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Abstract. We consider families of complex cubic fields introduced by Ishida.
Using the Voronoi continued fraction expansion, we find all the reduced prin-
cipal ideals.
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1. Introduction

Let Z be the set of rational integers, and let 6§ be the real root of the
irreducible cubic polynomial

(1.1) 3 — 3z +b% b (#£0)€Z.

The discriminant of (1.1) is equal to —27(b% —4) and negative provided b # +1.
Let K = Q(0) be the cubic field formed by adjoining € to the rationals Q,
and let Q6] be the ring of algebraic integers in K. These families of complex
cubic fields were introduced by Ishida[l]. Ishida constructed an unramified
cyclic exrension, of degree 32, of K provided b =1 (mod 32).

In this paper we shall consider the case that {1, 0,02} is a basis of Q[f] and
|b| > 2. We obtain all the reduced principal ideals and a few facts about the
ideal class group Clg of K. Our method is mainly the algorithm of Voronoi
as descrived in Williams, Cormack and Seah[3]. As most of the proofs are
elementary or routine, we often omit cumbersome calculations.

Remark 1. If b # 0 (mod 3), then K is of Eisenstein type with respect to 3
(cf. [1]).
Remark 2. Since (02%/3)3 — 2(62%/3)% + (6%/3) — (b5/27) = 0, if b = 0 (mod 3),
then 6%/3 € Q). Hence, if b = 0 (mod 3), then {1,6,6%} cannot be a basis
of Q[].

5 1/3 5 1/3
Remark 3. Let51:<—%+ %—1) ,522(—%—\/%—1) ,€=01—

d2. Then the roots of (1.1) are § = 61 + 02, 0’ = —%+i\f%, 0" = —% —1V35.
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2. Lattices and Ideals

Let G be an additive abelian group, and let ay, as, a3 € G. We denote by
[a1, g, ag] the set {101 + zaa + x3003;0; € Z}. If a € K, we denote its
conjugates by o’ and o’. Let 0: K — R3 be the monomorphism of Q-vector
spaces defined by o’ = (a,Im(a’),Re(a’)), where Re(z) and Im(z) are the
real and imaginary parts of the complex number z. Let aq,as, a3 € K are
rationally independent. We say that R = [a1, a9, as] is a lattice of K with
basis {a1, a2, a3}. If R has a basis of the form {1,as,as}, we call R a 1-
lattice. If R = [aq, a2, 3] and v (# 0) € K, we define vR to be the lattice
[vaq,yag,yas]. If Ry and Ro are both 1-lattices and Ry = vRq, we say that
R1 and Ro are similar and write this R ~ Ro. This relation is clearly an
equivalence relation. Let R be a lattice of K, and let w € R. We define C'(w)
to be

C(w) = {(2,9,7) € R Ja] < Jwl, 4 + 2 < W},

We say that w is a relative minimum of R if
Clw)NR? ={07,w7, —w}.

If w and ¢ are relative minima of R such that

0<p<w, ¢ >uw'w,

and there does not exist a ¥ € R such that

p<t<w, ¢ >y,

we call w the relative minimum adjacent to ¢. If R is a 1-lattice in which 1 is
a relative minimum, we call R a reduced lattice.

If {1,ws,ws} is a basis of Q[f], we know that any ideal Z of Q[f] has a basis
{a1, a0, as}, where

Q2 = a1 + awz, Q3 = a3+ aqw2 + asws.

Here ay,a; € Z, ay,a2,a5 > 0, and a3, a9, a5 are uniquely determined by Z.
We let L(Z) denote a;. If we let N(Z) denote the norm of Z, then N(Z) =
ajazas. If we put R(Z) = [1, aa /a1, a3 /], we say that R(Z) is the 1-lattice
which corresponds to the ideal Z. Let Z be a primitive ideal. We say that
7 is a reduced ideal if R(Z) is a reduced lattice. We say that two ideals 7
and J are equivalent, written Z ~ J, when there exist v (# 0) € K such
that J = «Z. From the definitions, it is clear that Z ~ 7 if and only if
R(Z) ~ R(J) (cf. [4], Lemma 2.1). Notice that if Z and J are both primitive
ideals and R(Z) = R(J), then T = J.
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3. Preliminaries

Definition 3.1. Let R be a lattice of K, and let w € R. We define
Xo=0Qw—-w —w")/2 (=w—Re)), Y,= (W —-uw")/2i (=Im(w")),
Z, =W +u")/2 (=Re(w')), Pw)=(X,,Y,) <R
C={(x,y,2) € R*y* + 22 < 1}.

