RESIDUE FREE DIFFERENTIALS AND DIFFERENTIALS OF THE SECOND KIND

Takeo OHI and Hirokazu NAGAI

(Received December 21, 1995)

Abstract. Let k be a field of characteristic 0, V an n-dimensional non-singular algebraic variety over k, K the function field of V and $\Omega_{K/k}^1$ the module of differentials of K over k. A closed differential $\omega \in \Omega_{K/k}^1$ is called residue free if $res_W(\omega) = 0$ for any prime divisor W of V and a differential ω is called second kind if for any prime divisor W, there exists an element $\theta_W \in K$ such that $\nu_W(\omega - d\theta_W) \ge 0$, where ν_W is the canonical valuation with respect to W. In this paper, we prove the following theorem: Let ω be a closed element of $\Omega_{K/k}^1$. Then ω is residue free if and only if ω is of second kind.

AMS 1991 Mathematics Subject Classification. Primary 13N05, 12H05.

Key words and phrases. Differential module, residue map, residue free, differential of second kind.

§1. Introduction, notations and basic definitions.

Throughout this paper, k denotes a field of characteristic 0. Let V be an ndimensional non-singular algebraic variety over k, where the word "algebraic variety over k" means an integral separated scheme (V, O_V) of finite type over k, and the word "non-singular" means the stalk $O_{V,P}$ at each point P of V is a regular local ring. We denote the function field of V by K. Let $\Omega^1_{K/k}$ be the module of differentials of K over k and let $d: K \longrightarrow \Omega^1_{K/k}$ be the universal derivation.

Let W be a prime divisor of V. Let U = Spec(A) be an open affine subset of V such that $U \cap W \neq \phi$. Then there exists a prime ideal \wp of A such that $U \cap W = V(\wp) := \{\wp^* \in \text{Spec}(A) | \wp^* \supseteq \wp\}$. For this prime ideal \wp , we have that A_{\wp} is a discrete valuation ring and $\wp A_{\wp} = (t_1)$ for some element t_1 of A_{\wp} . We denote the valuation of A_{\wp} by ν_{\wp} .

Set $D_{\wp} = Q(A/\wp) = A_{\wp}/\wp A_{\wp}$. Then there exist $t_2, \dots, t_n \in A_{\wp}$ such that $\bar{t}_2, \dots, \bar{t}_n \in D_{\wp}$ form a transcendental basis of D_{\wp} over k, where \bar{t}_i denotes the canonical image of t_i in D_{\wp} . The differential module $\Omega^1_{A_{\wp}/k}$ of A_{\wp}/k and the differential module $\Omega^1_{K/k}$ of K/k are given by the following equalities (see [3]):

(1.1)
$$\begin{cases} \Omega^{1}_{A_{\wp}/k} = A_{\wp}dt_{1} \oplus A_{\wp}dt_{2} \oplus \dots \oplus A_{\wp}dt_{n}, \\ \Omega^{1}_{K/k} = Kdt_{1} \oplus Kdt_{2} \oplus \dots \oplus Kdt_{n}. \end{cases}$$

For a differential

$$\omega = f_1 dt_1 + f_2 dt_2 + \dots + f_n dt_n,$$

where $f_i \in K$, we define $d\omega$ as an element of $\Omega^1_{K/k} \wedge \Omega^1_{K/k}$ (over K) in the following:

$$d\omega = df_1 \wedge dt_1 + df_2 \wedge dt_2 + \dots + df_n \wedge dt_n \text{ (see [3])}.$$

Definition 1.1. A differential ω is called *closed* if $d\omega = 0$.

Let \widehat{A}_{\wp} be the $\wp A_{\wp}$ -adic completion of A_{\wp} . By the structure theorem of complete local rings, there exists a unique coefficient field C of \widehat{A}_{\wp} such that

- (1) $k(t_2, \cdots, t_n) \subset C \subset A_{\wp},$
- (2) $C \simeq D_{\wp}$, (obtained from the natural surjection $\widehat{A}_{\wp} \longrightarrow D_{\wp}$)
- (3) $A_{\wp} = C[[t_1]].$

Extending the natural injection $A_{\wp} \longrightarrow \widehat{A}_{\wp}$ to a ring homomorphism $K = Q(A_{\wp}) \longrightarrow Q(\widehat{A}_{\wp})$, we get an injection $*: K \longrightarrow D_{\wp}((t_1))$ from the isomorphism $C \simeq D_{\wp}$. By f^* , we denote the image of $f \in K$ by the injection *.

