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1. Introduction

Let Rn be the n-dimentional Euclidean space with norm ‖ · ‖ and let I =
[0,∞). Consider the linear singularly perturbed system

(1)



dx

dt
= A(t)x + B(t)y, t 6= τk,

µ
dy

dt
= C(t)x + D(t)y, t 6= τk,

∆x = Akx + Bky, t = τk,

∆y = Ckx + Dky, t = τk, k = 1, 2, . . .

where µ > 0 is small parameter, and x: I → Rn, y: I → Rm, ∆x = x(t + 0) −
x(t−0), ∆y = y(t+0)−y(t−0), A: I → Rm+n, B: I → Rm+n, C: I → Rm+n,
D: I → Rn+n, 0 < τ1 < τ2 < . . . , limk→∞ τk = ∞, En is unit n × n matrix,
and the constants matrices Ak, Bk, Ck, Dk, k = 1, 2, . . . are m × m, n × m,
m × n, n × n dimensional respectively.

The system (1) is characterized as follows:
1. At the moments t 6= τk, t ∈ I, k = 1, 2, . . . the solution (x(t), y(t)) of (1)

is defined by the differential equation

dx

dt
= A(t)x + B(t)y,

µ
dy

dt
= C(t)x + D(t)y.
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2. At the moments t = τk, k = 1, 2, . . . the mapping point (t, x, y) (under-
going short period forces as a hit, an impulse etc.) moves from the position
(t, x(t), y(t)) in the position (t, x(t)+Akx(t)+Bky(t), y(t)+Ckx(t)+Dky(t))
“instantly”. We assume that the solutions of system (1) are left continuous at
the moments of jump i.e.

x(τk − 0) = x(τk), y(τk − 0) = y(τk),

x(τk + 0) = x(τk) + Akx(τk) + Bky(τk),

y(τk + 0) = y(τk) + Ckx(τk) + Dky(τk).

2. Preliminary notes.

Definition 1. An arbitrary manifold J in the extended phase space of the
system (1) is said to be an integral manifold of (1), if for arbitrary solution
(x(t), y(t)) from (t0, x(t0), y(t0)) ∈ J , t0 > 0 it follows that (t, x(t), y(t)) ∈ J ,
t ≥ t0.

Definition 2. The integral manifold J is said to be affinity integral manifold
of (1) if J is graph of the function ϕ: I ×Rm → Rn, ϕ(t, x) = Q(t)x + η(t, x),
for which

a) Q(t) is piecewise continuous matrix function with a dimensional n × m
and with points of discontinuities of the first kind at the moments t = τk,
k = 1, 2, . . . at which is continuous from the left.

b) η: I×Rm → Rn is a bounded function which is continuous at the variable
x and for t = τk, k = 1, 2, . . . have discontinuities of the first kind and is
continuous from the left.

Definition 3. The function ϕ(t, x) definited on Definition 2 is said to be a
parameter function to the integral manifold.

Introduce the following conditions
H1. The matrix A(t) is piecewise continuous with discontinuities of the first

kind at the points t = τk, k = 1, 2, . . . .
H2. det(Em + Ak) 6= 0, k = 1, 2, . . . .
Let Uk(t, s), k = 1, 2, . . . , t ∈ (τk−1, τk] is Cauchy’s matrix of the linear

system

dx

dt
= A(t)x, (τk−1 < t ≤ τk)

and the conditions H1, H2 are met.
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Definition 4 ([3]). The matrix W (t, s), where

W (t, s) =

Uk(t, s), t, s ∈ (τk−1, τk],

Uk+1(t, τk + 0)(Em + Ak)Uk(τk, s), τk−1 < s ≤ t < τk+1,

Uk(t, τk)(Em + Ak)−1
i+1∏
j=k

(Em + Aj)Uj(τj , τj−1 + 0)(Em + Ai)Ui(τi, s),

for τi−1 < s ≤ τi < τk < t ≤ τk+1,

Ui(t, τi)
k−1∏
j=i

(Em + Aj)−1Uj+1(τj + 0, τj+1)(Em + Ak)−1Uk+1(τk + 0, s),

for τi−1 < t ≤ τi < τk < s ≤ τk+1.

