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ON THE CUBIC FIELDS Q(θ)

DEFINED BY θ3 − 3θ + b3 = 0
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Abstract. We consider families of complex cubic fields introduced by Ishida.
Using the Voronoi continued fraction expansion, we find all the reduced prin-
cipal ideals.
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1. Introduction

Let Z be the set of rational integers, and let θ be the real root of the
irreducible cubic polynomial

(1.1) x3 − 3x + b3, b ( 6= 0) ∈ Z.

The discriminant of (1.1) is equal to −27(b6−4) and negative provided b 6= ±1.
Let K = Q(θ) be the cubic field formed by adjoining θ to the rationals Q,
and let Q[θ] be the ring of algebraic integers in K. These families of complex
cubic fields were introduced by Ishida[1]. Ishida constructed an unramified
cyclic exrension, of degree 32, of K provided b ≡ 1 (mod 32).

In this paper we shall consider the case that {1, θ, θ2} is a basis of Q[θ] and
|b| ≥ 2. We obtain all the reduced principal ideals and a few facts about the
ideal class group ClK of K. Our method is mainly the algorithm of Voronoi
as descrived in Williams, Cormack and Seah[3]. As most of the proofs are
elementary or routine, we often omit cumbersome calculations.

Remark 1. If b 6≡ 0 (mod 3), then K is of Eisenstein type with respect to 3
(cf. [1]).

Remark 2. Since (θ2/3)3 − 2(θ2/3)2 + (θ2/3) − (b6/27) = 0, if b ≡ 0 (mod 3),
then θ2/3 ∈ Q[θ]. Hence, if b ≡ 0 (mod 3), then {1, θ, θ2} cannot be a basis
of Q[θ].

Remark 3. Let δ1 =
(
− b3

2 +
√

b6

4 − 1
)1/3

, δ2 =
(
− b3

2 −
√

b6

4 − 1
)1/3

, ε = δ1−
δ2. Then the roots of (1.1) are θ = δ1 + δ2, θ′ = − θ

2 + i
√

3 ε
2 , θ′′ = − θ

2 − i
√

3 ε
2 .
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2. Lattices and Ideals

Let G be an additive abelian group, and let α1, α2, α3 ∈ G. We denote by
[α1, α2, α3] the set {x1α1 + x2α2 + x3α3; xi ∈ Z}. If α ∈ K, we denote its
conjugates by α′ and α′′. Let σ : K → R3 be the monomorphism of Q-vector
spaces defined by ασ = (α, Im(α′), Re(α′)), where Re(z) and Im(z) are the
real and imaginary parts of the complex number z. Let α1, α2, α3 ∈ K are
rationally independent. We say that R = [α1, α2, α3] is a lattice of K with
basis {α1, α2, α3}. If R has a basis of the form {1, α2, α3}, we call R a 1-
lattice. If R = [α1, α2, α3] and γ ( 6= 0) ∈ K, we define γR to be the lattice
[γα1, γα2, γα3]. If R1 and R2 are both 1-lattices and R2 = γR1, we say that
R1 and R2 are similar and write this R1 ∼ R2. This relation is clearly an
equivalence relation. Let R be a lattice of K, and let ω ∈ R. We define C(ω)
to be

C(ω) = {(x, y, z) ∈ R3; |x| ≤ |ω|, y2 + z2 ≤ ω′ω′′}.

We say that ω is a relative minimum of R if

C(ω) ∩Rσ = {0σ, ωσ,−ωσ}.

If ω and ϕ are relative minima of R such that

0 < ϕ < ω, ϕ′ϕ′′ > ω′ω′′,

and there does not exist a ψ ∈ R such that

ϕ < ψ < ω, ϕ′ϕ′′ > ψ′ψ′′,

we call ω the relative minimum adjacent to ϕ. If R is a 1-lattice in which 1 is
a relative minimum, we call R a reduced lattice.

If {1, ω2, ω3} is a basis of Q[θ], we know that any ideal I of Q[θ] has a basis
{α1, α2, α3}, where

α2 = a1 + a2ω2, α3 = a3 + a4ω2 + a5ω3.

