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RADIUS OF 3-CONNECTED GRAPHS
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Abstract. We show that if G is a 3-connected graph with radius r, then
r ≤ |V (G)|+15

4
.
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§1. Introduction

By a graph, we mean a finite, undirected, simple graph without loops or
multiple edges. Let G be a graph. Let V (G) and E(G) denote the vertex set
and the edge set of G, respectively. For v, w ∈ V (G), let d(v, w) denote the
usual distance between v and w. Set

r(G) := min
v∈V (G)

max
w∈V (G)

d(v, w).

The number r(G) is called the radius of G. A vertex z ∈ V (G) is called a
central vertex of G if maxw∈V (G) d(z, w) = r(G).

In [1], Harant and Walther proved that the inequality r < n
4 + O(log n)

holds for a 3-connected graph with radius r containing precisely n vertices,
where O denotes the order as n tends to infinity. The purpose of this paper is
to prove the following theorem.

Theorem. Let G be a 3-connected graph with radius r containing precisely
n vertices. Then the following inequality holds:

r ≤ n + 15
4

.
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§2. Preliminary Results

Throughout the rest of the paper, we let G, n, r be as in the Theorem. For a
vertex v ∈ V (G) and a nonnegative integer i, let

Ni(v) := {w|w ∈ V (G), d(v, w) = i}.

We write N(v) for N1(v). Fix a central vertex z, and let

Xi := Ni(z) for 0 ≤ i ≤ r.

Note that for each i with 1 ≤ i ≤ r − 1 and each x ∈ Xi, N(x) ⊂ Xi−1 ∪Xi ∪
Xi+1.

Lemma 2.1. |Xi| ≥ 3 for all i with 1 ≤ i ≤ r − 1.

Proof. Since G − Xi is disconnected, the desired conclusion immediately
follows from the 3-connectedness of G. 2

Lemma 2.2. n ≥ 3r − 1.

Proof. By Lemma 2.1, n =
r∑

i=0

|Xi| ≥ 1 + 3(r − 1) + 1 = 3r − 1. 2

Let i, j be integers with 0 ≤ i, j ≤ r. For v, w ∈ Xi, we let

Mj(v) := N|j−i|(v) ∩ Xj and Mj(v, w) := Mj(v) ∪ Mj(w).

Lemma 2.3. Let 1 ≤ a < i ≤ r. Suppose that |Xa| = 3, and write Xa =
{u1, u2, u3}. Let j ∈ {1, 2, 3}. Write {1, 2, 3} = {j, k, l} and suppose that
for each h (a ≤ h < i), d(w1, w2) ≥ 3 for any w1 ∈ Mh(uj) and any w2 ∈
Mh(uk, ul). Then the following hold.

(1) (a) |Mi(uj)| ≥ 1. (b) If i ≥ a + 2, |Mi(uj)| ≥ 2.
(2) |Mi(uk, ul)| ≥ 2.

Proof. From the assumptions of the lemma, it follows that G − ({uk, ul} ∪
Mi(uj)) is disconnected, and hence (1)(a) follows from the assumption that
G is 3-connected. Similarly, G − ({uj} ∪ Mi(uk, ul)) is disconnected, and, in
the case where i ≥ a + 2, G− ({uj} ∪Mi(uj)) is also disconnected, and hence
(1)(b) and (2) also follow from the 3-connectedness of G. 2
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§3. Proof of the Theorem

We continue with the notation of the preceding section. The bulk of the proof
of the Theorem is devoted to the verification of the following lemma, which
roughly says that the average of the |Xi| is only slightly less than four, if it is
less than four:

Lemma 3.1. Let a, b be integers with a ≥ 7, a+2 ≤ b ≤ r−6, and suppose
that |Xa| = |Xb| = 3 and |Xi| > 3 for all i with a + 1 < i < b. Then

b−1∑
i=a

|Xi| ≥ 4(b − a).

To prove the lemma, suppose, by way of contradiction, that
∑b−1

i=a |Xi| <
4(b − a). Then one of the following two situations must occur:
(A) |Xi| = 4 for all a < i < b ; or
(B) |Xa+1| = 3, and |Xi| = 4 or 5 for each a + 1 < i < b, and the number of
those indices i with a + 1 < i < b for which |Xi| = 5 is at most one.