(2)

is said to be Cauchy’s matrix of the system:

(3)

{ dx

dt
= A(t)x, t 6= τk,

∆x = Akx t = τk, k = 1, 2, . . . .

It is easily to verify that the following relations are hold

W (t, t) = Em,

W (τk − 0, τk) = W (τk, τk − 0) = Em,

W (τk + 0, s) = (Em + Ak)W (τk, s),

W (s, τk + 0) = W (s, τk)(Em + Ak),
∂W

∂t
= A(t)W (t, s), (t 6= τk),

∂W

∂s
= −W (t, s)A(s), (s 6= τk).

(4)

Introduce the following condition:
H3. det(En + Dk) 6= 0.
H4. The matrix D(t) is piecewise continuous with discontinuities of the

first kind at the points t = τk, k = 1, 2, . . . .
With Y (t, µ), Y (t0, µ) = En, µ > 0 and t0 ∈ I we denote the fundamental

matrix of the linear system

(5)

{
µ

dy

dt
= D(t)y, t 6= τk,

∆y = Dky t = τk, k = 1, 2, . . . .
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Definition 5. Let P is projector (P 2 = P ) in the space Rn. The function

G(t, s, µ) =
{

Y (t, µ)PY −1(s, µ), t ≥ s ≥ 0,

Y (t, µ)(P − En)Y −1(s, µ), s ≥ t ≥ 0

is said to be Green’s function of the system (5).

It is easily to verify that the following relations are valid

G(τk + 0, t, µ) = (En + Dk)G(τk, t, µ), t 6= τk,

G(t, τk + 0, µ) = G(t, τk, µ)(En + Dk)−1, t 6= τk,

G(t + 0, t, µ) − G(t − 0, t, µ) = En, t 6= τk,

G(t, t + 0, µ) − G(t, t − 0, µ) = −En, t 6= τk,

G(τk + 0, τk + 0, µ) = (En + Dk)G(τk, τk + 0, µ) + En, k = 1, 2, . . . ,

µ
∂G(t, s, µ)

∂t
= D(t)G(t, s, µ), t 6= s,

∂G(t, s, µ)
∂s

= −G(t, s, µ)D(s), t 6= s.

(6)

Introduce the following conditions:
H5. 0 < t0 < τ1 and there exist a constants p > 0 and ε > 0 such that

uniformly at t ∈ I and s ∈ I the following inequality is valid

i(s, t) ≤ p(t − s) + ε,

where by i(s, t) we have denoted the number of the pointes τk in the interval
(s, t].

H6. The following inequalities are valid

‖W (t, s)‖ ≤ Keα|t−s|, t ∈ I, s ∈ I,

‖G(t, s, µ)‖ ≤ Ne−
β
µ |t−s|, t ∈ I, s ∈ I,

where K > 0, N > 0, α > 0 and β > 0.

Lemma 1 ([1]). Let the following inequality hold:

u(t) ≤
∫ t

t0

u(s)v(s) ds + F (t) +
∑

t0<τk<t

γku(τk) +
∑

t0<τk<t

δk(t),

where the function u(t) is piecewice continuous with discontinuity of the first
kind at the points τk, k = 1, 2, . . . , v(t) is locally integrable function, F (t) and
δk(t) non decreasing for t ∈ (t0,∞), δk(t) ≥ 0, γk ≥ 0, k = 1, 2, . . . .

Then

u(t) ≤
(

F (t) +
∑

t0<τk<t

δk(t)
) ∏

t0<τk<t

(1 + γk) exp
(∫ t

t0

v(s) ds

)
.
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3. Main results

Let J is affinity integral manifold of (1) in the form

(7) J = {(t, x, y): y = Q(t)x, t ∈ [t0,∞), x ∈ Rm}.

Along with J we consider the system

(8)


Q′ + QA + 1

µQBQ = 1
µDQ + C, t 6= τk,

∆Q(τk) + Q(τk + 0)Ak + 1
µQ(τk + 0)BkQ(τk) = µCk + DkQ(τk),

k = 1, 2, . . . .

Lemma 2. THe manifold (7) is affinity integral manifold of (1) if and only if
Q(t) is bounded solution of (8).

Proof. Lemma 2 is proved by straightforward calculations.