For a differential $\omega = f_1 dt_1 + f_2 dt_2 + \dots + f_n dt_n$, we set

$$f_1^* = \alpha_{-m} t_1^{-m} + \alpha_{-m+1} t_1^{-m+1} + \dots + \alpha_{-1} t_1^{-1} + \alpha_0 + \alpha_1 t_1 + \alpha_2 t_1^2 + \dots,$$

where $\alpha_j \in D_{\wp}$.

Then we may define the residue of ω , $res_{W;t_1,t_2,\dots,t_n}(\omega)$, with respect to W and t_1, t_2, \dots, t_n by

$$res_{W;t_1,t_2,\cdots,t_n}(\omega) = \alpha_{-1} \in D_{\wp}.$$

F. Elzein [1, Theorem 1] proved that if ω is closed, then this value α_{-1} depends only on W and not depends on an affine open U such that $U \cap W \neq \phi$, nor on a coefficient field C of \widehat{A}_{ω} . This results lead us to the following. **Definition 1.2.** For a closed differential ω , the *residue* of ω at W, $res_W(\omega)$, is defined by

$$res_W(\omega) = \alpha_{-1}$$

Definition 1.3. A closed differential ω is called *residue free* if $res_W(\omega) = 0$ for any prime divisor W of V.

Let $\omega = \sum_{i=0}^{n} f_i dt_i$, and let each f_i^* be expressed as follows:

$$f_i^* = \sum_j \alpha_{i,j} t_1^j,$$

where the number of the terms of negative powers is finite. Then the following equality holds:

$$\nu_{\wp}(f_i) = \min\{j | \alpha_{i,j} \neq 0\}.$$

Since $\nu_{\wp}(f_i)$ is independent from the choice of t_1, \ldots, t_n , we define

$$\nu_{\wp}(\omega) = \min_{i} \nu_{\wp}(f_i).$$

Definition 1.4. A differential in $\Omega^1_{K/k}$ is called of the *second kind* if, for any prime divisor W, there exists an element θ_W of K such that

$$\nu_{\wp}(\omega - d\theta_W) \ge 0$$

(cf. M. Rosenlicht [4]).

The purpose of this paper is to prove the following theorem:

Theorem 1.5. Let ω be a closed element of $\Omega^1_{K/k}$. Then ω is residue free if and only if ω is of second kind.

This theorem is well known in the case of one variable. Our result above is a first step for the several variables case.

§2. Preliminaries.

For the proof of Theorem, we prepare some lemmas in this section.

Lemma 2.1. If a differential $\omega = f'_1 dt_1 + f'_2 dt_2 + \cdots + f'_n dt_n$ is closed and $\nu_{\wp}(\omega) < 0$, then we have

$$\nu_{\wp}(f_1') < \nu_{\wp}(f_2'), \nu_{\wp}(f_3'), \cdots, \nu_{\wp}(f_n').$$

Proof. Setting $\nu = -\nu_{\wp}(\omega) > 0$ and $f_i = f'_i t_1^{\nu} (\in A_{\wp})$ for each *i*, we have that $\omega = f_1 t_1^{-\nu} dt_1 + f_2 t_1^{-\nu} dt_2 + \dots + f_n t_1^{-\nu} dt_n$.

From the definition of $d\omega$, we get

$$(2.1) \quad d\omega = d(f_1t_1^{-\nu}) \wedge dt_1 + d(f_2t_1^{-\nu}) \wedge dt_2 + \dots + d(f_nt_1^{-\nu}) \wedge dt_n \\ = t_1^{-\nu}df_1 \wedge dt_1 + (t_1^{-\nu}df_2 \wedge dt_2) + (-\nu)f_2t_1^{-\nu-1}dt_1 \wedge dt_2 \\ + (t_1^{-\nu}df_3 \wedge dt_3 + (-\nu)f_3t_1^{-\nu-1}dt_1 \wedge dt_3) + \dots \\ + (t_1^{-\nu}df_n \wedge dt_n + (-\nu)f_nt_1^{-\nu-1}dt_1 \wedge dt_n).$$