Let w* be that one of elements of R such that P(w*) = P(w), (w*)? € C
and |w*| is minimal. Note that w* does not necessarily exist.

Definition 3.2. Let {1, M, N} be a basis of R. We say that {1, M, N} is
normalized provided that

(a) 0< Xy <X, (b) YuYny <O,
(¢) |Yn|<1/2, 1/2<|Yyl.
Definition 3.3. Let V;, V5, V3 € Q. We define F'(Vy, V3, V3) = N (Vi 4+ V20+

V30%) = OV Vi + 30°Va Vg + 5V 4+ 6V Vs — 3Vi V3 + 302 Vi Vo Vs — b2V + VP,
where N denotes the norm of K over Q.

Lemma 3.4. Let V = Vi + Va0 + V362 (V; € Q) be any element of R.

3
Lo Xy = (=2Vs + Vaf) + V30?).
2. YV = \258(‘/2 - V39)

1
3. Zy = 5(2V1 + 6Vz — V50 — V36?).

Proof. These are all easy calculations from definitions. [J
Lemma 3.5.
1. V>0 <= Ng(V)>0, V<0 < Ng(V)<O.
2. |Yy|>Vm/2 <= U(V)=U, + Usf + Usb* > 0,
Yy | < vVm/2 <= U(V)=U, + U0+ Ush? <0,

where m(> 0) e Z, U = —12‘/22 + 6b3V2V3 —m, Uy = 6VLV3 — 3b3‘/32,
Us = —3V2 + 3V2.

3. V9el <« W(V)=W;+Wal+Ws6* <0,

where Wy = —1 — 3VZ + b3VaVs + (Vi + 3V3)2, W = —b3V2 — ViVa, W3 =
_3‘{))2 + V22 - Vl‘/é

4. F(aVi,aVa,aVs) = a®*F(V1,Va,V3), where a € Q.

Proof. 3. V° € C <= Y@+ ZZ < 1. Otheres are easy to verify. [
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4. All the reduced principal ideals

From now on, we shall consider the case that {1,6,6%} is a basis of Q[f].
For a detailed description of our method in the following Theorems we refer
the reader to Williams, Cormack and Seah[3], Williams, Dueck and Schmid[4]
and Williams|5].

Theorem 4.1. If Z[0] = Q[f] and b > 2, then all the reduced principal
ideals of Q[f] are Z; = [1,0,0%], Iy = [3b® — 2, (3b* — 2)0,60% + 2b0 + b* — 1],
Ts = [3b, 3b0, 0% + 2b0 + b* — 3],
(1) b is even: Ty = [3b2 -2, (30 —1)0, 0%+ 20+b? —4), T, = [3b°—3b>+3b—
2,(303 302+ 3b—1)0+ 303 — 307+ 2b—1,67 + (302 —b)0 + 2% — 102+ 30— 3],
(2) bis odd: T3 = [3b* — 4, (3b? — 4)0,60% + (3b? + 50— 2)0 + b? — 4], I, =
[3b3—6b2+6b—4, (36 —6b%+6b—4)0, 0%+ (303 — 302 +2b—2)0+ 313 — Tb?+3b—3].

Proof. Let Héi) denote the relative minimum adjacent to 1 in a lattice R;. Let
A; = {N;, M;, N; — M;} and B; = {[-Zs]+j+ 5;7 € {0,1},8 € A;}, where
[...] is the greatest integer function and R; = [1, M;, N;] (cf. [5], p.646 and
[3], Corollary 5.1.3).

