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1. Introduction

Boundary value problems with singular nature arise quite naturally in
physics, fluid dynamics and the study of radially symmetric solutions to el-
liptic problems, see [1]–[4] for example, while impulsive differential equations
describe processes with a sudden change of their state at certain moments, see
[5]–[8] and the references therein. At present, most papers study the solvabity
of such problems, where the nonlinearity is sublinear at infinity, see [1]–[4], or
multiple solutions of superlinear problems with superlinear zeros at the origin,
see [5]. Recently, Wong in [9] proved that for some singular boundary value
problems with parameter, solutions exist when λ < λ0, while no solutions exist
when λ > λ0. His problems involve superlinear nonlinearities at infinity, see
also [14].

In this paper, we will study the global structure of the solution set of some
singular nonlinear operators, which have some “approximate properties”. We
do not assume they are defined on the whole cone and continuous. By applying
fixed point index on cones, we give the existence of unbounded continua of the
solution set.

* This work is supported in part by NSF of Shandong Province and NNSF of China.
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110 X. LIU

As applications, we consider the following impulsive integrodifferential
boundary value problems:

(1.1)

(Lx)(t) + p(t)f(λ, t, x(t), (Hx)(t), (Sx)(t)) = 0,

t ∈ (0, 1), t 6= tk, k = 1, 2, . . . ,m,

∆x
∣∣
t=tk

:= x(tk + 0) − x(tk − 0) = Ik(x(tk)), k = 1, 2, . . . ,m,

αx(0) − β lim
t→0

p(t)x′(t) = γx(1) + δ lim
t→1

p(t)x′(t) = 0

where (Lx)(t) =
1

p(t)
(p(t)x′(t))′, f ∈ C[[0,∞) × (0, 1) ×R+ ×R1 ×R1,R+],

R+ = (0,∞), p ∈ C1[0, 1], p(t) > 0 for t ∈ (0, 1), H and S are given by

(1.2) (Hx)(t) =
∫ t

0

k(t, s)x(s) ds, (Sx)(t) =
∫ 1

0

k1(t, s)x(s) ds

with k, k1 ∈ C[[0, 1] × [0, 1], [0,∞)], and α, β, γ, δ ≥ 0, βγ + αδ + αγ > 0,
Ik ∈ C[[0,∞), [0,∞)], k = 1, 2, . . . ,m, 0 < t1 < t2 < . . . < tm < 1. Note
that the nonlinear term f(λ, t, x, y, z) may be singular at t = 0, 1 and x = 0.
Using the existence principle of [11], we prove that unbounded continua of the
solution set of (1.1) exist.

2. Global structure of solutions of singular operators

In order to treat global problems, we need the following auxiliary lemma.
Recall that a subcontinuum is a maximal connected subspace of a topological
space. In the case of metric spaces, a subcontinuum is always closed.

Lemma A. Let X be a compact metric space, an, a ∈ X, an → a, En

is the subcontinuum of X containing an. Define E = limn→∞ En = {x ∈
X : There exists a subsequence Enk

and xnk
∈ Enk

with xnk
→ x}. Then E

is closed and connected.

Proof. Clearly En is compact. Let xj ∈ E, xj → x. Suppose xj =
limk→∞ xj

nk
, where xj

nk
∈ Ej

nk
. Choose k(j) such that d(xj

nk(j)
, xj) < 1/j.

Then limj→∞ xj
nk(j)

= x, hence x ∈ E by definition. Thus E is closed and
compact. Suppose E has a decomposition E = K ∪ S, where K,S are com-
pact; nonempty and disjoint. Assume a ∈ K. Thus there exist disjoint open
sets U, V such that K ⊂ U , S ⊂ V , cl U ∩ cl V = ∅, where cl U denotes the
closure of U . Without loss of generality we can assume that an ∈ U for n ≥ 1.
Now we have two cases.

First if there exists N such that En ⊂ U for n > N , then by definition
E ⊂ cl U , which contradicts S is nonempty. Next if there exists a subsequence
Enk

with Enk
6⊂ U . Since En is connected, we can find xnk

∈ Enk
∩bU , where
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bU denotes the boundary of U . By the compactness of X we get E ∩ bU 6= ∅.
This is a contradiction. Q.E.D.

