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Abstract. Let k be a field of characteristic 0, V an n-dimensional non-singular
algebraic variety over k, K the function field of V and Ω1

K/k the module of

differentials of K over k. A closed differential ω ∈ Ω1
K/k is called residue free if

resW (ω) = 0 for any prime divisor W of V and a differential ω is called second
kind if for any prime divisor W , there exists an element θW ∈ K such that
νW (ω − dθW ) ≥ 0, where νW is the canonical valuation with respect to W . In
this paper, we prove the following theorem: Let ω be a closed element of Ω1

K/k.
Then ω is residue free if and only if ω is of second kind.
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§1. Introduction, notations and basic definitions.

Throughout this paper, k denotes a field of characteristic 0. Let V be an n-
dimensional non-singular algebraic variety over k, where the word ”algebraic
variety over k” means an integral separated scheme (V,OV ) of finite type over
k, and the word ”non-singular” means the stalk OV,P at each point P of V is
a regular local ring. We denote the function field of V by K. Let Ω1

K/k be the
module of differentials of K over k and let d : K −→ Ω1

K/k be the universal
derivation.

Let W be a prime divisor of V . Let U = Spec(A) be an open affine subset
of V such that U ∩ W 6= φ. Then there exists a prime ideal ℘ of A such that
U ∩ W = V (℘) := {℘∗ ∈ Spec(A)|℘∗ ⊇ ℘}. For this prime ideal ℘, we have
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that A℘ is a discrete valuation ring and ℘A℘ = (t1) for some element t1 of A℘.
We denote the valuation of A℘ by ν℘.

Set D℘ = Q(A/℘) = A℘/℘A℘. Then there exist t2, · · · , tn ∈ A℘ such that
t̄2, · · · , t̄n ∈ D℘ form a transcendental basis of D℘ over k, where t̄i denotes the
canonical image of ti in D℘. The differential module Ω1

A℘/k of A℘/k and the
differential module Ω1

K/k of K/k are given by the following equalities (see [3]):
Ω1

A℘/k = A℘dt1 ⊕ A℘dt2 ⊕ · · · ⊕ A℘dtn,

Ω1
K/k = Kdt1 ⊕ Kdt2 ⊕ · · · ⊕ Kdtn.

(1.1)

For a differential

ω = f1dt1 + f2dt2 + · · · + fndtn,

where fi ∈ K, we define dω as an element of Ω1
K/k ∧ Ω1

K/k ( over K ) in the
following:

dω = df1 ∧ dt1 + df2 ∧ dt2 + · · · + dfn ∧ dtn (see [3]).

Definition 1.1. A differential ω is called closed if dω = 0.

Let Â℘ be the ℘A℘-adic completion of A℘. By the structure theorem of
complete local rings, there exists a unique coefficient field C of Â℘ such that

(1) k(t2, · · · , tn) ⊂ C ⊂ Â℘,
(2) C ' D℘, (obtained from the natural surjection Â℘ −→ D℘)
(3) Â℘ = C[[t1]].
Extending the natural injection A℘ −→ Â℘ to a ring homomorphism K =

Q(A℘) −→ Q(Â℘), we get an injection ∗ : K −→ D℘((t1)) from the isomor-
phism C ' D℘. By f∗, we denote the image of f ∈ K by the injection ∗.

For a differential ω = f1dt1 + f2dt2 + · · · + fndtn, we set

f∗
1 = α−mt−m

1 + α−m+1t
−m+1
1 + · · · + α−1t

−1
1 + α0 + α1t1 + α2t

2
1 + · · · ,

where αj ∈ D℘.

Then we may define the residue of ω, resW ;t1,t2,···,tn(ω), with respect to W and
t1, t2, · · · , tn by

resW ;t1,t2,···,tn(ω) = α−1 ∈ D℘.

F. Elzein [1, Theorem 1] proved that if ω is closed, then this value α−1 depends
only on W and not depends on an affine open U such that U ∩W 6= φ, nor on
a coefficient field C of Â℘. This results lead us to the following.



RESIDUE FREE DIFFERENTIALS 61

Definition 1.2. For a closed differential ω, the residue of ω at W , resW (ω),
is defined by

resW (ω) = α−1.

Definition 1.3. A closed differential ω is called residue free if resW (ω) = 0
for any prime divisor W of V .

Let ω =
n∑

i=0

fidti, and let each f∗
i be expressed as follows:

f∗
i =

∑
j

αi,jt
j
1,

where the number of the terms of negative powers is finite. Then the following
equality holds:

ν℘(fi) = min{j|αi,j 6= 0}.

Since ν℘(fi) is independent from the choice of t1, . . . , tn, we define

ν℘(ω) = min
i

ν℘(fi).

Definition 1.4. A differential in Ω1
K/k is called of the second kind if, for

any prime divisor W , there exists an element θW of K such that

ν℘(ω − dθW ) ≥ 0

(cf. M. Rosenlicht [4]).