(1) Let Ry = [1,0,0%], My = —b0 + 6%, N1 = —(b* + 1)0 + b6?. Clearly
R1 = [1,M;,Ny]. First we shall show that {1, M, N1} is normalized and
Yan| < V3/2.

(a) We have Xy, = —3 — 3b0 + 262, Xy, = —3b— 2(b? +1)0 + 2b6? and
Xy, — X = —3b+3—3(b>—b+1)0+ 3(b—1)6%. Further, F(—3,-3b,3) =
21205 + 3b* + 6b% — 2) > 0, F(—3b, —2(b* + 1), 2b) = 2Ib(20° + 665 + 12b* +
116 4+6) > 0 and F(=3b+3,—3(b? —b+1),3(b—1)) = 2(26° — 66° + 120" —
1768 + 2465 — 30b* + 3203 — 2462 + 12b — 4) > 0; hence, 0 < Xjp7, < X, -

(b) We have Yy, = L2e(—b—10), Yy, = L2e{—(b*+1)—b6} and Y, Yy, =
3e2{b(b* + 1) + (26> +1)0 + b9?}. Further, F(b(b* +1),2b% + 1,b) = —3b < 0;
hence Yy, Yn, <O0.

(c) Since Ng (U(Ny)) = —(81b'2 + 32450 + 81068 + 112565 + 10895154002 +
208) < 0, we have |Yy,| < 1/2. Also, since Nk (U(M7)) = 1620% — 16205 —
261b* — 1152b% — 100 > 0, we have 1/2 < |Ya, |.

(d) Since Ny (U(My)) = —(486b° + 891b6* + 162062 + 432) < 0, we have
‘YM1| < \/§/2

Next we shall show that 0_5,1) = [~ Zwm,]+M;. We have Zy;, = 3+ 5b0— 362,
Ng(0*—24+Zn,) = =264 =302 +1 < 0and N (b —1+Zp;,) = 20*+ 302 +1 >
0. Therefore [~Zp,] = b* — 2. We have Zy, = 3b+ 3(b* + 1)§ — 1062,
Nk = b+ Zn,) = —56° — 2103 — 2b < 0 and Ng(b® — b+ 1+ Zy,) =
205 — 905 4+ 2b* — 263 + 3p2 + 3b+ 1 > 0. Therefore [~Zy,] = b® — b. We
also have Zy,_p, = 3(b— 1) + 20> — b+ 1)0 — 1(b — 1)62, Nk (b® — b* —
b+1+ Zn,—n,) = —20°+ 30 — 1563 + 26 — 30+ 1 < 0 and Ng(b® — b —
b+2+ Zn,—ny) = 268 — 20° +9b* — 2L6% 4 1892 — 3b + 1 > 0. Therefore



CUBIC FIELDS Q(6) 145

[—Zn,—m,] = b2 —b?—b+1. Since 6 < 0, it is easily seen that the least positive
element of By is [~Za,] + M. Since Ng(W([—Za,] + M1)) = —9b* < 0,
(I=Zar, ]+ M1)? € C. Therefore 05" = [ Zus, ]+ M. Ng(65)) =362 —2 # 1.
Let 0" = [ Zn,] + Ny = b3 — b — (b% 4 1)6 + b62.

(2) Since following procedures ((2) to (5)) are the same as (1), we only
state obtained results. Let Ry = [1, 1/9(1) 0(1)/9(1)]. Let My = 1/051) =

sy (—b2 + 1 =260 — 62), Ny = 057/6) = (6% — b+ (—b2 + 2)6 + 62},
Then {1, My, N3} is normalized, |Yas,| < v3/2. [~Zn,] = —1, and then
[—Zn,] = 0.

(i) If b > 3, then [~ Zn,_ar,] = —1.

(ii) If b = 2, then [—Zn,—n,] = —2.

Since N (W ([~ Zar, ]+ 1+ Ms)) = — 52557 < 0, ([=Zas,] + 14 Mp)? € C.
Min{w € Bajw > 0,w? € C} = [~Zn,] + 1 + Ms; therefore 9§2) = [-Zn,] +
1+ My Ng(0002) =362 — 4 £1. Let 02 = [~ 2y, + No.