Let X be a Banach space, P a cone of X, X∗ be a linear vector space.
Consider an operator A : R∗ × D(A) → X∗, where D(A) is a subset of P ,
R∗ = [0,∞). Note that D(A) need not be open or closed. We will study the
following operator equation

(2.1) A(λ, x) = 0, (λ, x) ∈ R∗ ×D(A).

Define Σ ⊂ R∗ × D(A) to be the set of all solutions of (2.1). For λ = 0, we
write

Ω0 = {x ∈ D(A) : (0, x) ∈ Σ}.

We always understand Σ to be a metric space with its induced topology from
R∗×P . Let x0 ∈ Ω0, and denote by E(x0) the subcontinuum of Σ containing
(0, x0). Define

E = cl
(⋃

{E(x0) : x0 ∈ Ω0}
)

where the closure is taken in the space R∗ × P . Associated with the operator
A, we will consider an approximate operator An, where An : R∗ × P → P is
continuous. Denote the solution set of the following equation

(2.2) x = An(λ, x)

by Σn, i.e., Σn = {(λ, x) : (λ, x) ∈ R∗×P, (λ, x) is a solution of (2.2)}. Again,
we define

Ω0
n = {x ∈ P : (0, x) ∈ Σn}.

For x0 ∈ Ω0
n, denote by En(x0) the subcontinuum of Σn containing (0, x0).

Write
En = cl

(⋃
{En(x0) : x0 ∈ Ω0

n}
)
.

We will assume the following conditions to be satisfied:
(N0) Σ is closed and locally compact in R∗ × P .
(N1) An are completely continuous on R∗ × P , for any integer n ∈ N.
(N2) Ω0

n are nonempty, for any integer n ∈ N.
(N3) If (λn, xn) ∈ Σn and is a bounded sequence, then there exists a sub-

sequence (λnk
, xnk

) satisfying (λnk
, xnk

) → (λ, x) and (λ, x) ∈ Σ.

(N4) lim
‖x‖→∞

‖An(0, x)‖
‖x‖

= 0 for any integer n ∈ N.

Throughout this section, we use bD to denote the boundary of the set D in
the metric space R∗ × P .

REMARK. Condition (N3) is an approximate hypothesis, which relates the
operator An with A.
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Lemma 2.1. Let (N1) (N2) (N4) be satisfied. Then En is unbounded for
every n ∈ N.

Proof. Clearly Σn is locally compact from condition (N1). Suppose that En is
bounded for some n. Let BR = {x ∈ P : ‖x‖ ≤ R}, QR = [0, R] × BR. Then
we can choose R > 0 such that En ⊂ QR and En ∩ bQR = ∅, where

bQR = ([0, R] × bBR) ∪ ({R} × BR), bBR = {x ∈ P : ‖x‖ = R}.

Let Xn = Σn ∩QR, then Xn is a compact metric space and En ⊂ Xn. Define
Yn = Σn ∩ bQR, hence En, Yn are disjoint compact subset of Xn.

Next we will prove that there does not exist a subconinuum of Xn meeting
both En and Yn. Suppose the contrary, and Z be a subcontinuum of Xn with
Z∩En 6= ∅, Z∩Yn 6= ∅. Choose (λ, x) ∈ Z∩En. First assume (λ, x) ∈ En(x0)
where x0 ∈ Ω0

n. Then Z ∪En(x0) is connected. But En(x0) is maximal, hence
Z ∪ En(x0) = En(x0), in contradiction with Z ∩ Yn 6= ∅. Thus there exist
x0

j ∈ Ω0
n and (λj , yj) ∈ En(x0

j ) such that (λj , yj) → (λ, x). By Lemma A,
E∗ = limj→∞ En(x0

j ) is closed and connected. Also since Xn is compact we
find a subsequence x0

j
′ of x0

j such that x0
j
′ → x0 ∈ Ω0

n. Clearly (0, x0) ∈ E∗

by definition, hence E∗ ⊂ En(x0) and (λ, x) ∈ En(x0). By the above step we
know this is also a contradiction.

