RADIUS OF 3-CONNECTED GRAPHS

Katsumi INOUE

(Received March 1, 1996)

Abstract

We show that if G is a 3 -connected graph with radius r, then $r \leq \frac{|V(G)|+15}{4}$.

AMS 1991 Mathematics Subject Classification. Primary 05C12.

Key words and phrases. Graph theory, radius, connectivity

§1. Introduction

By a graph, we mean a finite, undirected, simple graph without loops or multiple edges. Let G be a graph. Let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. For $v, w \in V(G)$, let $d(v, w)$ denote the usual distance between v and w. Set

$$
r(G):=\min _{v \in V(G)} \max _{w \in V(G)} d(v, w) .
$$

The number $r(G)$ is called the radius of G. A vertex $z \in V(G)$ is called a central vertex of G if $\max _{w \in V(G)} d(z, w)=r(G)$.

In [1], Harant and Walther proved that the inequality $r<\frac{n}{4}+O(\log n)$ holds for a 3 -connected graph with radius r containing precisely n vertices, where O denotes the order as n tends to infinity. The purpose of this paper is to prove the following theorem.

Theorem. Let G be a 3 -connected graph with radius r containing precisely n vertices. Then the following inequality holds:

$$
r \leq \frac{n+15}{4}
$$

§2. Preliminary Results

Throughout the rest of the paper, we let G, n, r be as in the Theorem. For a vertex $v \in V(G)$ and a nonnegative integer i, let

$$
N_{i}(v):=\{w \mid w \in V(G), d(v, w)=i\} .
$$

We write $N(v)$ for $N_{1}(v)$. Fix a central vertex z, and let

$$
X_{i}:=N_{i}(z) \quad \text { for } \quad 0 \leq i \leq r .
$$

Note that for each i with $1 \leq i \leq r-1$ and each $x \in X_{i}, N(x) \subset X_{i-1} \cup X_{i} \cup$ X_{i+1}.

Lemma 2.1. $\left|X_{i}\right| \geq 3$ for all i with $1 \leq i \leq r-1$.
Proof. Since $G-X_{i}$ is disconnected, the desired conclusion immediately follows from the 3 -connectedness of G.

Lemma 2.2. $n \geq 3 r-1$.
Proof. By Lemma 2.1, $n=\sum_{i=0}^{r}\left|X_{i}\right| \geq 1+3(r-1)+1=3 r-1$.
Let i, j be integers with $0 \leq i, j \leq r$. For $v, w \in X_{i}$, we let

$$
M_{j}(v):=N_{|j-i|}(v) \cap X_{j} \quad \text { and } \quad M_{j}(v, w):=M_{j}(v) \cup M_{j}(w) .
$$

Lemma 2.3. Let $1 \leq a<i \leq r$. Suppose that $\left|X_{a}\right|=3$, and write $X_{a}=$ $\left\{u_{1}, u_{2}, u_{3}\right\}$. Let $j \in\{1,2,3\}$. Write $\{1,2,3\}=\{j, k, l\}$ and suppose that for each $h(a \leq h<i), d\left(w_{1}, w_{2}\right) \geq 3$ for any $w_{1} \in M_{h}\left(u_{j}\right)$ and any $w_{2} \in$ $M_{h}\left(u_{k}, u_{l}\right)$. Then the following hold.
(1) (a) $\left|M_{i}\left(u_{j}\right)\right| \geq 1$.
(b) If $i \geq a+2,\left|M_{i}\left(u_{j}\right)\right| \geq 2$.
(2) $\left|M_{i}\left(u_{k}, u_{l}\right)\right| \geq 2$.

Proof. From the assumptions of the lemma, it follows that $G-\left(\left\{u_{k}, u_{l}\right\} \cup\right.$ $\left.M_{i}\left(u_{j}\right)\right)$ is disconnected, and hence (1)(a) follows from the assumption that G is 3 -connected. Similarly, $G-\left(\left\{u_{j}\right\} \cup M_{i}\left(u_{k}, u_{l}\right)\right)$ is disconnected, and, in the case where $i \geq a+2, G-\left(\left\{u_{j}\right\} \cup M_{i}\left(u_{j}\right)\right)$ is also disconnected, and hence (1)(b) and (2) also follow from the 3 -connectedness of G.