The purpose of this paper is to prove the following theorem:

Theorem 1.5. Let ω be a closed element of Ω1
K/k. Then ω is residue free if

and only if ω is of second kind.

This theorem is well known in the case of one variable. Our result above is
a first step for the several variables case.

§2. Preliminaries.

For the proof of Theorem, we prepare some lemmas in this section.
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Lemma 2.1. If a differential ω = f ′
1dt1 + f ′

2dt2 + · · · + f ′
ndtn is closed and

ν℘(ω) < 0, then we have

ν℘(f ′
1) < ν℘(f ′

2), ν℘(f ′
3), · · · , ν℘(f ′

n).

Proof. Setting ν = −ν℘(ω) > 0 and fi = f ′
it

ν
1 (∈ A℘) for each i, we have

that ω = f1t
−ν
1 dt1 + f2t

−ν
1 dt2 + · · · + fnt−ν

1 dtn.
From the defintion of dω, we get

dω = d(f1t
−ν
1 ) ∧ dt1 + d(f2t

−ν
1 ) ∧ dt2 + · · · + d(fnt−ν

1 ) ∧ dtn(2.1)
= t−ν

1 df1 ∧ dt1 + (t−ν
1 df2 ∧ dt2) + (−ν)f2t

−ν−1
1 dt1 ∧ dt2

+(t−ν
1 df3 ∧ dt3 + (−ν)f3t

−ν−1
1 dt1 ∧ dt3) + · · ·

+(t−ν
1 dfn ∧ dtn + (−ν)fnt−ν−1

1 dt1 ∧ dtn).

By the equality (1.1), we can represent dfi’s as follows:

dfi = gi,1dt1 + gi,2dt2 + · · · + gi,ndtn for each i.(2.2)

From (2.1) and (2.2), we have

dω =
∑
i<j

(−gi,j + gj.i)t−ν
1 dti ∧ dtj +

n∑
j=2

(−ν)t−ν−1
1 fjdt1 ∧ dtj .

Since ω is closed, we get that dω = 0 and

t1(−g1,j + gj.1) + (−ν)fj = 0 for 1 < j.

Since −g1,j + gj,1 belongs to A℘, we obtain the following inequality:

ν℘(fjt
−ν
1 ) ≥ −ν + 1 for j ≥ 2.

So we get ν℘(f ′
i) = ν℘(fit

−ν
1 ) ≥ −ν + 1 for each j ≥ 2.

Since −ν = mini ν℘(f ′
i), it follows that ν℘(f ′

1) = −ν. 2

Lemma 2.2. Let f be an element of K. Assume that df is represented as
df = gdt1 + g2dt2 + · · · + gndtn, where g, gj ∈ K (j ≥ 2). Then we have

g∗ =
d

dt1
f∗,

where the right hand side is the formal differentiation of the power series f∗

by t1.
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Proof. Let ψ : Â℘ → Â℘/℘Â℘ ' D℘ be the natural surjection.
For F =

∑
i

ait
i
1 ∈ D℘((t1)), we define

DF =
∑

i

aiit
i−1
1 ∈ D℘((t1)).

Then D(=
d

dt1
) is a D℘-derivation of D℘((t1)) into itself.

Since the field extension K/k(t1, t2, · · · , tn) is separable, there exists an
irreducible polynomial H(X) =

∑
i

qiX
i (qi ∈ k(t1, t2, · · · , tn)) such that

H ′(f) 6= 0 and H(f) = 0.
Here, by multiplying a suitable polynomial, we may assume that each co-

efficient belongs to k[t1, · · · , tn], i.e.,

qi ∈ k[t1, · · · , tn] for all i.

Since qi ∈ k(t2, · · · , tn)[t1], we can identify q∗i with qi, in other words, q∗i = qi.
Putting F = f∗, we obtain that H(F ) = {H(f)}∗ = 0.

Let D operate on both sides of H(F ) = 0. Then we have∑
i

(Dqi)F i +
∑

i

qiiF
i−1DF = 0.

Since ∑
i

qiiF
i−1 = H ′(F ), H ′(F ) 6= 0,

we have

DF = − 1
H ′(F )

∑
i

(Dqi)F i.(2.3)

Operating d on both sides of H(f) = 0, we obtain∑
i

(dqi)f i +
∑

i

qiif
i−1df = 0,

from which we have

df = − 1
H ′(f)

∑
i

(dqi)f i.(2.4)

We compute the right hand side of this equality. Put

qi (= q∗i ) =
∑

aei1ei2···eintei1
1 tei2

2 · · · tein
n .
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Then we find
dqi =

∑
{aei1ei2···einei1t

ei1−1
1 tei2

2 · · · tein
n dt1

+ aei1ei2···einei2t
ei1
1 tei2−1

2 · · · tein
n dt2

+ · · · + aei1ei2···eineintei1
1 tei2

2 · · · tein−1
n dtn},

Dqi =
∑

aei1ei2···einei1t
ei1−1
1 tei2

2 · · · tein
n .