From Lemma 1.1 of [12] we know that there exist disjoint compact subsets
K1,K2 such that Xn = K1 ∪ K2, K1 ⊃ En, K2 ⊃ Yn, hence K1 ∩ bQR = ∅.
Since Xn is a metric space, we get an open set U ⊂ QR with K1 ⊂ U ,
U ∩ bQR = ∅, U ∩ K2 = ∅, bU ∩ K2 = ∅, bU ∩ K1 = ∅. Thus bU ∩ Σn = ∅.
By the general homotopy invariance of the fixed point index on cones (see [13]
Theorem 11.3) we have

i(An(λ, ·), U(λ), P ) = µ = const.

where U(λ) = {x : (λ, x) ∈ U}. Evidently U(R) = ∅, hence µ = 0 for λ ∈
[0, R]. But when λ = 0, we have Ω0

n ⊂ U(0) since En ⊂ K1 ⊂ U . As a result,
An(0, ·) has no fixed points outside U(0). Thus

µ = i(An(0, ·), U(0), P ) = i(An(0, ·), BT , P )

where T is large enough. From condition (N4) and the index computation
formula of cone compresion (see [14]) we get µ = 1. Thus the proof is complete.

Lemma 2.2. Suppose that for every bounded open set G of R∗ × P which
contains {0} × Ω0, bG ∩ Σ is nonempty, then E is unbounded.

Proof. Suppose the contrary. Then we can choose R > 0 such that E ⊂ QR,
E ∩ bQR = ∅. Let Y = Σ ∩ bQR, X = Σ ∩ QR. Since Y and E are disjoint,
similar to the proof of Lemma 2.1, we get disjoint compact subsets K1,K2 of



SOLUTIONS OF SOME SINGULAR OPERATORS 113

X such that E ⊂ K1, Y ⊂ K2, K1 ∩bQR = ∅, X = K1 ∪K2. Because R∗×P
is a regular space, there exists a bounded open set U ⊂ R∗ × P such that
K1 ⊂ U ⊂ QR, U ∩ K2 = ∅, U ∩ bQR = ∅. Furthermore, choose oepn set G
satisfying K1 ⊂ G ⊂ clG ⊂ U . Consequently Σ ∩ bG = ∅, which contradicts
our hypothesis. The proof is complete.

Theorem 2.3. Suppose (N0)–(N4) hold. Then E is unbounded.

Proof. We need only to verify the hypotheses of Lemma 2.2. Suppose G is
open and bounded which contains {0} × Ω0. First we prove that Ω0

n ⊂ G
for n large enough. In fact, suppose there exist (0, xn) ∈ Ω0

n\G. From (N4)
we know xn is bounded. Thus from (N3) we can write (0, xn) → (0, x) ∈ Σ
(without loss of generality). Obviously (0, x) ∈ (R∗ × P )\G and (0, x) ∈ Ω0.
This contradicts Ω0 ⊂ G. Hence there exists N such that Ω0

n ⊂ G for n > N .
Since En are unbounded we can find x0

n ∈ Ω0
n such that En(x0

n) ∩ bG 6= ∅.
Consequently Σn ∩bG 6= ∅. Then condition (N3) yields Σ∩bG 6= ∅. Thus the
proof is complete by Lemma 2.2.

Theorem 2.4. Suppose Ω0 is bounded, and (N0)–(N4) hold. Then there
exists x0 ∈ Ω0 such that the subcontinuum E(x0) emanating from (0, x0) is
unbounded.

Proof. Suppose that E(x0) is bounded for any x0 ∈ Ω0. Then from Theo-
rem 2.3 there exist xn ∈ Ω0 such that the bound of E(xn) tends to infinity.
Without loss of generality we can assume that xn → x0 ∈ Ω0. Denote by
E(x0) the subcontinuum containing (0, x0). Then E(x0) is bounded. Choose
R > 0 such that E(x0) ⊂ QR, E(x0) ∩ bQR = ∅, where QR = [0, R] × BR.
Take X = Σ ∩ QR which is compact and closed. Then E(x0) is a compact
closed subset of X. Define Y = Σ∩ bQR, hence E(x0) and Y are disjoint and
compact. Consequently, there exist compact disjoint subsets K1,K2 of X such
that X = K1 ∪K2, E(x0) ⊂ K1, Y ⊂ K2, K1 ∩ bQR = ∅. Thus there exists a
bounded open set U ⊂ R∗×P satisfying K1 ⊂ U ⊂ QR, U ∩ (K2 ∪bQR) = ∅.
Again we get a bounded open set G with K1 ⊂ G ⊂ clG ⊂ U ⊂ QR, hence
Σ∩bG = ∅. Since xn → x0 while (0, x0) ∈ E(x0) ⊂ K1. Therefore (0, xn) ∈ G
for n large enough. So the unboundedness of E(xn) yields E(xn) ∩ bG 6= ∅.
Take (λn, yn) ∈ E(xn) ∩ bG. Because Σ is locally compact there exists sub-
sequence (λ′