We define an integer C as follows. Fix j ∈ {1, 2, 3} for the moment and
write {j, k, l} = {1, 2, 3}. Set

Qj :=

{
i

∣∣∣∣a ≤ i < b,
there exists w1 ∈ Mi(uj) and there exists
w2 ∈ Mi(uk, ul) such that d(w1, w2) ≤ 2

}
.

If Qj = ∅, then |Xb| = |Mb(uj)| + |Mb(uk, ul)| ≥ 2 + 2 = 4 by Lemma 2.3,
which contradicts the assumption that |Xb| = 3. Thus Qj is not an empty set.

Having this in mind, we define Cj = min Qj for each j ∈ {1, 2, 3}, and let

C = max{C1, C2, C3}.

We now relabel u1, u2, u3 so that C = max{C1, C2, C3} = C1.

The following remarks immediately follow from the definition of C.

Remark 3.2. For each i with a ≤ i ≤ C, we have Xi−Mi(u1) = Mi(u2, u3).

Remark 3.3. For each i with a+1 ≤ i ≤ C−1, we have N(x) ⊂ Mi−1(u1)∪
Mi(u1)∪Mi+1(u1) for any x ∈ Mi(u1), and N(y) ⊂ Mi−1(u2, u3)∪Mi(u2, u3)∪
Mi+1(u2, u3) for any y ∈ Mi(u2, u3).

The following two claims also immediately follow from Lemma 2.3.
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Claim 1. Suppose that C ≥ a + 1.
(1) If (A) holds, then |Ma+1(u1)| = 1 or 2, and |Mi(u1)| = 2 for each a + 2 ≤
i ≤ C.
(2) If (B) holds, then |Ma+1(u1)| = 1, |Mi(u1)| = 2 or 3 for each a+2 ≤ i ≤ C,
and the number of those indices i with a + 2 ≤ i ≤ C for which |Mi(u1)| = 3
is at most one.

Claim 2. Suppose that C ≥ a + 1.
(1) If (A) holds, then |Ma+1(u2, u3)| = 2 or 3, and |Mi(u2, u3)| = 2 for each
a + 2 ≤ i ≤ C.
(2) If (B) holds, then |Mi(u2, u3)| = 2 or 3 for each a + 1 ≤ i ≤ C, and the
number of those indices i with a + 1 ≤ i ≤ C for which |Mi(u2, u3)| = 3 is at
most one.

Claim 3. If C ≥ a + 3, then
|Mi−1(u1) ∪ Mi(u1) ∪ Mi+1(u1)| ≤ 7 for each a + 2 ≤ i ≤ C − 1.

Proof. Since Claim 1 implies that |Mi(u1)| ≤ 3 for each a + 1 ≤ i ≤ C, and
that the number of indices i with a + 1 ≤ i ≤ C such that |Mi(u1)| = 3 is at
most one, the desired inequality follows immediately. 2

Claim 4. If C ≥ a + 3, then
|Mi−1(u2, u3) ∪ Mi(u2, u3) ∪ Mi+1(u2, u3)| ≤ 7 for each a + 2 ≤ i ≤ C − 1.

Proof. Since Claim 2 implies that |Mi(u2, u3)| ≤ 3 for each a + 1 ≤ i ≤ C,
and that the number of indices i with a+1 ≤ i ≤ C such that |Mi(u2, u3)| = 3
is at most one, the desired inequality follows immediately. 2

Claim 5. Suppose that C ≥ a + 3, and let a + 2 ≤ i ≤ C − 1.
(1) For any x, x′ ∈ Mi(u1), d(x, x′) ≤ 2.
(2) For any y, y′ ∈ Mi(u2, u3), d(y, y′) ≤ 2.

Proof. Take x, x′ ∈ Mi(u1). If x = x′ or xx′ ∈ E(G), then we clearly have
d(x, x′) ≤ 2. Thus assume x 6= x′ and xx′ /∈ E(G). Then

N(x) ∪ N(x′) ⊂ Mi−1(u1) ∪ Mi(u1) ∪ Mi+1(u1) − {x, x′}.

