

`00(k00)=1

· · ·
s−1∑

`xy(r)=1

· · ·
s−1∑

`s−1s−1(ks−1s−1)=1(s−1∏
x=0

s−1∏
y=0

kxy∏
r=1

c
`xy(r)
xy d

j
(α)
pxy(r)

`xy(r)

))

=
s−1∑

`00(1)=1

· · ·
s−1∑

`00(k00)=1

· · ·
s−1∑

`xy(r)=1

· · ·
s−1∑

`s−1s−1(ks−1s−1)=1

( s−1∏
x=0

s−1∏
y=0

kxy∏
r=1

c
`xy(r)
xy

)

·γ
(
p

`00(1)
00(1) · · · p

`00(k00)

00(k00)
· · · p`xy(r)

xy(r) · · · p
`s−1s−1(ks−1s−1)

s−1s−1(ks−1s−1)

)
.

Let zβ
xy(x, y, β = 0, 1, · · · , s − 1) be the frequency of `xy(r)’s assuming β in

Kxy = Ux ∩ V y, then they satisfy the restriction
∑s−1

β=0 zβ
xy = |Kxy| = kxy for

every x, y ∈ S.
Suppose the design T is composed of a balanced array of strength t and in-

dex set {µ(t)
e0e1···es−1 |e0+e1+· · ·+es−1 = t}. Then γ

(
p

`00(1)
00(1) · · · p

`00(k00)

00(k00) · · · p
`xy(r)

xy(r) · · ·

p
`s−1s−1(ks−1s−1)

s−1s−1(ks−1s−1)

)
is equal to γ

(t)
u0u1···us−1 irrespective of the subarray T1 if the

weight vector of (`00(1), · · · , `xy(r), · · · , `s−1s−1(ks−1s−1)) is equal to (u0, u1, · · · ,
us−1).

Thus we have another expression of (3.5), i.e.,

ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1))

=
∑∑
ui=t

{ ∑
Dom(zβ

xy)

s−1∏
x=0

s−1∏
y=0

kxy!
z0
xy!z1

xy! · · · zs−1
xy !

s−1∏
β=0

(c`
xy)

zβ
xy

}
γ

(t)
u0u1···us−1 ,

where the summation extends over the domain Dom(zβ
xy) of nonnegative inte-

gers zβ
xy defined by the s2 integers kxy which are specified by the parameters

θ(U1U2 · · ·U s−1) and θ(V 1V 2 · · ·V s−1) satisfying | ∪x∈S′ (Ux ∪ V x)| ≤ t, and
by the s integers uβ specified by γ

(t)
u0u1···us−1 of the design as follows:

s−1∑
β=0

zβ
xy = kxy, x, y ∈ S and

s−1∑
x=0

s−1∑
y=0

zβ
xy = uβ , β ∈ S.
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Lemma 3.6. The maximal invariant function of (U1U2 · · ·U s−1) and
(V 1V 2 · · ·V s−1) with respect to the symmetric group of permutation on Ω
is a set of s2 − 1 nonnegative integers ux, vy and kxy for 1 ≤ x, y ≤ s− 1 or a
set of s2 nonnegative integers kxy with

∑s−1
x=0

∑s−1
y=0 kxy = t.

Combining the results of Theorem 3.4 and Lemma 3.6 we have:

Theorem 3.7. Every element ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1)) of the
information matrix M(T ) whose arguments satisfy | ∪x∈S′ (Ux ∪ V x)| ≤ t is
invariant with respect to the symmetric group of permutation on Ω if and only
if T is a balanced array of strength t.

Proof. The ‘if’ part of this theorem is the immediate consequence of Theo-
rem 3.5. The ‘only if’ part of the theorem follows from the last statement of
the Theorem 3.4. 2

In particular, let T in (2.2) be a design derived from a simple or full-
strength s-symbol balanced array of size n and m constraints, denoted by S-
BA(n,m, s, t = m), having index set {µ(m)

e0e1···es−1 |e0 + e1 + · · ·+ es−1 = m}. In
this case,

n =
∑

e0e1···es−1

m!
e0!e1! · · · es−1!

µ
(m)
e0e1···es−1 .

ε(θ(U1U2 · · ·U s−1), θ(V 1V 2 · · ·V s−1))

=
∑

e0e1···es−1

{ ∑
Dom(zβ

xy)

s−1∏
x=0

s−1∏
y=0

kxy!
z0
xy!z1

xy! · · · zs−1
xy !

s−1∏
β=0

(s−1∑
`=0

c`
xydβ`

)zβ
xy

}
µ

(m)
e0e1···es−1 .

Under an a priori or an empirical assumption that u + 1-factor and higher
order interactions are assumed to be zero, the observation vector of the design
T can be expressed as

y(T ) = E(u, T )Θ(u) + e(T )

in terms of the restricted design matrix E(u, T ), the vector Θ(u) of various
effects up to u-factor interactions and the error vector e(T ).

The normal equation for estimating Θ(u) is given by

M(u, T )Θ(u) = E(u, T )′y(T ),

where, M(u, T ) = E(u, T )′E(u, T ) is the restricted information matrix relative
to Θ(u).
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Theorem 3.8. The restricted information matrix M(u, T ) of a fractional
sm factorial design T is invariant with respect to the symmetric group of
permutation of m factors if and only if T is composed of an s-symbol balanced
array of strength t = min(m, 2u). If 2u ≥ m, the array is necessarily simple
since t = m.

Proof. This is the immediate consequence of the results given in Theorems
3.4 and 3.5. 2

Note that the last statement in Theorem 3.8 is a generalization of the results
pointed out in Hyodo [4].
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