Theorem 1. Let the following conditions hold:
1. The conditions H1–H6 are met.
2. The relations B(t) = 0, t ∈ I and Bk = 0, k = 1, 2, . . . are hold.
3. There exist a positive constant δ such that

sup
t∈I

‖D(t)‖ ≤ δ, sup
k=1,2,...

‖Dk‖ ≤ δ,

where δ = δ(µ), δ(µ) → 0 at µ → 0.
Then there exist a constant µ0 > 0 such that for all µ ∈ (0, µ0] and t > t0,

(1) has affinity integral manifold.

Proof. From (2) it follows that any solutions x(t) = x(t; t0, x0) of the Cauchy’s
problem of the system (3) with x(t0) = x0 is the form x(t) = W (t, t0)x0. Then
it is follows that the systemµ

dy

dt
= D(t)y + C(t)W (t, t0)x, t 6= τk,

∆y = Dky + CkW (t, t0)x, t = τk, k = 1, 2, . . .

has only one bounded solution in the form

y(t) =
1
µ

∫ ∞

t0

G(t, s, µ)C(s)W (s, t0)x0 ds +
∞∑

k=1

G(t, τk + 0, µ)CkW (τk, t0)x0.

If the graph of the solution (x(t), y(t)) is from a affinity integral manifold
then

QW (t, s)x0 =
1
µ

∫ ∞

t0

G(t, s, µ)C(s)W (s, t0)x0 ds

+
∞∑

k=1

G(t, τk + 0, µ)CkW (τk, t0)x0.
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We shall proof Theorem 1 if we proof that

(9) Q(t) =
1
µ

∫ ∞

t0

G(t, s, µ)C(s)W (s, t)x0 ds+
∞∑

k=1

G(t, τk+0, µ)CkW (τk, t)x0

is bounded solutions of the system (1) such that B(t) = 0 at t ∈ I, Bk = 0 at
k = 1, 2, . . . .

From (4) and (6) at t 6= τk, t > t0 we obtain

d

dt
Q(t)

(10)

=
d

dt

(
1
µ

∫ t

t0

G(t, s, µ)C(s)W (s, t) ds +
1
µ

∫ ∞

t

G(t, s, µ)C(s)W (s, t) ds

)
+

d

dt

( ∞∑
k=1

G(t, τk + 0, µ)CkW (τk, t)
)

=
1
µ

G(t, t − 0, µ)C(t)W (t − 0, t) − 1
µ

G(t, t + 0, µ)C(t)W (t + 0, t)

+
1
µ2

∫ ∞

t0

D(t)G(t, s, µ)C(t)W (s, t) ds

− 1
µ

∫ ∞

t0

G(t, s, µ)C(s)W (s, t)A(t) ds

+
1
µ

∞∑
k=1

D(t)G(t, τk + 0, µ)CkW (τk, t)

−
∞∑

k=1

G(t, τk + 0, µ)CkW (τk, t)A(t)

= C(t) +
1
µ

D(t)Q(t) − Q(t)A(t)

and at t = τi, i = 1, 2, . . . it follows that

∆Q(τi) + Q(τk + 0)Ak

(11)

=
1
µ

∫ ∞

t0

G(τi + 0, s, µ)W (s, τi + 0)(Em + Ai) ds

+
∞∑

k=1

G(τi + 0, τk + 0, µ)CkW (τk, τi + 0)(Em + Ai)

− 1
µ

∫ ∞

t0

G(τi, s, µ)C(s)W (s, τi) ds −
∞∑

k=1

G(τi, τk + 0, µ)CkW (τi, τk)
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=
1
µ

∫ ∞

t0

(En + Di)G(τi, s, µ)C(s)W (s, τi) ds

+
∞∑

k=1

(En + Di)G(τi, τk + 0, µ)CkW (τk, τi) +
1
µ

Ci

− 1
µ

∫ ∞

t0

G(τi, s, µ)C(s)W (s, τi) ds −
∞∑

k=1

G(τi, τk + 0, µ)CkW (τi, τk)

=
1
µ

Ci + DiQ(τi).

Then (9) is solution of (8) for B(t) = 0, t > t0; Bk = 0, k = 1, 2, . . . .
On the other hand for t > t0 it is follows that

(12) ‖Q(t)‖ ≤ 1
µ

∫ ∞

t0

KNe−( β
µ−α)|t−s|δ ds +

∞∑
k=1

KNe−( β
µ−α)|t−τk|δ.