Since |Mi−1(u1) ∪ Mi(u1) ∪ Mi+1(u1)| ≤ 7 by Claim 3, this implies

|N(x) ∪ N(x′)| ≤ |Mi−1(u1) ∪ Mi(u1) ∪ Mi+1(u1) − {x, x′}| ≤ 7 − 2 = 5.

On the other hand, since G is 3-connected, |N(x)| ≥ 3 and |N(x′)| ≥ 3.
Consequently, N(x) ∩ N(x′) 6= ∅, and hence d(x, x′) ≤ 2. We can prove (2) in
exactly the same way by using Claim 4 in place of Claim 3. 2
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Claim 6. Suppose that C ≥ a + 3.
(1) For any x, x′ ∈ MC(u1), d(x, x′) ≤ 4.
(2) For any y, y′ ∈ MC(u2, u3), d(y, y′) ≤ 4.

Proof. Take x, x′ ∈ MC(u1). Then there exist x1, x
′
1 ∈ MC−1(u1) with

xx1, x
′x′

1 ∈ E(G). By Claim 5, d(x1, x
′
1) ≤ 2. We get d(x, x′) ≤ d(x, x1) +

d(x1, x
′
1)+d(x′

1, x
′) ≤ 1+2+1 = 4. Thus (1) is proved, and (2) can be proved

in exactly the same way. 2

Claim 7.
(1) If C ≤ a + 2, then there exists u ∈ Xa such that d(u, u′) ≤ 6 for every
u′ ∈ Xa.
(2) If C ≥ a + 3, then there exists w ∈ XC such that d(w,w′) ≤ 6 for every
w′ ∈ XC .

Proof. By the definition of C, there exist w1 ∈ MC(u1) and w2 ∈ MC(u2, u3)
such that d(w1, w2) ≤ 2.

(1) Since w2 ∈ MC(u2, u3), there is uj ∈ Xa, uj 6= u1, such that d(w2, uj) =
C − a. Then d(u1, w1) = d(w2, uj) = C − a ≤ 2, and hence

d(u1, uj) ≤ d(u1, w1) + d(w1, w2) + d(w2, uj) ≤ 2 + 2 + 2 = 6.

Now take uk ∈ Xa so that uk 6= u1 and uk 6= uj . Since C = max Ci, Ck ≤
C = a + 2. Thus arguing as above, we see that there exists ul ∈ Xa with
d(uk, ul) ≤ 6. Since |Xa| = 3, ul is either u1 or uj . Set u = ul. Then this u
satisfies the desired condition.

(2) Set w = w1 ∈ MC(u1) ⊂ XC . Let w′ ∈ XC . We show that d(w,w′) ≤ 6.
If w′ ∈ MC(u1), then Claim 6 implies that d(w,w′) ≤ 4 ≤ 6 . Thus we
may assume w′ ∈ MC(u2, u3). Let w2 be as in the definition of C. Then
d(w,w2) = d(w1, w2) ≤ 2 by the definition of w1 and w2. Since w2, w

′ ∈
MC(u2, u3), we also get d(w2, w

′) ≤ 4 from Claim 6. Consequently, d(w,w′) ≤
d(w,w2) + d(w2, w

′) ≤ 2 + 4 = 6, as desired. 2

For convenience, we restate Claim 7 in the following form:

Claim 8. For some m (a ≤ m < b) and some v ∈ Xm, d(v, v′) ≤ 6 for every
v′ ∈ Xm.

Proof of Lemma 3.1. Let m and v be as in Claim 8. Observe that 7 ≤ a ≤
m < b ≤ r − 6.



88 K. INOUE

• Case 1. r − m ≤ m.
Let z′ be a vertex in Xr−m which is on a shortest z − v path. Then
d(z′, z) = r − m and d(z′, v) = m − (r − m) = 2m − r. Take x ∈ V (G),
and let x ∈ Xk. First assume that 0 ≤ k < m. Then

d(z′, x) ≤ d(z′, z) + d(z, x) = r − m + k < r − m + m = r.