By the equality (1.1), we can represent df_i 's as follows:

(2.2)
$$df_i = g_{i,1}dt_1 + g_{i,2}dt_2 + \dots + g_{i,n}dt_n \text{ for each } i$$

From (2.1) and (2.2), we have

$$d\omega = \sum_{i < j} (-g_{i,j} + g_{j,i}) t_1^{-\nu} dt_i \wedge dt_j + \sum_{j=2}^n (-\nu) t_1^{-\nu-1} f_j dt_1 \wedge dt_j.$$

Since ω is closed, we get that $d\omega = 0$ and

$$t_1(-g_{1,j} + g_{j,1}) + (-\nu)f_j = 0$$
 for $1 < j$.

Since $-g_{1,j} + g_{j,1}$ belongs to A_{\wp} , we obtain the following inequality:

$$\nu_{\wp}(f_j t_1^{-\nu}) \ge -\nu + 1 \text{ for } j \ge 2.$$

So we get $\nu_{\wp}(f'_i) = \nu_{\wp}(f_i t_1^{-\nu}) \ge -\nu + 1$ for each $j \ge 2$.

Since $-\nu = \min_i \nu_{\wp}(f'_i)$, it follows that $\nu_{\wp}(f'_1) = -\nu$.

Lemma 2.2. Let f be an element of K. Assume that df is represented as $df = gdt_1 + g_2dt_2 + \cdots + g_ndt_n$, where $g, g_j \in K$ $(j \ge 2)$. Then we have

$$g^* = \frac{d}{dt_1}f^*,$$

where the right hand side is the formal differentiation of the power series f^* by t_1 .

 $\begin{array}{ll} \textit{Proof.} & \text{Let } \psi: \widehat{A}_{\wp} \to \widehat{A}_{\wp} / \wp \widehat{A}_{\wp} \simeq D_{\wp} \text{ be the natural surjection.} \\ \text{For } F = \sum_{i} a_{i} t_{1}^{i} \in D_{\wp}((t_{1})), \text{ we define} \end{array}$

$$DF = \sum_{i} a_i i t_1^{i-1} \in D_{\wp}((t_1)).$$

Then $D(=\frac{d}{dt_1})$ is a D_{\wp} -derivation of $D_{\wp}((t_1))$ into itself.

Since the field extension $K/k(t_1, t_2, \dots, t_n)$ is separable, there exists an irreducible polynomial $H(X) = \sum_i q_i X^i \ (q_i \in k(t_1, t_2, \dots, t_n))$ such that $H'(f) \neq 0$ and H(f) = 0.

Here, by multiplying a suitable polynomial, we may assume that each coefficient belongs to $k[t_1, \dots, t_n]$, i.e.,

$$q_i \in k[t_1, \cdots, t_n]$$
 for all *i*.

Since $q_i \in k(t_2, \dots, t_n)[t_1]$, we can identify q_i^* with q_i , in other words, $q_i^* = q_i$. Putting $F = f^*$, we obtain that $H(F) = \{H(f)\}^* = 0$.

Let D operate on both sides of H(F) = 0. Then we have

$$\sum_{i} (Dq_i)F^i + \sum_{i} q_i iF^{i-1}DF = 0.$$

Since

$$\sum_{i} q_i i F^{i-1} = H'(F), \quad H'(F) \neq 0,$$

we have

(2.3)
$$DF = -\frac{1}{H'(F)} \sum_{i} (Dq_i) F^i$$

Operating d on both sides of H(f) = 0, we obtain

$$\sum_{i} (dq_i)f^i + \sum_{i} q_i i f^{i-1} df = 0,$$

from which we have

(2.4)
$$df = -\frac{1}{H'(f)} \sum_{i} (dq_i) f^i$$

We compute the right hand side of this equality. Put

$$q_i (= q_i^*) = \sum a_{e_{i1}e_{i2}\cdots e_{in}} t_1^{e_{i1}} t_2^{e_{i2}} \cdots t_n^{e_{in}}.$$