n, y′
n) → (λ, x) ∈ Σ ∩ bG which is a contradiction. The proof is

complete.

3. Applications to impulsive
integrodifferential boundary value problems

In this section, we will apply the abstract results of the previous section
to impulsive integrodifferential boundary value problems. Specifically we will
show that the solution set of problem (1.1) has unbounded continua. For sim-
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plicity we will assume βδ = 0 in this section. Now we list the main assumptions
below. Recall that R∗ = [0,∞), R+ = (0,∞).

Define M = max{k(t, s) : t, s ∈ [0, 1]}, M1 = max{k1(t, s) : t, s ∈ [0, 1]}.
Let J = [0, 1], X = PC(J) = {x : x is a function from J to R1, contin-
uous at t 6= tk, left continuous at t = tk, and right hand limit at t = tk
exist for k = 1, 2, . . .m}. Recall that PC(J) is a Banach space with norm
‖x‖ = supt∈J |x(t)|. Denote the normal cone of PC(J) by P = {x : x ∈
PC(J), x(t) ≥ 0, t ∈ [0, 1]}. A function x ∈ PC(J) is called a positive solution
of (1.1) if x(t) > 0, t ∈ (0, 1), x ∈ PC(J) and satisfies (1.1). Throughout this
paper, we use C to denote a constant, and C(ε) a constant dependent of ε,
even if they may be different at different places. Write

∆(px′)
∣∣
tk

= lim
ε→0

[p(tk + ε)x′(tk + ε) − p(tk − ε)x′(tk − ε)],

and introduce the following condition (see [11]):

(3.1) ∆(px′)
∣∣
tk

= − γIk(x(tk))
δ + γτ1(tk)

, k = 0, 1, . . . ,m.

Define D(A) = {x : x ∈ X, x(t) > 0, t ∈ (0, 1), x′(t) and p(t)x′(t) are con-
tinuous at t ∈ (0, 1), t 6= tk, k = 1, 2, . . . ,m, and x satisfies (3.1)}. Let
X∗ = {x : x in a real function on J\{t1, t2, . . . , tm}}, and

A(λ, x) = Lx + f(λ, t, x,Hx, Sx, ), t ∈ (0, 1), t 6= tk, k = 1, 2, . . . ,m.

Suppose
∫ 1

0
1/p(t) dt < ∞. Then A : R∗ ×D(A) → X∗. Note that D(A) need

not be open or closed. Denote:

τ1(t) =
∫ 1

t

1
p(t)

dt, τ0(t) =
∫ t

0

1
p(t)

dt,

then we have τ1, τ0 ∈ C[0, 1]. Let ρ2 = βγ + αδ + αγ
∫ 1

0
1/p(t) dt, and write

u(t) = (1/ρ)[δ + γτ1(t)], v(t) = (1/ρ)[β + ατ0(t)].

Note that γv + αu ≡ ρ. Define

G(t, s) =
{

u(t)v(s)p(s), 0 ≤ s ≤ t ≤ 1,

v(t)u(s)p(s), 0 ≤ t ≤ s ≤ 1,

θ(s) = τ1(s), when β > 0, δ = 0, s ∈ (0, 1),

θ(s) = τ0(s), when β = 0, δ > 0, s ∈ (0, 1),
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θ(s) = τ0(s) for s ∈ [0, 1/2], and θ(s) = τ1(s) for s ∈ (1/2, 1] when β = 0,
δ = 0. Write fn(λ, t, x, y, z) = fn(λ, t, max{1/n, x}, y, z). Define

(An(λ, x))(t) =
∫ 1

0

G(t, s)fn(λ, s, x(s), (Hx)(s), (Sx)(s)) ds

+ (δ + γτ1(t))
∑

0<tk<t

Ik(x(tk))
δ + γτ1(tk)

.