§3. Proof of the Theorem

We continue with the notation of the preceding section. The bulk of the proof of the Theorem is devoted to the verification of the following lemma, which roughly says that the average of the $\left|X_{i}\right|$ is only slightly less than four, if it is less than four:

Lemma 3.1. Let a, b be integers with $a \geq 7, a+2 \leq b \leq r-6$, and suppose that $\left|X_{a}\right|=\left|X_{b}\right|=3$ and $\left|X_{i}\right|>3$ for all i with $a+1<i<b$. Then

$$
\sum_{i=a}^{b-1}\left|X_{i}\right| \geq 4(b-a)
$$

To prove the lemma, suppose, by way of contradiction, that $\sum_{i=a}^{b-1}\left|X_{i}\right|<$ $4(b-a)$. Then one of the following two situations must occur:
(A) $\left|X_{i}\right|=4$ for all $a<i<b$; or
(B) $\left|X_{a+1}\right|=3$, and $\left|X_{i}\right|=4$ or 5 for each $a+1<i<b$, and the number of those indices i with $a+1<i<b$ for which $\left|X_{i}\right|=5$ is at most one.

We define an integer C as follows. Fix $j \in\{1,2,3\}$ for the moment and write $\{j, k, l\}=\{1,2,3\}$. Set

$$
Q_{j}:=\left\{i \mid a \leq i<b, \quad \begin{array}{c}
\text { there exists } w_{1} \in M_{i}\left(u_{j}\right) \text { and there exists } \\
w_{2} \in M_{i}\left(u_{k}, u_{l}\right) \text { such that } d\left(w_{1}, w_{2}\right) \leq 2
\end{array}\right\}
$$

If $Q_{j}=\emptyset$, then $\left|X_{b}\right|=\left|M_{b}\left(u_{j}\right)\right|+\left|M_{b}\left(u_{k}, u_{l}\right)\right| \geq 2+2=4$ by Lemma 2.3, which contradicts the assumption that $\left|X_{b}\right|=3$. Thus Q_{j} is not an empty set.

Having this in mind, we define $C_{j}=\min Q_{j}$ for each $j \in\{1,2,3\}$, and let

$$
C=\max \left\{C_{1}, C_{2}, C_{3}\right\}
$$

We now relabel u_{1}, u_{2}, u_{3} so that $C=\max \left\{C_{1}, C_{2}, C_{3}\right\}=C_{1}$.
The following remarks immediately follow from the definition of C.

Remark 3.2. For each i with $a \leq i \leq C$, we have $X_{i}-M_{i}\left(u_{1}\right)=M_{i}\left(u_{2}, u_{3}\right)$.

Remark 3.3. For each i with $a+1 \leq i \leq C-1$, we have $N(x) \subset M_{i-1}\left(u_{1}\right) \cup$ $M_{i}\left(u_{1}\right) \cup M_{i+1}\left(u_{1}\right)$ for any $x \in M_{i}\left(u_{1}\right)$, and $N(y) \subset M_{i-1}\left(u_{2}, u_{3}\right) \cup M_{i}\left(u_{2}, u_{3}\right) \cup$ $M_{i+1}\left(u_{2}, u_{3}\right)$ for any $y \in M_{i}\left(u_{2}, u_{3}\right)$.

The following two claims also immediately follow from Lemma 2.3.

Claim 1. Suppose that $C \geq a+1$.
(1) If (A) holds, then $\left|M_{a+1}\left(u_{1}\right)\right|=1$ or 2 , and $\left|M_{i}\left(u_{1}\right)\right|=2$ for each $a+2 \leq$ $i \leq C$.
(2) If (B) holds, then $\left|M_{a+1}\left(u_{1}\right)\right|=1,\left|M_{i}\left(u_{1}\right)\right|=2$ or 3 for each $a+2 \leq i \leq C$, and the number of those indices i with $a+2 \leq i \leq C$ for which $\left|M_{i}\left(u_{1}\right)\right|=3$ is at most one.

Claim 2. Suppose that $C \geq a+1$.
(1) If (A) holds, then $\left|M_{a+1}\left(u_{2}, u_{3}\right)\right|=2$ or 3 , and $\left|M_{i}\left(u_{2}, u_{3}\right)\right|=2$ for each $a+2 \leq i \leq C$.
(2) If (B) holds, then $\left|M_{i}\left(u_{2}, u_{3}\right)\right|=2$ or 3 for each $a+1 \leq i \leq C$, and the number of those indices i with $a+1 \leq i \leq C$ for which $\left|M_{i}\left(u_{2}, u_{3}\right)\right|=3$ is at most one.