Here α1, ai ∈ Z, α1, a2, a5 > 0, and α1, a2, a5 are uniquely determined by I.
We let L(I) denote α1. If we let N(I) denote the norm of I, then N(I) =
α1a2a5. If we put R(I) = [1, α2/α1, α3/α1], we say that R(I) is the 1-lattice
which corresponds to the ideal I. Let I be a primitive ideal. We say that
I is a reduced ideal if R(I) is a reduced lattice. We say that two ideals I
and J are equivalent, written I ∼ J , when there exist γ (6= 0) ∈ K such
that J = γI. From the definitions, it is clear that I ∼ J if and only if
R(I) ∼ R(J ) (cf. [4], Lemma 2.1). Notice that if I and J are both primitive
ideals and R(I) = R(J ), then I = J .
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3. Preliminaries

Definition 3.1. Let R be a lattice of K, and let ω ∈ R. We define

Xω = (2ω − ω′ − ω′′)/2 (= ω − Re(ω′)), Yω = (ω′ − ω′′)/2i (= Im(ω′)),

Zω = (ω′ + ω′′)/2 (= Re(ω′)), P (ω) = (Xω, Yω) ∈ R2,

C = {(x, y, z) ∈ R3; y2 + z2 ≤ 1}.

Let ω∗ be that one of elements of R such that P (ω∗) = P (ω), (ω∗)σ ∈ C
and |ω∗| is minimal. Note that ω∗ does not necessarily exist.

Definition 3.2. Let {1,M,N} be a basis of R. We say that {1,M,N} is
normalized provided that

(a) 0 < XM < XN , (b) YMYN < 0,

(c) |YN | < 1/2, 1/2 < |YM |.

Definition 3.3. Let V1, V2, V3 ∈ Q. We define F (V1, V2, V3) = NK(V1+V2θ+
V3θ

2) = 9V1V
2
3 +3b3V2V

2
3 + b6V 3

3 +6V 2
1 V3 − 3V1V

2
2 + 3b3V1V2V3 − b3V 3

2 + V 3
1 ,

where NK denotes the norm of K over Q.

Lemma 3.4. Let V = V1 + V2θ + V3θ
2 (Vi ∈ Q) be any element of R.

1. XV =
3
2
(−2V3 + V2θ + V3θ

2).

2. YV =
√

3
2

ε(V2 − V3θ).

3. ZV =
1
2
(2V1 + 6V3 − V2θ − V3θ

2).

Proof. These are all easy calculations from definitions. ¤
Lemma 3.5.

1. V > 0 ⇐⇒ NK(V ) > 0, V < 0 ⇐⇒ NK(V ) < 0.

2. |YV | >
√

m/2 ⇐⇒ U(V ) = U1 + U2θ + U3θ
2 > 0,

|YV | <
√

m/2 ⇐⇒ U(V ) = U1 + U2θ + U3θ
2 < 0,

where m (> 0) ∈ Z, U1 = −12V 2
2 + 6b3V2V3 − m, U2 = 6V2V3 − 3b3V 2

3 ,
U3 = −3V 2

3 + 3V 2
2 .

3. V σ ∈ C ⇐⇒ W (V ) = W1 + W2θ + W3θ
2 ≤ 0,

where W1 = −1 − 3V 2
2 + b3V2V3 + (V1 + 3V3)2, W2 = −b3V 2

3 − V1V2, W3 =
−3V 2

3 + V 2
2 − V1V3.

4. F (aV1, aV2, aV3) = a3F (V1, V2, V3), where a ∈ Q.

Proof. 3. V σ ∈ C ⇐⇒ Y 2
V + Z2

V ≤ 1. Otheres are easy to verify. ¤
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4. All the reduced principal ideals

From now on, we shall consider the case that {1, θ, θ2} is a basis of Q[θ].
For a detailed description of our method in the following Theorems we refer
the reader to Williams, Cormack and Seah[3], Williams, Dueck and Schmid[4]
and Williams[5].