Then we find

(2.5)
$$\begin{cases} dq_i = \sum \{a_{e_{i1}e_{i2}\cdots e_{in}}e_{i1}t_1^{e_{i1}-1}t_2^{e_{i2}}\cdots t_n^{e_{in}}dt_1 \\ + a_{e_{i1}e_{i2}\cdots e_{in}}e_{i2}t_1^{e_{i1}}t_2^{e_{i2}-1}\cdots t_n^{e_{in}}dt_2 \\ + \cdots + a_{e_{i1}e_{i2}\cdots e_{in}}e_{in}t_1^{e_{i1}}t_2^{e_{i2}}\cdots t_n^{e_{in}-1}dt_n\}, \\ Dq_i = \sum a_{e_{i1}e_{i2}\cdots e_{in}}e_{i1}t_1^{e_{i1}-1}t_2^{e_{i2}}\cdots t_n^{e_{in}}. \end{cases}$$

From (2.3) and (2.5), we have

$$DF = -\frac{1}{H'(F)} \sum_{i} (a_{e_{i1}e_{i2}\cdots e_{in}} e_{i1} t_1^{e_{i1}-1} t_2^{e_{i2}} \cdots t_n^{e_{in}}) F^i.$$

From (2.3) and (2.4), we obtain

$$(2.6) df = -\frac{1}{H'(F)} \{ \sum_{i} (a_{e_{i1}e_{i2}\cdots e_{in}}e_{i1}t_{1}^{e_{i1}-1}t_{2}^{e_{i2}}\cdots t_{n}^{e_{in}})f^{i} \} dt_{1} - \frac{1}{H'(F)} \{ \sum_{i} (a_{e_{i1}e_{i2}\cdots e_{in}}e_{i2}t_{1}^{e_{i1}}t_{2}^{e_{i2}-1}\cdots t_{n}^{e_{in}})f^{i} \} dt_{2} - \cdots - \frac{1}{H'(F)} \{ \sum_{i} (a_{e_{i1}e_{i2}\cdots e_{in}}e_{in}t_{1}^{e_{i1}}t_{2}^{e_{i2}}\cdots t_{n}^{e_{in}-1})f^{i} \} dt_{n}.$$

Let G be the coefficient of dt_1 in (2.6). Then we have $G^* = DF$. This completes the proof of Lemma 2.2.

Lemma 2.3. For a closed differential ω , if $\nu_{\wp}(\omega) = -\nu < -1$, then there exists an element $\eta \in K$ such that $\nu_{\wp}(\omega - d\eta) > -\nu$.

Proof. We can assume that ω is represented as

$$\omega = ft_1^{-\nu}dt_1 + g_2dt_2 + \dots + g_ndt_n,$$

where $f \in A_{\wp}$. Put

$$\eta := \frac{1}{-\nu + 1} f t_1^{-\nu + 1} \ (\in K).$$

Since f belongs to A_{\wp} , df is written as

$$df = f_1 dt_1 + f_2 dt_2 + \dots + f_n dt_n,$$

where each $f_i \in A_{\wp}$. Then

$$\omega - d\eta = -\frac{1}{-\nu+1} t_1^{-\nu+1} f_1 dt_1 + (g_2 - \frac{1}{-\nu+1} t_1^{-\nu+1} f_2) dt_2 + (g_3 - \frac{1}{-\nu+1} t_1^{-\nu+1} f_3) dt_3 + \dots + (g_n - \frac{1}{-\nu+1} t_1^{-\nu+1} f_n) dt_n.$$

To prove that $\nu_\wp(\omega - d\eta) > -\nu$, we may assume that $\nu_\wp(\omega - d\eta) < 0$. Then, by Lemma 2.1,

$$\nu_{\wp}(\omega - d\eta) = \nu_{\wp}(t_1^{-\nu+1}f_1) = -\nu + 1 + \nu_{\wp}(f_1) > -\nu,$$

since $f_i \in A_{\wp}$. Therefore Lemma 2.3 is proved.

§3. Result.

We are now ready to prove our Theorem.

Theorem 3.1. Let ω be a cosed element of $\Omega^1_{K/k}$. Then ω is residue free if and only if ω is of second kind.

Proof. Let W be a prime divisor of V, U = Spec(A) an affine open subset of V such that $U \cap W = V(\wp)$, where $\wp \in \text{Spec}(A)$.