(3) Let Rs = [1, 1/9(2> 9@)/9(2)] We have 1/05” = s (2b% —8+b0+20?)
and 0.7/087 = - 4{b3 — 2% —4b+ 8+ (—=b2 — b+ 2)0 + (b — 2)02}. Let

My = 02/057, Ny = 50— {b® —4b+(—b>+2)0+b0%}. Then Ry = [1, My, N3],
{1, M3, N3} is normalzzed. \Yar,| < V3/2. [~Zn,] =0, [~ Zar,] = 0, and then
[~ZNn;—m,] = —1. Since Ng(W([~Zar] + M3)) = — grzgyz (90° — 36b* +

9063 — 162b2 + 1680 — 72) < 0, ([—Za] + M3)° € C. Min{w € Bs;w >
0,w” € C} = [~ Zp,] + Ms; therefore 05 = [~ Zy] + Ms. N(0V0(P 05 =
30% — 62 + 6b — 4 # 1. Let 6% = [~ Zy,] + Ns.

(4) Let Ry = [1,1/05,0,7/05V). Let My = 1/05” = g -0 +
b2 — 26+ 2+ (B — db+4)0 + (2b— 2)62}, Ny = 05°/85") = gt {08 —

20% +2b+ (—b*> —b+2)0+ (b—2)0%}. Then Ry = [1, My, Ny] and {1, My, Ny} is
nomalized. |Yar,| < V3/2. [~Zn,] =0, [~Zu,] = 0, and then [~Zn, _ar,] =
—1. Since Ng (W ([~Zn,]+Ni)) = — mp—gmrap—nyz (90° —27b° +360* — 240 +
9b? — 12b — 8) < 0, ([-Zn,] + N4)° € C. Min{w € By;w > 0,w° € C} =
[—ZnN,] + Ny; therefore 9é4) =[—Zn,] + Na. N(Qél)GéQ)Qé?’)Hgl)) =3b# 1. Let
0\ = [~Z,] + M.

(5) Let Rs = [1,1/65",6%7/6(9). We have 1/65" = L (—b%+3b—6+b0+262)
and 0\7/65) = L(—b2 43— 200 — 62). Let My = 0.7/65", N5 = (-2 +
3b— 3 —bd + 02?). Then Rs = [1, M5, N5] and [1, M5, N5] is normalized and
then [_ZN5] =b— 1,

(i) If b is even, then [—Zp] = 2 — 1, [~ Zny—mis) = 2 — 1, [~ Znysnss) =
3b—1, [~ Zons4+ms) = 30— 2,
(ii) If b is odd, then [—Zn] = 552, [~ Zns—ms) = 252, [~ ZNganss] = 252,

[7Z2N5+M5] = 5b2_5'
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Since Ni(W([=Zn,] + Ns)) = =241 < 0. ([~Zn,] + N5)° € C. Let
BZ’) = {[_ZN5+M5] +N5 +M57 [_ZN5+M5] +1 +N5 +M57 [_Z2N5+M5] + 2N5 +
Ms, |—ZoNng+a;] + 14+ 2N5 + M5}, Min{w € Bs U BL;w > 0,07 € C} =
[—ZnN,] + Ns; therefore 955) = [-Zn,] + Ns. NK(9§1)622)0§3)9§4)0§5)) =1.

(6) From the results above ((1) to (5)), it follows that {RR;R is a reduced
lattice, Rl ~ R} == {Rl,RQ,R3,R4,R5} (Cf [4], p243)

(7) Let Ty = [1,6,60%], Io = [3b% =2, —b? + 1 —2b0 — 02, 0% — b+ (—b* +2)0 +
b6?] = [3b% —2, (3b% —2)0, 6% +2b0 +b> — 1], T5 = [3b, —b* +3 —2b0 — 62, —2b* +
3b— 3 — bl + 6% = [3b, 300, 0% + 260 4+ b> — 3], T3 = [3b% — 4,03 — 2b% —4b+ 8 +
(—b2—b+2)0+ (b—2)82, b3 — b+ (—b2+2)+b62], Ty = [3b% — 62 +6b—4, — b+
b2 —2b+2+4 (b —4b+4)0+ (2b—2)0%, b3 — 20> +2b+ (—b? —b+2)0 + (b—2)6?].
Then R(I1) = Rl, R(IQ) = Rz, R(I5) = R5, R(jg,) = Rg, R(j4) = R4.
Clearly Z1,Z5,Z5 are reduced.