Theorem 4.1. If Z[θ] = Q[θ] and b ≥ 2, then all the reduced principal
ideals of Q[θ] are I1 = [1, θ, θ2], I2 = [3b2 − 2, (3b2 − 2)θ, θ2 + 2bθ + b2 − 1],
I5 = [3b, 3bθ, θ2 + 2bθ + b2 − 3],

(1) b is even: I3 = [ 32b2−2, ( 3
4b2−1)θ, θ2+ b

2θ+b2−4], I4 = [ 32b3−3b2+3b−
2, ( 3

4b3− 3
2b2 + 3

2b−1)θ+ 3
4b3− 3

2b2 + 3
2b−1, θ2 +( 3

2b2−b)θ+ 3
2b3− 7

2b2 +3b−3],
(2) b is odd: I3 = [3b2 − 4, (3b2 − 4)θ, θ2 + ( 3

2b2 + 1
2b − 2)θ + b2 − 4], I4 =

[3b3−6b2+6b−4, (3b3−6b2+6b−4)θ, θ2+( 3
2b3− 3

2b2+2b−2)θ+ 3
2b3− 7

2b2+3b−3].

Proof. Let θ
(i)
g denote the relative minimum adjacent to 1 in a lattice Ri. Let

Ai = {Ni,Mi, Ni − Mi} and Bi = {[−Zβ ] + j + β; j ∈ {0, 1}, β ∈ Ai}, where
[. . . ] is the greatest integer function and Ri = [1, Mi, Ni] (cf. [5], p.646 and
[3], Corollary 5.1.3).

(1) Let R1 = [1, θ, θ2], M1 = −bθ + θ2, N1 = −(b2 + 1)θ + bθ2. Clearly
R1 = [1,M1, N1]. First we shall show that {1,M1, N1} is normalized and
|YM1 | <

√
3/2.

(a) We have XM1 = −3 − 3
2bθ + 3

2θ2, XN1 = −3b − 3
2 (b2 + 1)θ + 3

2bθ2 and
XN1 −XM1 = −3b+3− 3

2 (b2 − b+1)θ + 3
2 (b−1)θ2. Further, F (−3,−3

2b, 3
2 ) =

27
8 (2b6 + 3b4 + 6b2 − 2) > 0, F (−3b,−3

2 (b2 + 1), 3
2b) = 27

8 b(2b8 + 6b6 + 12b4 +
11b2 +6) > 0 and F (−3b+3,−3

2 (b2 − b+1), 3
2 (b− 1)) = 27

8 (2b9 − 6b8 +12b7 −
17b6 + 24b5 − 30b4 + 32b3 − 24b2 + 12b − 4) > 0; hence, 0 < XM1 < XN1 .

(b) We have YM1 =
√

3
2 ε(−b−θ), YN1 =

√
3

2 ε{−(b2+1)−bθ} and YM1YN1 =
3
4ε2{b(b2 + 1) + (2b2 + 1)θ + bθ2}. Further, F (b(b2 + 1), 2b2 + 1, b) = −3b < 0;
hence YM1YN1 < 0.

(c) Since NK(U(N1)) = −(81b12 +324b10 +810b8 +1125b6 +1089b4540b2 +
208) < 0, we have |YN1 | < 1/2. Also, since NK(U(M1)) = 162b8 − 162b6 −
261b4 − 1152b2 − 100 > 0, we have 1/2 < |YM1 |.

(d) Since NK(U(M1)) = −(486b6 + 891b4 + 1620b2 + 432) < 0, we have
|YM1 | <

√
3/2:

Next we shall show that θ
(1)
g = [−ZM1 ]+M1. We have ZM1 = 3+ 1

2bθ− 1
2θ2,

NK(b2−2+ZM1) = −9
8b4− 3

2b2+ 1
4 < 0 and NK(b2−1+ZM1) = 9

8b4+ 3
4b2+ 1

2 >

0. Therefore [−ZM1 ] = b2 − 2. We have ZN1 = 3b + 1
2 (b2 + 1)θ − 1

2bθ2,
NK(b3 − b + ZN1) = −9

4b5 − 27
8 b3 − 3

2b < 0 and NK(b3 − b + 1 + ZN1) =
9
4b6 − 9

4b5 + 9
2b4 − 3

8b3 + 3
4b2 + 3

2b + 1
4 > 0. Therefore [−ZN1 ] = b3 − b. We

also have ZN1−M1 = 3(b − 1) + 1
2 (b2 − b + 1)θ − 1

2 (b − 1)θ2, NK(b3 − b2 −
b + 1 + ZN1−M1) = −9

8b6 + 9
4b4 − 15

4 b3 + 9
2b2 − 3b + 1 < 0 and NK(b3 − b2 −

b + 2 + ZN1−M1) = 9
8b6 − 9

2b5 + 9b4 − 21
2 b3 + 15

2 b2 − 3b + 1
2 > 0. Therefore
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[−ZN1−M1 ] = b3−b2−b+1. Since θ < 0, it is easily seen that the least positive
element of B1 is [−ZM1 ] + M1. Since NK(W ([−ZM1 ] + M1)) = −9b2 < 0,
([−ZM1 ]+M1)σ ∈ C. Therefore θ

(1)
g = [−ZM1 ]+M1. NK(θ(1)

g ) = 3b2−2 6= 1.
Let θ

(1)
h = [−ZN1 ] + N1 = b3 − b − (b2 + 1)θ + bθ2.

(2) Since following procedures ((2) to (5)) are the same as (1), we only
state obtained results. Let R2 = [1, 1/θ

(1)
g , θ

(1)
h /θ

(1)
g ]. Let M2 = 1/θ

(1)
g =

1
3b2−2 (−b2 + 1− 2bθ − θ2), N2 = θ

(1)
h /θ

(1)
g = 1

3b2−2{b
3 − b + (−b2 + 2)θ + bθ2}.

Then {1,M2, N2} is normalized, |YM2 | <
√

3/2. [−ZN2 ] = −1, and then
[−ZM2 ] = 0.

(i) If b ≥ 3, then [−ZN2−M2 ] = −1.
(ii) If b = 2, then [−ZN2−M2 ] = −2.
Since NK(W ([−ZM2 ]+1+M2)) = − 9b2

(3b2−2)2 < 0, ([−ZM2 ]+1+M2)σ ∈ C.

Min{ω ∈ B2; ω > 0, ωσ ∈ C} = [−ZM2 ] + 1 + M2; therefore θ
(2)
g = [−ZM2 ] +

1 + M2. NK(θ(1)
g θ

(2)
g ) = 3b2 − 4 6= 1. Let θ

(2)
h = [−ZN2 ] + N2.

(3) Let R3 = [1, 1/θ
(2)
g , θ

(2)
h /θ

(2)
g ]. We have 1/θ

(2)
g = 1

3b2−4 (2b2−8+bθ+2θ2)

and θ
(2)
h /θ

(2)
g = 1

3b2−4{b
3 − 2b2 − 4b + 8 + (−b2 − b + 2)θ + (b − 2)θ2}. Let

M3 = θ
(2)
h /θ

(2)
g , N3 = 1

3b2−4{b
3−4b+(−b2+2)θ+bθ2}. Then R3 = [1,M3, N3],

{1,M3, N3} is normalized. |YM3 | <
√

3/2. [−ZN3 ] = 0, [−ZM3 ] = 0, and then
[−ZN3−M3 ] = −1. Since NK(W ([−ZM3 ] + M3)) = − 1

(3b2−4)2 (9b5 − 36b4 +
90b3 − 162b2 + 168b − 72) < 0, ([−ZM3 ] + M3)σ ∈ C. Min{ω ∈ B3;ω >

0, ωσ ∈ C} = [−ZM3 ] + M3; therefore θ
(3)
g = [−ZM3 ] + M3. N(θ(1)

g θ
(2)
g θ

(3)
g ) =

3b3 − 6b2 + 6b − 4 6= 1. Let θ
(3)
h = [−ZN3 ] + N3.