(2.5)

From (2.3) and (2.5), we have

DF = − 1
H ′(F )

∑
i

(aei1ei2···einei1t
ei1−1
1 tei2

2 · · · tein
n )F i.

From (2.3) and (2.4), we obtain

df = − 1
H ′(F )

{
∑

i

(aei1ei2···einei1t
ei1−1
1 tei2

2 · · · tein
n )f i}dt1(2.6)

− 1
H ′(F )

{
∑

i

(aei1ei2···einei2t
ei1
1 tei2−1

2 · · · tein
n )f i}dt2 − · · ·

− 1
H ′(F )

{
∑

i

(aei1ei2···eineintei1
1 tei2

2 · · · tein−1
n )f i}dtn.

Let G be the coefficient of dt1 in (2.6). Then we have G∗ = DF. This completes
the proof of Lemma 2.2. 2

Lemma 2.3. For a closed differential ω, if ν℘(ω) = −ν < −1, then there
exists an element η ∈ K such that ν℘(ω − dη) > −ν.

Proof. We can assume that ω is represented as

ω = ft−ν
1 dt1 + g2dt2 + · · · + gndtn,

where f ∈ A℘. Put

η :=
1

−ν + 1
ft−ν+1

1 (∈ K).

Since f belongs to A℘, df is written as

df = f1dt1 + f2dt2 + · · · + fndtn,

where each fi ∈ A℘. Then

ω − dη = − 1
−ν + 1

t−ν+1
1 f1dt1 + (g2 −

1
−ν + 1

t−ν+1
1 f2)dt2

+ (g3 −
1

−ν + 1
t−ν+1
1 f3)dt3

+ · · · + (gn − 1
−ν + 1

t−ν+1
1 fn)dtn.
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To prove that ν℘(ω − dη) > −ν , we may assume that ν℘(ω − dη) < 0.
Then, by Lemma 2.1,

ν℘(ω − dη) = ν℘(t−ν+1
1 f1) = −ν + 1 + ν℘(f1) > −ν,

since fi ∈ A℘. Therefore Lemma 2.3 is proved. 2

§3. Result.

We are now ready to prove our Theorem.

Theorem 3.1. Let ω be a cosed element of Ω1
K/k. Then ω is residue free if

and only if ω is of second kind.

Proof. Let W be a prime divisor of V , U = Spec (A) an affine open subset
of V such that U ∩ W = V (℘), where ℘ ∈ Spec (A).

(1) Assume that ω is a closed differential of the second kind represented as
ω = f1dt1 + f2dt2 + · · · + fndtn, where fi ∈ K. Then by the definition, there
exists an element θ of K such that ν℘(ω − dθ) ≥ 0.
Let θ be expanded as

θ∗ = β−mt−m
1 + β−m+1t

−m+1
1 + · · · + β−1t

−1
1 + β0 + β1t1 + β2t

2
1 + · · ·

and let
dθ = g1dt1 + g2dt2 + · · · + gndtn,

g∗1 = γ−mt−m
1 + · · · + γ−1t

−1
1 + γ0 + γ1t1 + γ2t

2
1 + · · · .

By Lemma 2.2, we have

g∗1 =
d

dt1
θ∗.

Since the coefficient of t−1
1 of the right hand side is zero, we get γ−1 = 0.

On the other hand,

ω − dθ = (f1 − g1)dt1 + (f2 − g2)dt2 + · · · + (fn − gn)dtn

is closed, so the residue is defined and it follows from ν℘(ω − dθ) ≥ 0 that
resW (ω − dθ) = 0.
Putting

f∗
1 = α−pt

−p
1 + · · · + α−1t

−1
1 + α0 + α1t

1
1 + α2t

2
1 + · · · ,
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we have
(f1 − g1)∗ = · · · + (α−1 − γ−1)t−1

1 + · · · .

Hence we get resW (ω − dθ) = α−1 − γ−1 = α−1 = 0. Thus resW (ω) = 0. This
implies ω is residue free.

(2) Let ω be residue free. By repeating the procedure of Lemma 2.3, for
the differential ω, we can find an element θ of K such that ν℘(ω − dθ) ≥ −1.
We set

ω − dθ = f1dt1 + f2dt2 + · · · + fndtn,

and we assume that f∗
1 is expressed as

f∗
1 = α−1t

−1
1 + α0 + α1t

1
1 + α2t

2
1 + · · · .

Since ω − dθ is closed, the residue is defined for ω − dθ. As we have just seen
that resW (dθ) = 0, and resW (ω) = 0 by the hypothesis, we have

α−1 = resW (ω − dθ) = resW (ω) − resW (dθ) = 0.

Therefore we find ν℘(f1) ≥ 0.
Furthermore, since ω − dθ is closed, the inequality

ν℘(ω − dθ) ≥ 0

holds by Lemma 2.1. Hence ω is a differential of the second kind, and this
completes the proof of the theorem. 2
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