Claim 3. If $C \geq a+3$, then
$\left|M_{i-1}\left(u_{1}\right) \cup M_{i}\left(u_{1}\right) \cup M_{i+1}\left(u_{1}\right)\right| \leq 7 \quad$ for each $a+2 \leq i \leq C-1$.
Proof. \quad Since Claim 1 implies that $\left|M_{i}\left(u_{1}\right)\right| \leq 3$ for each $a+1 \leq i \leq C$, and that the number of indices i with $a+1 \leq i \leq C$ such that $\left|M_{i}\left(u_{1}\right)\right|=3$ is at most one, the desired inequality follows immediately.

Claim 4. If $C \geq a+3$, then
$\left|M_{i-1}\left(u_{2}, u_{3}\right) \cup M_{i}\left(u_{2}, u_{3}\right) \cup M_{i+1}\left(u_{2}, u_{3}\right)\right| \leq 7 \quad$ for each $a+2 \leq i \leq C-1$.
Proof. \quad Since Claim 2 implies that $\left|M_{i}\left(u_{2}, u_{3}\right)\right| \leq 3$ for each $a+1 \leq i \leq C$, and that the number of indices i with $a+1 \leq i \leq C$ such that $\left|M_{i}\left(u_{2}, u_{3}\right)\right|=3$ is at most one, the desired inequality follows immediately.

Claim 5. Suppose that $C \geq a+3$, and let $a+2 \leq i \leq C-1$.
(1) For any $x, x^{\prime} \in M_{i}\left(u_{1}\right), \quad d\left(x, x^{\prime}\right) \leq 2$.
(2) For any $y, y^{\prime} \in M_{i}\left(u_{2}, u_{3}\right), \quad d\left(y, y^{\prime}\right) \leq 2$.

Proof. Take $x, x^{\prime} \in M_{i}\left(u_{1}\right)$. If $x=x^{\prime}$ or $x x^{\prime} \in E(G)$, then we clearly have $d\left(x, x^{\prime}\right) \leq 2$. Thus assume $x \neq x^{\prime}$ and $x x^{\prime} \notin E(G)$. Then

$$
N(x) \cup N\left(x^{\prime}\right) \subset M_{i-1}\left(u_{1}\right) \cup M_{i}\left(u_{1}\right) \cup M_{i+1}\left(u_{1}\right)-\left\{x, x^{\prime}\right\}
$$

Since $\left|M_{i-1}\left(u_{1}\right) \cup M_{i}\left(u_{1}\right) \cup M_{i+1}\left(u_{1}\right)\right| \leq 7$ by Claim 3 , this implies

$$
\left|N(x) \cup N\left(x^{\prime}\right)\right| \leq\left|M_{i-1}\left(u_{1}\right) \cup M_{i}\left(u_{1}\right) \cup M_{i+1}\left(u_{1}\right)-\left\{x, x^{\prime}\right\}\right| \leq 7-2=5
$$

On the other hand, since G is 3-connected, $|N(x)| \geq 3$ and $\left|N\left(x^{\prime}\right)\right| \geq 3$. Consequently, $N(x) \cap N\left(x^{\prime}\right) \neq \emptyset$, and hence $d\left(x, x^{\prime}\right) \leq 2$. We can prove (2) in exactly the same way by using Claim 4 in place of Claim 3.

Claim 6. Suppose that $C \geq a+3$.
(1) For any $x, x^{\prime} \in M_{C}\left(u_{1}\right), \quad d\left(x, x^{\prime}\right) \leq 4$.
(2) For any $y, y^{\prime} \in M_{C}\left(u_{2}, u_{3}\right), \quad d\left(y, y^{\prime}\right) \leq 4$.

Proof. Take $x, x^{\prime} \in M_{C}\left(u_{1}\right)$. Then there exist $x_{1}, x_{1}^{\prime} \in M_{C-1}\left(u_{1}\right)$ with $x x_{1}, x^{\prime} x_{1}^{\prime} \in E(G)$. By Claim 5, $d\left(x_{1}, x_{1}^{\prime}\right) \leq 2$. We get $d\left(x, x^{\prime}\right) \leq d\left(x, x_{1}\right)+$ $d\left(x_{1}, x_{1}^{\prime}\right)+d\left(x_{1}^{\prime}, x^{\prime}\right) \leq 1+2+1=4$. Thus (1) is proved, and (2) can be proved in exactly the same way.

Claim 7.

(1) If $C \leq a+2$, then there exists $u \in X_{a}$ such that $d\left(u, u^{\prime}\right) \leq 6$ for every $u^{\prime} \in X_{a}$.
(2) If $C \geq a+3$, then there exists $w \in X_{C}$ such that $d\left(w, w^{\prime}\right) \leq 6$ for every $w^{\prime} \in X_{C}$.