From H5 it is follows that there exist µ0 > 0 such that for all µ ∈ (0, µ0] the
following inequality is valid

(13)
∞∑

k=1

KNe−( β
µ−α)|t−τk| < vµ,

where vµ depend only from µ, µ ∈ (0, µ0] and the sequence {τk}∞k=1.
From (12) and (13) it is follows that Q(t) is bounded solution of (8) for

B(t) = 0, t > t0; Bk = 0, k = 1, 2, . . . .

Theorem 2. Let the following conditions hold:
1. The conditions H1–H6 are met.
2. There exist a positive constant δ such that the following inequalities

hold:

sup
t∈I

‖B(t)‖ ≤ δ, sup
k=1,2,...

‖Bk‖ ≤ δ,

sup
t∈I

‖C(t)‖ ≤ δ, sup
k=1,2,...

‖Ck‖ ≤ δ,

where δ = δ(µ), δ(µ) → 0 at µ → 0.
Then there exist a positive constant µ∗ such that for all µ ∈ (0, µ∗] the

system (1) has affinity integral manifold in the form (7) at t > t0.

Proof. The parameter function from (7) we shall obtain by the method of
consistent approach.

Set

ϕ0 = 0,

ϕn = Qn(t)x, n = 1, 2, . . . ,
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where
(14)

Qn(t) =
1
µ

∫ ∞

t

G(t, s, µ)C(s)Wn−1(s, t) ds +
∞∑

k=1

G(t, τk + 0, µ)CkWn−1(τk, t),

and Wn−1(t, s) is Cauchy’s matrix of the system

(15)


dx

dt
= [A(t) + B(t)Qn−1(t)]x, t 6= τk,

∆x = [Ak + BkQn−1(t)]x, t = τk, k = 1, 2, . . . .

We consider the system

(16)



dx

dt
= [A(t) + B(t)Qn−1(t)]x, t 6= τk,

µ
dy

dt
= C(t)x + D(t)y, t 6= τk,

∆x = [Ak + BkQn−1(t)]x, t = τk,

∆y = Ckx + Dky, t = τk, k = 1, 2, . . . .

We shall proof that {Qn(t)} is uniformly bounded sequence.
For n = 1 the system (16) satisfies the conditions of Theorem 1. Then there

exists the constat q > 0 such that

‖Q1(t)‖ ≤ q.

Let ‖Qn(t)‖ ≤ q for arbitrary n ≥ 1.
Then from (14) it follows that

‖Qn+1(t)‖ ≤ 1
µ

∫ ∞

t0

‖G(t, s, µ)‖ ‖C(s)‖ ‖Wn(s, t)‖ ds

+
∞∑

k=1

‖G(t, τk + 0, µ)‖ ‖Ck‖ ‖Wn(τk, s)‖.

(17)

From (15) for t > s; t ∈ I, s ∈ I it is follows that

Wn(t, s) = W (t, s) +
∫ t

s

W (t, τ)B(τ)Qn(τ)Wn(τ, s) dτ

+
∑

s<τk<t

W (t, τk)BkQn(τk)Wn(τk, s).

Then

‖Wn(t, s)‖ ≤ Keα(t−s) +
∫ t

s

Kqδeα(t−τ)‖Wn(τ, s)‖ dτ

+
∑

s<τk<t

Kqδeα(t−τk)‖Wn(τk, s)‖.
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Set

u(t) = e−αt‖Wn(t, s)‖, v(t) = Kqδ,

F (t) = Ke−αt, γk = Kqδ,

δk(t) ≡ 0.

From Lemma 1 we obtain that

‖Wn(t, s)‖ ≤ Keα(t−s)
∏

s<τk<t

(1 + Kqδ)eKqδ(t−s)

≤ Keα(t−s)(1 + Kqδ)p(t−s)+εeKqδ(t−s)

= K(1 + Kqδ)εe[α+Kqδ+p ln(1+Kqδ)](t−s).

(18)

For s > t the proof is analogouly.
From (17) and (18) we obtain that

‖Qn+1(t)‖ ≤ 1
µ

∫ ∞

t0

NKδ(1 + Kqδ)εe−σ|t−s| ds

+
∞∑

k=1

NKδ(1 + Kqδ)εe−σ|t−τk|,

(19)

where σ = β
µ −

(
α + Kqδ + p ln(1 + Kqδ)

)
.