(3.2)

We will make the following assumptions

(H0)
∫ 1

0

1/p < ∞.

(H1) f(λ, t, x, y, z) ≤ ψ(t)ϕ(λ, x, y, z), t ∈ (0, 1), λ, y, z ∈ R∗, x ∈ R+,

where ψ ∈ C[(0, 1),R+], ϕ ∈ C[R∗×R+×R1×R1,R+] and
∫ 1

0

θpψ <

∞.
(H2) θ(s)p(s) is bounded for s ∈ (0, 1).
(H3) lim

x→∞
Ik(x)/x = 0, k = 1, 2, . . . ,m.

(H4) For any R > 0, there exist ζ ∈ C[0, 1] with ζ(t) ≥ 0 for t ∈ [0, 1] and
ζ(t) 6≡ 0 such that f(λ, t, x, y, z) ≥ ζ(t) for t ∈ (0, 1), λ, x, y, z ∈ (0, R].

(H5) lim
|x|+|y|+|z|→∞

ϕ(0, x, y, z)
|x| + |y| + |z|

= 0.

Lemma 3.1. Suppose (H0) (H1) (H2) hold. Then An(λ, x) maps R∗×P into
P and is completely continuous, i.e., condition (N1) is satisfied.

Proof. It is straightforward. See [11] Lemma 2.3. Q.E.D.

Next we will make the convention that all our symbols associated with
the solution set have the same meaning as in section 2. Then from an exis-
tence principle obtained in [11] (see [11] Theorem 3.5) we know that Ω0

n are
nonempty, i.e., condition (N2) is valid for (1.1), provided that (H0)–(H5) hold.

Remark 3.2. If (H0)–(H5) are satisfied, (λ, x) ∈ Σn, then x ∈ D(A). Further-
more x verifies (3.1), see [11].

Lemma 3.3. Let (H0)–(H5) be satisfied, then Ω0 is bounded.

Proof. It is essentially the same as Lemma 3.1 of [11]. Q.E.D.

Lemma 3.4. Suppose (H0)–(H5) hold. Then the solution set Σ of (1.1) is
locally compact in R∗ × P .

Proof. Let (λ, x) ∈ Σ with 0 ≤ λ ≤ R, ‖x‖ ≤ R, where R > 0 is a constant.
We will prove our lemma in three steps.

(i) There exists x∗ ∈ C[0, 1] such that x∗(t) > 0 for t ∈ (0, 1) and x(t) ≥
x∗(t), t ∈ (0, 1), where x∗ is independent only on R.
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In fact, let ζ be determined by (H4). Then

−Lx ≥ ζ(t), t ∈ (0, 1), t 6= tk.

Define:

y(t) =
∫ 1

0

G(t, s)ζ(s) ds +
(
δ + γτ1(t)

) ∑
0<tk<t

Ik(x(tk))
δ + γτ1(tk)

,

x∗(t) =
∫ 1

0

G(t, s)ζ(s) ds.

Then y satisfies the boundary condition and{
− (Ly)(t) = ζ(t), t ∈ (0, 1), t 6= tk,

∆y
∣∣
t=tk

= Ik(x(tk)), k = 1, 2, . . . ,m,

∆(py′)
∣∣
tk

= − γIk(x(tk))
δ + γτ1(tk)

, k = 0, 1, . . . ,m.

Let z = x − y, then −Lz ≥ 0, t 6= tk, ∆z
∣∣
tk

= 0, ∆(pz′)
∣∣
tk

= 0. Hence
z ∈ C1(0, 1), and z satisfies the boundary conditions. Thus it is easy to show
that z(t) ≥ 0, t ∈ (0, 1), by using elementary comparison technique.