(i) b is even: Let b = 2m. Then J3 = 2[6m? — 2,(3m? — 1)0,0% + m0 +
4m? — 4], Jy = 2[12m3 — 12m? + 6m — 2, (6m3 — 6m? + 3m — 1)0 + 6m> —
6m? + 3m — 1,60% + (6m? — 2m)0 + 12m3 — 14m? + 6m — 3.

(i) bis odd: Let b= 2m + 1. Then J3 = [12m? + 12m — 1, (12m?* + 12m —
1)0,02 + (6m? +7m)0 + 4m? +4m — 3], Jy = [24m> +12m? +6m — 1, (24m3 +
12m? + 6m — 1)0,02% + (12m3 + 12m?2 + Tm)6 + 12m3 + 4m? + m — 2].

Therefore if we put Zs = J3/2, Zy = Ju/2 (when b is even) and Z5 = Js,
Zy = Jy (when b is odd), then Z3,74 are reduced and R(I3) = Rs3, R(I4) =
Ry O

Corollary 4.2. Only under the asumption b > 2 (without the asumption
Q[f] = Z]0]), the Voronoi continued fraction expansion for the order Z[0] has
period length ‘5’and the fundamental unit of the order Z[0] is b* — b? + 1 —
(b3 + b)0 + b262.

Proof. The parts (1) to (5) in the proof of Theorem 4.1 and no other than
the Voronoi continued fraction for the order Z[f] (cf. [6], p. 248). So
0@1)95(,2)953)954)%5) = bt — b2+ 1— (b®+b)f + b20? is the fundamental unit
of the order Z[¢]. O

5. About CIK

Definition 5.1. If 7 is an ideal of K, we define C1(Z) to be the ideal class of
7 in the ideal class group Clg.

Theorem 5.2. If Z[f] = Q[f], b # 0 (mod 3) and b > 2, then Clk contains
a cyclic subgroup generated by CI(Z) of order 3, where T = [b, b0, 6% — 3].

Proof. We shall consider the case b # 0 (mod 3) because of Remark 2. Let
T = [b,b0,0% — 3]. Tt is easily seen that Z is a ideal of K. Since L(Z) = b,
N(Z) = b2, by [5,Theorem 9.1] Z is a reduced ideal.

We shall show that Z2 = [b2, 020,02 — 3] is a reduced ideal.
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We consider R(Z?) = [1,6, — 3 + 567

(1) The case b > 4.

Let M = 5{-3b+3 —b%0 + (b— 1)}, N = :(—=3 — bl + 62). Clearly
R(Z?) = [1,M,N]. By the same argument as in Theorem 4.1 we obtain
following results. {1, M, N} is normalized, |Yar| < v/3/2, [-Zn] = b, [~ Zy] =
b—1and [-Zn_p] =0. Let B={N*,M* (N — M)*} (cf. [4], p.266). Then
B° N C(1) # 0. Therefore R(Z?) is reduced.

(2) The case b = 2.

Let M = -2 +162 N=-3 04 16 Then R(Z?) =[1,0,-3 + 16%] =
[1, M, N], {1, M, N} is normalized, |Yas| < V3/2, [-Zn] = 2, [-Znm] = 0 and
[—Zn_nm) =1. Let B={N*,M*,(N—M)*}. Then B°NC(1) = 0. Therefore
R(Z?) is reduced.

From (1) and (2), Z? is a reduced ideal. Therefore by Theorem 4.1 CI(Z),
Cl(Z?) # CI(1). Since 03 = 0[b®,b%0, -3 + 6%] = b*[1,0,6?], ordCU(Z) =
3. O
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