It is easily to verify that there exist a positive constat µ0, µ0 < β
(
α+Kqδ+

p ln(1 + Kqδ)
)−1 such that for all µ ∈ (0, µ0], σ is positive. Then from (19) it

follows that

(20) ‖Qn+1(t)‖ ≤ NKδ(1 + Kqδ)ε

(
1

µσ
+ vµ

)
.

Hence it is follows that Qn(t) is bounded at t > t0.
On the other hand

Qn+1(t) − Qn(t) =
1
µ

∫ ∞

t0

G(t, s, µ)C(s)
(
Wn(s, t) − Wn−1(s, t)

)
ds

+
∞∑

k=1

G(t, τk + 0, µ)Ck

(
Wn(τk, t) − Wn−1(τk, t)

)
.

(21)

It is immediately verified that V (t) = Wn(t, s) − Wn−1(t, s) is solution of the
system:

dV

dt
=

(
A(t) + B(t)Q(t)

)
V + B(t)

(
Qn−1(t) − Qn(t)

)
Wn−1, t 6= τk,

∆V =
(
Ak + BkQ(t)

)
V + BK

(
Qn−1(t) − Qn(t)

)
Wn−1,

t = τk, k = 1, 2, . . . .
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Then for t > s,

V (t) =
∫ t

s

Wn(t, θ)B(θ)
(
Qn−1(θ) − Qn(θ)

)
Wn−1(θ, s) dθ

+
∑

s<τk<t

Wn(t, τk)Bk

(
Qn−1(τk) − Qn(τk)

)
Wn−1(τk, s).

‖V (t)‖ ≤
[∫ t

s

(
K(1 + Kqδ)ε

)2
δe(α+Kqδ+p ln(1+Kqδ))(t−s) dθ

]
× sup

t∈I
‖Qn−1(s) − Qn(s)‖

+
( ∑

s<τk<t

(
K(1 + Kqδ)ε

)2
δe(α+Kqδ+p ln(1+Kqδ))(t−τk)

)
× sup

t∈I
‖Qn−1(t) − Qn(t)‖

=
(
K(1 + Kqδ)ε

)2
δe(α+Kqδ+p ln(1+Kqδ))(t−s)

(
(1 + p)(t − s) + ε

)
× sup

t∈I
‖Qn(t) − Qn−1(t)‖.

(22)

At t < s the proof is analogously.
Then from (21) and (22) we obtain that

‖Qn+1(t) − Qn(t)‖

≤
[

1
µ

∫ ∞

t0

N
(
K(1 + Kqδ)ε

)2
δ2

(
(1 + p)|t − s| + ε

)
e−σ|t−s| ds

]
× sup

t∈I
‖Qn(t) − Qn−1(t)‖

+
[ ∞∑

k=1

N
(
K(1 + Kqδ)ε

)2
δ2

(
(1 + p)|t − τk| + ε

)
e−σ|t−τk|

]
× sup

t∈I
‖Qn(t) − Qn−1(t)‖.

From H4 and (13) it is imediately that there exist µ1 > 0 such that for all
µ ∈ (0, µ1] the following inequality is valid

∞∑
k=1

|t − τk|e−σ|t−τk| < λk,

where λk depended only of the sequence {τk}∞k=1 and µ.
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Then

‖Qn+1(t) − Qn(t)‖

≤

{
N

(
K(1 + Kqδ)ε

)2
δ2

[
(1 + p)

(
2
σ2

− 1
σ2

e−σ(t−t0) − 1
σ

e−σ(t−t0) + λk

)]}
× sup

t∈I
‖Qn(t) − Qn−1(t)‖

+

{
N

(
K(1 + Kqδ)ε

)2
δ2

[(
2
σ2

− 1
σ

e−σ(t−t0) + γk

)]}
× sup

t∈I
‖Qn(t) − Qn−1(t)‖.

(23)

From (23) follows that there exist µ∗, µ∗ < min{µ0, µ1} such that for all µ,
µ ∈ (0, µ∗] the sequence {Qn(t)}∞n=1 is uniformly convergent to Q(t).
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