Proof. By the definition of C, there exist $w_{1} \in M_{C}\left(u_{1}\right)$ and $w_{2} \in M_{C}\left(u_{2}, u_{3}\right)$ such that $d\left(w_{1}, w_{2}\right) \leq 2$.
(1) Since $w_{2} \in M_{C}\left(u_{2}, u_{3}\right)$, there is $u_{j} \in X_{a}, u_{j} \neq u_{1}$, such that $d\left(w_{2}, u_{j}\right)=$ $C-a$. Then $d\left(u_{1}, w_{1}\right)=d\left(w_{2}, u_{j}\right)=C-a \leq 2$, and hence

$$
d\left(u_{1}, u_{j}\right) \leq d\left(u_{1}, w_{1}\right)+d\left(w_{1}, w_{2}\right)+d\left(w_{2}, u_{j}\right) \leq 2+2+2=6 .
$$

Now take $u_{k} \in X_{a}$ so that $u_{k} \neq u_{1}$ and $u_{k} \neq u_{j}$. Since $C=\max C_{i}, C_{k} \leq$ $C=a+2$. Thus arguing as above, we see that there exists $u_{l} \in X_{a}$ with $d\left(u_{k}, u_{l}\right) \leq 6$. Since $\left|X_{a}\right|=3, u_{l}$ is either u_{1} or u_{j}. Set $u=u_{l}$. Then this u satisfies the desired condition.
(2) Set $w=w_{1} \in M_{C}\left(u_{1}\right) \subset X_{C}$. Let $w^{\prime} \in X_{C}$. We show that $d\left(w, w^{\prime}\right) \leq 6$. If $w^{\prime} \in M_{C}\left(u_{1}\right)$, then Claim 6 implies that $d\left(w, w^{\prime}\right) \leq 4 \leq 6$. Thus we may assume $w^{\prime} \in M_{C}\left(u_{2}, u_{3}\right)$. Let w_{2} be as in the definition of C. Then $d\left(w, w_{2}\right)=d\left(w_{1}, w_{2}\right) \leq 2$ by the definition of w_{1} and w_{2}. Since $w_{2}, w^{\prime} \in$ $M_{C}\left(u_{2}, u_{3}\right)$, we also get $d\left(w_{2}, w^{\prime}\right) \leq 4$ from Claim 6. Consequently, $d\left(w, w^{\prime}\right) \leq$ $d\left(w, w_{2}\right)+d\left(w_{2}, w^{\prime}\right) \leq 2+4=6$, as desired.

For convenience, we restate Claim 7 in the following form:

Claim 8. For some $m(a \leq m<b)$ and some $v \in X_{m}, d\left(v, v^{\prime}\right) \leq 6$ for every $v^{\prime} \in X_{m}$.

Proof of Lemma 3.1. Let m and v be as in Claim 8. Observe that $7 \leq a \leq$ $m<b \leq r-6$.

- Case 1. $\quad r-m \leq m$.

Let z^{\prime} be a vertex in X_{r-m} which is on a shortest $z-v$ path. Then $d\left(z^{\prime}, z\right)=r-m$ and $d\left(z^{\prime}, v\right)=m-(r-m)=2 m-r$. Take $x \in V(G)$, and let $x \in X_{k}$. First assume that $0 \leq k<m$. Then

$$
d\left(z^{\prime}, x\right) \leq d\left(z^{\prime}, z\right)+d(z, x)=r-m+k<r-m+m=r .
$$

Next assume that $m \leq k \leq r$. Let v^{\prime} be a vertex in X_{m} which is on a shortest $z-x$ path. Then $d\left(v^{\prime}, x\right)=k-m \leq r-m$. Since $d\left(v, v^{\prime}\right) \leq 6$ by Claim 8 , we get

$$
d\left(z^{\prime}, x\right) \leq d\left(z^{\prime}, v\right)+d\left(v, v^{\prime}\right)+d\left(v^{\prime}, x\right) \leq m+6<r .
$$

Thus in either case, $d\left(z^{\prime}, x\right)<r$. Since x was arbitrary, this contradicts the fact that r is the radius of G.

- Case 2. $\quad r-m>m$.