(1) Assume that ω is a closed differential of the second kind represented as $\omega = f_1 dt_1 + f_2 dt_2 + \cdots + f_n dt_n$, where $f_i \in K$. Then by the definition, there exists an element θ of K such that $\nu_{\wp}(\omega - d\theta) \ge 0$. Let θ be expanded as

$$\theta^* = \beta_{-m}t_1^{-m} + \beta_{-m+1}t_1^{-m+1} + \dots + \beta_{-1}t_1^{-1} + \beta_0 + \beta_1t_1 + \beta_2t_1^2 + \dots$$

and let

$$d\theta = g_1 dt_1 + g_2 dt_2 + \dots + g_n dt_n,$$

$$g_1^* = \gamma_{-m} t_1^{-m} + \dots + \gamma_{-1} t_1^{-1} + \gamma_0 + \gamma_1 t_1 + \gamma_2 t_1^2 + \dots.$$

By Lemma 2.2, we have

$$g_1^* = \frac{d}{dt_1}\theta^*.$$

Since the coefficient of t_1^{-1} of the right hand side is zero, we get $\gamma_{-1} = 0$.

On the other hand,

$$\omega - d\theta = (f_1 - g_1)dt_1 + (f_2 - g_2)dt_2 + \dots + (f_n - g_n)dt_n$$

is closed, so the residue is defined and it follows from $\nu_{\wp}(\omega - d\theta) \ge 0$ that $res_W(\omega - d\theta) = 0$.

Putting

$$f_1^* = \alpha_{-p}t_1^{-p} + \dots + \alpha_{-1}t_1^{-1} + \alpha_0 + \alpha_1t_1^1 + \alpha_2t_1^2 + \dots,$$

we have

$$(f_1 - g_1)^* = \dots + (\alpha_{-1} - \gamma_{-1})t_1^{-1} + \dots$$

Hence we get $res_W(\omega - d\theta) = \alpha_{-1} - \gamma_{-1} = \alpha_{-1} = 0$. Thus $res_W(\omega) = 0$. This implies ω is residue free.

(2) Let ω be residue free. By repeating the procedure of Lemma 2.3, for the differential ω , we can find an element θ of K such that $\nu_{\wp}(\omega - d\theta) \ge -1$. We set

$$\omega - d\theta = f_1 dt_1 + f_2 dt_2 + \dots + f_n dt_n,$$

and we assume that f_1^* is expressed as

$$f_1^* = \alpha_{-1}t_1^{-1} + \alpha_0 + \alpha_1t_1^1 + \alpha_2t_1^2 + \cdots$$

Since $\omega - d\theta$ is closed, the residue is defined for $\omega - d\theta$. As we have just seen that $res_W(d\theta) = 0$, and $res_W(\omega) = 0$ by the hypothesis, we have

$$\alpha_{-1} = \operatorname{res}_W(\omega - d\theta) = \operatorname{res}_W(\omega) - \operatorname{res}_W(d\theta) = 0.$$

Therefore we find $\nu_{\wp}(f_1) \geq 0$.

Furthermore, since $\omega - d\theta$ is closed, the inequality

$$\nu_{\omega}(\omega - d\theta) \ge 0$$

holds by Lemma 2.1. Hence ω is a differential of the second kind, and this completes the proof of the theorem.

References

- F. Elzein, Residues en Géométrie Algébrique, Compositio Mathematica, Vol. 23, Fasc. 4, 1971, p. 379-405.
- [2] K. Iwasawa, Algebraic Functions, A. M. S. Mathematical Monographs, Vol. 118.
- [3] E. Kunz, Kähler Differentials, Vieweg Advanced Lectures in Mathematics, 1986.
- [4] M. Rosenlicht, Differentials of the second kind for algebraic function fields of one variable, Annals of Mathematics, Vol. 57, 1953.

Takeo OHI Faculty of Science, Science University of Tokyo 26 Wakamiya-cho, Shinjuku-ku, Tokyo, 162 Japan

Hirokazu NAGAI Faculty of Science ,Science University of Tokyo 26 Wakamiya-cho, Shinjuku-ku, Tokyo, 162 Japan

66