Next assume that m ≤ k ≤ r. Let v′ be a vertex in Xm which is on a
shortest z − x path. Then d(v′, x) = k − m ≤ r − m. Since d(v, v′) ≤ 6
by Claim 8, we get

d(z′, x) ≤ d(z′, v) + d(v, v′) + d(v′, x) ≤ m + 6 < r.

Thus in either case, d(z′, x) < r. Since x was arbitrary, this contradicts
the fact that r is the radius of G.

• Case 2. r − m > m.
In this case, 2m < r. Let z′ = v ∈ Xm. Then d(z′, z) = m. Take
x ∈ V (G), and let x ∈ Xk. First assume that 0 ≤ k < m. Then

d(z′, x) ≤ d(z′, z) + d(z, x) = m + k < 2m < r.

Next assume that m ≤ k ≤ r. Let v′ be a vertex in Xm which is on a
shortest z−x path. Then d(v′, x) = k−m. Since d(z′, v′) = d(v, v′) ≤ 6
by Claim 8, we get

d(z′, x) ≤ d(z′, v′) + d(v′, x) ≤ 6 + (k − m) ≤ r + (6 − m) < r.

Thus in either case, d(z′, x) < r. Since x was arbitrary, this contradicts
the fact that r is the radius of G.

This completes the proof of Lemma 3.1. 2

Lemma 3.4. Suppose that r ≥ 14. Then
r−6∑
i=7

|Xi| ≥ 4(r − 12) − 2.

Proof. Let I := { i |7 ≤ i ≤ r − 6, |Xi| = 3} . We may assume |I| ≥ 3.
Let I = {i1, i2, · · · , i|I|} with i1 < i2 < · · · < i|I|. From I we define a new
sequence j1 < j2 < · · · < js inductively as follows. Set j1 = i1. For l ≥ 2, set
jl = min{i|i ∈ I, i ≥ jl−1 + 2} (if {i|i ∈ I, i ≥ jl−1 + 2} = ∅, then we set
s = l − 1 and terminate this procedure). We have js = j|I| or j|I|−1 by the
definition.
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By Lemma 3.1,
∑jh−1

i=jh−1
|Xi| ≥ 4(jh − jh−1) for all 2 ≤ h ≤ s. Taking the

sum of these inequalities, we get

js−1∑
i=j1

|Xi| =
s∑

h=2

jh−1∑
i=jh−1

|Xi| ≥ 4(js − j1).

Consequently,

r−6∑
i=7

|Xi| =
j1−1∑
i=7

|Xi| +
js−1∑
i=j1

|Xi| +
r−6∑
i=js

|Xi|

≥ 4(j1 − 7) + 4(js − j1) + 4(r − 5 − js) − 2 = 4(r − 12) − 2.

This completes the proof of Lemma 3.4. 2

We are now in a position to complete the proof of the Theorem. If r ≤ 13,
the conclusion follows from Lemma 2.2. Thus we may assume r ≥ 14. We
clearly have |X0| = 1 and |Xr| ≥ 1 and, by Lemma 2.1, |Xi| ≥ 3 for all
1 ≤ i ≤ 6 and all r−5 ≤ i ≤ r−1. From Lemma 3.4,

∑r−6
i=7 |Xi| ≥ 4(r−12)−2.

Adding all |Xi|, we obtain

n =
r∑

i=0

|Xi| ≥ 1 + 3 × 6 + {4(r − 12) − 2} + 3 × 5 + 1 = 4r − 15.

This completes the proof of the Theorem. 2

§4. Remarks

Considering more carefully, we see that
(1) this proof can be extended to a = 6,
(2) it never happens that |Xi| = 3 for all 1 ≤ i ≤ 5,
(3) it never happens that |Xi| = 3 for all r − 5 ≤ i ≤ r − 1.
Thus the inequality can be improved to r ≤ n+12

4 . On the other hand, as
is constructed in [1], for each n ≥ 8 with n ≡ 0 ( mod 4), there exists a
3-connected graph of order n having radius n+4

4 .
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