In fact, suppose β > 0, δ = 0 for example. Then z(1) = 0 from the
boundary conditions. Since Lx ≤ 0, t 6= tk, p(t)z′(t) decreases in (0, 1). First
if z(0) < 0, then the boundary conditions yield β limt→0 p(t)z′(t) = αz(0) ≤ 0.
Thus p(t)z′(t) ≤ 0 in (0, 1) and z′(t) ≤ 0 in (0, 1). This contradicts with
z(1) = 0. So we have z(0) ≥ 0. Suppose z(t) assumes its negative minimum
z(c) with c ∈ (0, 1). Then z′(c) = 0 and p(t)z′(t) ≤ 0 in (c, 1), hence z′(t) ≤ 0
in (c, 1). This again contradicts with z(1) = 0. Therefore z(t) ≥ 0 in (0, 1).

(ii) Denote by t0x the zeros of x′(t), including limit zeros of px′. Then there
exists η independent of n such that

(1) t0x ≤ 1 − η, when β > 0, δ = 0,

(2) t0x ≥ η, when δ > 0, β = 0,

(3) η ≤ t0x ≤ 1 − η, when β = δ = 0.

In fact, let β > 0, δ = 0 for brevity. Then the boundary conditions become
x(1) = 0, αx(0)−β limt→0 p(t)x′(t) = 0. In this case t0x < 1. Otherwise −Lx ≥
0 in (tm, 1), then x′ ≥ 0, hence x(t) = 0 in (tm, 1), which is a contradiction.
If the required η does not exist. Then we get a sequence of solutions x with
t0 = t0x → 1, t0 ∈ (tm, 1). Evidently |Hx| ≤ MR ≤ C, |Sx| ≤ M1R ≤ C.
Define

(3.3) Φ(u) = max{ϕ(λ, x, y, z) : 0 ≤ λ ≤ R, u ≤ x ≤ R, 0 ≤ y, z ≤ C} + 1.
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Then Φ decreases and for t ∈ (t0, 1) we get

0 ≤ −(px′)′ ≤ p(t)ψ(t)ϕ(λ, x,Hx, Sx) ≤ p(t)ψ(t)Φ(x).

Evidently px′ ≤ 0 and x′ ≤ 0 on (t0, 1). Thus integration yields:

0 ≤ −(px′)(t) ≤
∫ t

t0
p(s)ψ(s)Φ(x(s)) ds ≤

∫ t

t0
p(s)ψ(s) ds.

Let T (u) =
∫ u

0
dv/Φ(v), z = T (x), then

0 ≤ −z′(t) ≤ 1
p

∫ t

t0
p(s)ψ(s) ds.

z(t0) ≤
∫ 1

t0

1
p

∫ t

t0
p(s)ψ(s) ds =

∫ 1

t0
p(s)ψ(s)τ1(s) ds → 0.

Hence x(t0) → 0. But (3.1) gives ∆(px′)
∣∣
tk

< 0. Thus x increases in (0, t0).
So x(t0) = ‖x‖ → 0. This contradicts with (i).

(iii) Now we assume β > 0, δ = 0, then θ = τ1. Other cases are similar.
Let ‖x‖ = x(t0 + 0). If t0 = tk, 1 ≤ k ≤ m, then x′(tk + 0) ≤ 0. First suppose
x′(tk − 0) ≥ 0. From (3.1) we know

(3.4) 0 ≤ −∆(px′)
∣∣
tk

≤ C, where C is independent on x.

Thus 0 ≤ −px′
∣∣
tk+0

≤ −∆(px′)
∣∣
tk

≤ C, and |x′(tk + 0)| ≤ C. From step (i)
and the continuity of f we know

(3.5) |x′(t)| ≤ C, t ∈ [t1, tm].

When t ∈ (0, t1), from (3.1), (3.5) and integration we get

0 ≤ −(Lx)(t) ≤ ψ(t)ϕ(λ, x,Hx, Sx) ≤ ψ(t)Φ(x(t)),

0 ≤ p(t)x′(t) ≤ p(t1)x′(t1) +
∫ t1

t

p(s)ψ(s)Φ(x(s)) ds

≤ C + Φ(x(t))
∫ t1

t

p(s)ψ(s) ds.

Let z = T (x), then

0 ≤ z′(t) ≤ C

p(t)
+

1
p(t)

∫ t1

t

p(s)ψ(s) ds

≤ C

p(t)
+

1
p(t)

∫ t1

0

p(s)ψ(s) ds ∈ L1[0, t1].
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For t ∈ [tm, 1], similarly we obtain

0 ≤ −z′(t) ≤ C

p(t)
+

1
p(t)

∫ t

tm

p(s)ψ(s) ds ∈ L1[tm, 1].