(4) Let R4 = [1, 1/θ
(3)
g , θ

(3)
h /θ

(3)
g ]. Let M4 = 1/θ

(3)
g = 1

3b3−6b2+6b−4{−b3 +

b2 − 2b + 2 + (b2 − 4b + 4)θ + (2b− 2)θ2}, N4 = θ
(3)
h /θ

(3)
g = 1

3b3−6b2+6b−4{b
3 −

2b2+2b+(−b2−b+2)θ+(b−2)θ2}. Then R4 = [1,M4, N4] and {1,M4, N4} is
nomalized. |YM4 | <

√
3/2. [−ZN4 ] = 0, [−ZM4 ] = 0, and then [−ZN4−M4 ] =

−1. Since NK(W ([−ZN4 ]+N4)) = − 1
(3b3−6b2+6b−4)2 (9b6−27b5+36b4−24b3+

9b2 − 12b − 8) < 0, ([−ZN4 ] + N4)σ ∈ C. Min{ω ∈ B4; ω > 0, ωσ ∈ C} =
[−ZN4 ] + N4; therefore θ

(4)
g = [−ZN4 ] + N4. N(θ(1)

g θ
(2)
g θ

(3)
g θ

(4)
g ) = 3b 6= 1. Let

θ
(4)
h = [−ZM4 ] + M4.

(5) Let R5 = [1, 1/θ
(4)
g , θ

(4)
h /θ

(4)
g ]. We have 1/θ

(4)
g = 1

3b (−b2+3b−6+bθ+2θ2)
and θ

(4)
h /θ

(4)
g = 1

3b (−b2 + 3 − 2bθ − θ2). Let M5 = θ
(4)
h /θ

(4)
g , N5 = 1

3b (−2b2 +
3b − 3 − bθ + θ2). Then R5 = [1,M5, N5] and [1,M5, N5] is normalized and
then [−ZN5 ] = b − 1,

(i) If b is even, then [−ZM5 ] = b
2 − 1, [−ZN5−M5 ] = b

2 − 1, [−ZN5+M5 ] =
3
2b − 1, [−Z2N5+M5 ] = 5

2b − 2,
(ii) If b is odd, then [−ZM5 ] = b−1

2 , [−ZN5−M5 ] = b−3
2 , [−ZN5+M5 ] = 3b−3

2 ,
[−Z2N5+M5 ] = 5b−5

2 .
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Since NK(W ([−ZN5 ] + N5)) = −21b2+4
9b2 < 0. ([−ZN5 ] + N5)σ ∈ C. Let

B′
5 = {[−ZN5+M5 ]+N5 +M5, [−ZN5+M5 ]+1+N5 +M5, [−Z2N5+M5 ]+2N5 +

M5, [−Z2N5+M5 ] + 1 + 2N5 + M5}. Min{ω ∈ B5 ∪ B′
5; ω > 0, ωσ ∈ C} =

[−ZN5 ] + N5; therefore θ
(5)
g = [−ZN5 ] + N5. NK(θ(1)

g θ
(2)
g θ

(3)
g θ

(4)
g θ

(5)
g ) = 1.

(6) From the results above ((1) to (5)), it follows that {R;R is a reduced
lattice, R1 ∼ R} = {R1,R2,R3,R4,R5} (cf. [4], p.243).

(7) Let I1 = [1, θ, θ2], I2 = [3b2−2,−b2 +1−2bθ−θ2, b3− b+(−b2 +2)θ +
bθ2] = [3b2−2, (3b2−2)θ, θ2 +2bθ+b2−1], I5 = [3b,−b2 +3−2bθ−θ2,−2b2 +
3b− 3− bθ + θ2] = [3b, 3bθ, θ2 +2bθ + b2 − 3], J3 = [3b2 − 4, b3 − 2b2 − 4b+8+
(−b2−b+2)θ+(b−2)θ2, b3−4b+(−b2+2)θ+bθ2], J4 = [3b3−6b2+6b−4,−b3+
b2−2b+2+(b2−4b+4)θ+(2b−2)θ2, b3−2b2 +2b+(−b2−b+2)θ+(b−2)θ2].
Then R(I1) = R1, R(I2) = R2, R(I5) = R5, R(J3) = R3, R(J4) = R4.
Clearly I1, I2, I5 are reduced.