In this case, $2 m<r$. Let $z^{\prime}=v \in X_{m}$. Then $d\left(z^{\prime}, z\right)=m$. Take $x \in V(G)$, and let $x \in X_{k}$. First assume that $0 \leq k<m$. Then

$$
d\left(z^{\prime}, x\right) \leq d\left(z^{\prime}, z\right)+d(z, x)=m+k<2 m<r .
$$

Next assume that $m \leq k \leq r$. Let v^{\prime} be a vertex in X_{m} which is on a shortest $z-x$ path. Then $d\left(v^{\prime}, x\right)=k-m$. Since $d\left(z^{\prime}, v^{\prime}\right)=d\left(v, v^{\prime}\right) \leq 6$ by Claim 8 , we get

$$
d\left(z^{\prime}, x\right) \leq d\left(z^{\prime}, v^{\prime}\right)+d\left(v^{\prime}, x\right) \leq 6+(k-m) \leq r+(6-m)<r .
$$

Thus in either case, $d\left(z^{\prime}, x\right)<r$. Since x was arbitrary, this contradicts the fact that r is the radius of G.

This completes the proof of Lemma 3.1.

Lemma 3.4. Suppose that $r \geq 14$. Then $\sum_{i=7}^{r-6}\left|X_{i}\right| \geq 4(r-12)-2$.
Proof. Let $I:=\left\{i|7 \leq i \leq r-6, \quad| X_{i} \mid=3\right\}$. We may assume $|I| \geq 3$. Let $I=\left\{i_{1}, i_{2}, \cdots, i_{|I|}\right\}$ with $i_{1}<i_{2}<\cdots<i_{|I|}$. From I we define a new sequence $j_{1}<j_{2}<\cdots<j_{s}$ inductively as follows. Set $j_{1}=i_{1}$. For $l \geq 2$, set $j_{l}=\min \left\{i \mid i \in I, \quad i \geq j_{l-1}+2\right\}$ (if $\left\{i \mid i \in I, \quad i \geq j_{l-1}+2\right\}=\emptyset$, then we set $s=l-1$ and terminate this procedure). We have $j_{s}=j_{|I|}$ or $j_{|I|-1}$ by the definition.

By Lemma 3.1, $\sum_{i=j_{h-1}}^{j_{h}-1}\left|X_{i}\right| \geq 4\left(j_{h}-j_{h-1}\right)$ for all $2 \leq h \leq s$. Taking the sum of these inequalities, we get

$$
\sum_{i=j_{1}}^{j_{s}-1}\left|X_{i}\right|=\sum_{h=2}^{s} \sum_{i=j_{h-1}}^{j_{h}-1}\left|X_{i}\right| \geq 4\left(j_{s}-j_{1}\right)
$$

Consequently,

$$
\begin{aligned}
\sum_{i=7}^{r-6}\left|X_{i}\right| & =\sum_{i=7}^{j_{1}-1}\left|X_{i}\right|+\sum_{i=j_{1}}^{j_{s}-1}\left|X_{i}\right|+\sum_{i=j_{s}}^{r-6}\left|X_{i}\right| \\
& \geq 4\left(j_{1}-7\right)+4\left(j_{s}-j_{1}\right)+4\left(r-5-j_{s}\right)-2=4(r-12)-2
\end{aligned}
$$

This completes the proof of Lemma 3.4.

We are now in a position to complete the proof of the Theorem. If $r \leq 13$, the conclusion follows from Lemma 2.2. Thus we may assume $r \geq 14$. We clearly have $\left|X_{0}\right|=1$ and $\left|X_{r}\right| \geq 1$ and, by Lemma $2.1,\left|X_{i}\right| \geq 3$ for all $1 \leq i \leq 6$ and all $r-5 \leq i \leq r-1$. From Lemma 3.4, $\sum_{i=7}^{r-6}\left|X_{i}\right| \geq 4(r-12)-2$. Adding all $\left|X_{i}\right|$, we obtain

$$
n=\sum_{i=0}^{r}\left|X_{i}\right| \geq 1+3 \times 6+\{4(r-12)-2\}+3 \times 5+1=4 r-15
$$

This completes the proof of the Theorem.

$\S 4$. Remarks

Considering more carefully, we see that
(1) this proof can be extended to $a=6$,
(2) it never happens that $\left|X_{i}\right|=3$ for all $1 \leq i \leq 5$,
(3) it never happens that $\left|X_{i}\right|=3$ for all $r-5 \leq i \leq r-1$.

Thus the inequality can be improved to $r \leq \frac{n+12}{4}$. On the other hand, as is constructed in [1], for each $n \geq 8$ with $n \equiv 0(\bmod 4)$, there exists a 3 -connected graph of order n having radius $\frac{n+4}{4}$.

Acknowledgment. I wish to thank Professor Yoshimi Egawa for his precious help. I also thank my wife Ayumi for her support.

References

[1] J. Harant and H. Walther, On the rdius of graph, J. Comb. Theory Ser. B 30 (1981), 113-117.

Katsumi INOUE
Department of Applied Mathematics, Science University of Tokyo 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162 Japan