Now suppose x′(tk − 0) ≤ 0. By induction we can assume without loss of
generality that x′(t1 + 0) < 0, or otherwise (3.5) holds. In the former case,
αx(0) = β limt→0 p(t)x′(t) ≥ 0. Therefore we can find a zero t∗ of x′ (including
limit zeros of px′). For t ∈ (0, t∗), we have

0 ≤ p(t)x′(t) ≤
∫ t∗

t

p(s)ψ(s)ϕ(λ, x,Hx, Sx) ds

≤ C

∫ t∗

t

Φ(x(s))p(s)ψ(s) ds ≤ CΦ(x(t))
∫ t∗

t

pψ.

Let z = T (x), then (Note that θ = τ1)

(3.6) 0 ≤ z′(t) ≤ {C/p}
∫ t∗

t

pψ ≤ {C/p}
∫ t1

0

pψ ∈ L1[0, t1].

For t ∈ (t∗, t1), we have

0 ≤ −p(t)x′(t) ≤
∫ t

t∗
p(s)ψ(s)ϕ(λ, x,Hx, Sx) ds

≤ C

∫ t

t∗
p(s)ψ(s)Φ(x(s)) ds ≤ CΦ(x(t))

∫ t

t∗
p(s)ψ(s) ds,

0 ≤ −z′(t) ≤ {1/p}
∫ t

t∗
p(s)ψ(s) ds

≤ {1/p}
∫ t1

0

p(s)ψ(s) ds ∈ L1[0, t1].

Also we have

|x′(t1)| = |z′(t1)|Φ(x(t1)) ≤ Φ(x∗(t1))|z′(t1)| ≤ C.

Hence (3.5) holds again. For t ∈ [tm, 1], similar reasoning yields

0 ≤ −z′(t) ≤ C

p(t)
+

1
p(t)

∫ t

tm

pψ ∈ L1[tm, 1].

By the standard Arzela’s technique we know that {z(t)} is compact. Hence
{x(t)} is compact. If ‖x‖ = x(t0), t0 ∈ (0, 1), t 6= tk, k = 1, 2, . . . ,m, or
‖x‖ = x(0). The proof is similar. Q.E.D.
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Lemma 3.5. Suppose (H0)–(H5) hold. Then Σ is closed.

Proof. Let (λn, xn) ∈ Σ and (λn, xn) → (λ, x) in R∗ × P . Evidently (λn, xn)
is bounded, hence from step (i) of the proof of Lemma 3.4 we know xn(t) ≥
x∗(t) and x(t) ≥ x∗(t), where x∗ ∈ C[0, 1], and x∗(t) > 0 for t ∈ (0, 1).
Again we assume β > 0, δ = 0 for simplicity. Since f is continuous, then
p(t)f(λ, t,Hxn, Sxn) converges in PC[ε, 1 − ε], where ε > 0. As a result,
x′

n, px′
n converges in PC[ε, 1 − ε]. Thus x ∈ D(A) and satisfies the impulsive

conditions. It is easy to show that (λ, x) is a solution of (1.1), using technique
similar to Theorem 5.1 of [15]. The proof is complete.

Now we come to our main theorem of this section.

Theorem 3.6. Suppose (H0)–(H5) hold. Then there exists x0 ∈ Ω0 such
that the subcontinuum E(x0) emanating from (0, x0) of the solution set Σ is
unbounded.

Proof. This follows from Theorem 2.4 and the previous lemmas. Note that
condition (N3) is valid by Theorem 3.5 of [11]. Q.E.D.

Corollary 3.7. Let the hypotheses of Theorem 3.6 be satisfied. Then one of
the following assertions holds:

(i) Problem (1.1) is solvable for any λ ≥ 0.
(ii) The solution set Σ of (1.1) has an asymptotical bifurcation point in R∗.

Proof. The projection of E(x0) in Theorem 3.6 onto R∗ is connected, hence is
an interval. If this interval is unbounded, then assertion (i) hold. If this inter-
val is bounded, then Σ has an asymptotical bifurcation point in this interval,
see Guo and Lakshimikantham [10]. The proof is complete.
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