(i) b is even: Let b = 2m. Then J3 = 2[6m2 − 2, (3m2 − 1)θ, θ2 + mθ +
4m2 − 4], J4 = 2[12m3 − 12m2 + 6m − 2, (6m3 − 6m2 + 3m − 1)θ + 6m3 −
6m2 + 3m − 1, θ2 + (6m2 − 2m)θ + 12m3 − 14m2 + 6m − 3].

(ii) b is odd: Let b = 2m + 1. Then J3 = [12m2 + 12m− 1, (12m2 + 12m−
1)θ, θ2 +(6m2 +7m)θ +4m2 +4m−3], J4 = [24m3 +12m2 +6m−1, (24m3 +
12m2 + 6m − 1)θ, θ2 + (12m3 + 12m2 + 7m)θ + 12m3 + 4m2 + m − 2].

Therefore if we put I3 = J3/2, I4 = J4/2 (when b is even) and I3 = J3,
I4 = J4 (when b is odd), then I3, I4 are reduced and R(I3) = R3, R(I4) =
R4. ¤

Corollary 4.2. Only under the asumption b ≥ 2 (without the asumption
Q[θ] = Z[θ]), the Voronoi continued fraction expansion for the order Z[θ] has
period length ‘5’and the fundamental unit of the order Z[θ] is b4 − b2 + 1 −
(b3 + b)θ + b2θ2.

Proof. The parts (1) to (5) in the proof of Theorem 4.1 and no other than
the Voronoi continued fraction for the order Z[θ] (cf. [6], p. 248). So
θ
(1)
g θ

(2)
g θ

(3)
g θ

(4)
g θ

(5)
g = b4 − b2 + 1 − (b3 + b)θ + b2θ2 is the fundamental unit

of the order Z[θ]. ¤

5. About ClK

Definition 5.1. If I is an ideal of K, we define Cl(I) to be the ideal class of
I in the ideal class group ClK .

Theorem 5.2. If Z[θ] = Q[θ], b 6≡ 0 (mod 3) and b ≥ 2, then ClK contains
a cyclic subgroup generated by Cl(I) of order 3, where I = [b, bθ, θ2 − 3].

Proof. We shall consider the case b 6≡ 0 (mod 3) because of Remark 2. Let
I = [b, bθ, θ2 − 3]. It is easily seen that I is a ideal of K. Since L(I) = b,
N(I) = b2, by [5,Theorem 9.1] I is a reduced ideal.

We shall show that I2 = [b2, b2θ, θ2 − 3] is a reduced ideal.
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We consider R(I2) = [1, θ,− 3
b2 + 1

b2 θ2].
(1) The case b ≥ 4.
Let M = 1

b2 {−3b + 3 − b2θ + (b − 1)θ2}, N = 1
b (−3 − bθ + θ2). Clearly

R(I2) = [1,M,N ]. By the same argument as in Theorem 4.1 we obtain
following results. {1, M,N} is normalized, |YM | <

√
3/2, [−ZN ] = b, [−ZM ] =

b − 1 and [−ZN−M ] = 0. Let B = {N∗,M∗, (N − M)∗} (cf. [4], p.266). Then
Bσ ∩ C(1) 6= ∅. Therefore R(I2) is reduced.

(2) The case b = 2.
Let M = −3

4 + 1
4θ2, N = −3

4 − θ + 1
4θ2. Then R(I2) = [1, θ,− 3

4 + 1
4θ2] =

[1,M,N ], {1,M,N} is normalized, |YM | <
√

3/2, [−ZN ] = 2, [−ZM ] = 0 and
[−ZN−M ] = 1. Let B = {N∗,M∗, (N −M)∗}. Then Bσ ∩C(1) = ∅. Therefore
R(I2) is reduced.

From (1) and (2), I2 is a reduced ideal. Therefore by Theorem 4.1 Cl(I),
Cl(I2) 6= Cl(1). Since θI3 = θ[b3, b3θ,−3 + θ2] = b3[1, θ, θ2], ordCl(I) =
3. ¤
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