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Abstract. Let K be a function field over a field k of characteristic p > 0 and
let R be a discrete valuation ring of K/k. E. Kunz showed that if ω is a closed
differential form and νR(ω) ≥ −1, then resR,t(ω) does not depend on the choice
of parameter t = {t1, t2, · · · , tn}.

In this paper, we investigate resR,t(ω) in the case where νR(ω) ≥ −pm +
1 for ω ∈ Zm.
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§0. Introduction

Let K be a function field of n variables over a field k of characteristic p > 0
and let R be a discrete valuation ring of K/k such that the residue field D of
R has transcendence degree n − 1 over k. Y. Suzuki [3] proved the following
Theorem A and Corollary B.

Theorem A. If ω is a differential form in ZmΩr(K/k) such that νR(ω) ≥
−pm−1, then resR,t(ω) is uniquely determined up to addition by differentials
in Bm−1Ωr−1(D/k).

Corollary B. resR : Z∞Ωr(K/k) −→ Z∞Ωr−1(D/k)/B∞Ωr−1(D/k)
is well defined. (for the definition, see section 1).

His method of proof is the following: First he proved the commutativity of
residue map and Cartier operator. Secondly he proved that if ω ∈ ZmΩr(K/k)
and νR(ω) ≥ −pm−1, then νR(m)(C(m−1)

K (ω)) ≥ −1 and C
(m−1)
K (ω) is a closed

differential, where C
(m−1)
K is an iterated Cartier operator. From two results
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above and a result of E. Kunz (Exercise (1) in §17 of [1]), he proved Theorem
A and Corollary B.

On the other hand, our main results are the following:

Theorem 2. If ω is a differential form in ZmΩ(K/k) such that νR(ω) ≥
−pm + 1, then resR,t(ω) is uniquely determined up to addition by differentials
in BmΩ(D/k).

Corollary. resR : Z∞Ω(K/k) −→ Z∞Ω(D/k)/B∞Ω(D/k)
is well defined.

Our method of proof is quite different from Suzuki’s method and our The-
orem 2 and Suzuki’s Theorem A are independent to each other, that is, The-
orem A does not imply Theorem 2 and vice versa. But both Theorem 2 and
Theorem A imply the same Corollary.

An advantage of our result is in the following fact. The number −pm + 1
in our Theorem 2 is the best possible (see Example in §2).

§1. Preliminaries

Throughout this paper, K will denote a function field of n variables over a
field k of characteristic p > 0 and R a discrete valuation ring of rank one of
K/k such that the residue field D of R has transcendence degree n − 1 over
k. Furthermore we always assume that K and D are separable over k.

We choose n elements t1, t2, ..., tn in R such that t1R is the maximal ideal
of R and such that t2, ..., tn is a p-basis of D/k, where a denotes the canon-
ical image in D of a ∈ R. We will call such a family t = {t1, t2, ..., tn} a
parameter of (K/k,R). We put Ki = kKpi

, Ri = kRpi
and t(i) = tp

i
=

{tp
i

1 , tp
i

2 , · · · , tpi

n } (i = 0, 1, 2, · · ·).
Let A be a G-algebra, where G and A are commutative rings, and let

(Ω(A/G), dA/G) be the universal differential algebra of A/G. Then we know
that Ω(A/G) =

⊕
Ωr(A/G), Ωr(A/G) =

∧r Ω1(A/G) and Ω1(A/G) is the
module of Kähler differentials of A/G ( c.f. §3 in [1] ). If there is no confusion,
we simply write d, Ω,Ω(D) and Ω(R) instead of dA/G, Ω(K/k), Ω(D/k) and
Ω(R/k), respectively.

Lemma 1. Let t = {t1, t2, ..., tn} be a parameter of (K/k,R). Then t =
{t1, t2, ..., tn} is a p-basis of R/k.

Proof. From the following exact sequence of vector spaces over D
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(c.f. Th. 25.2 in [2]),

0 −→ t1R/t21R −→ Ω1(R) ⊗R D −→ Ω1(D) −→ 0,

we get that dim(Ω1(R) ⊗R D) = 1 + (n − 1) = n (dimΩ1(D) = n − 1 from
separability of D/k ). It follows from Nakayama’s lemma that {dt1, dt2, ..., dtn}
generates Ω1(R) over R. On the other hand, since Ω1 = Ω1(R) ⊗R K has
dimension n over K, {dt1, dt2, ..., dtn} must form a basis of Ω1(R) over R.

We will show that kRp[t1, t2, ..., tn] = R. Let S = kRp[t1, t2, ..., tn]. Then
S is a local ring with the residue field kDp[t2, ..., tn] = D (see Remark below).
Hence R = S + t1R. Since R is a finite S-module and t1 is an element of the
maximal ideal of S, it follows from Nakayama’s lemma that S = R. By 5.6
Proposition in [1], we see that {t1, t2, ..., tn} is a p-basis of R/k.

Remark. By using the conditions that both K/k and D/k are separable,
we observe that kRp is a discrete valuation ring of rank one with the residue
field kDp and that tp = {tp1, t

p
2, ..., t

p
n} is a parameter of (kKp/k, kRp). In fact,

we have Kp ⊗kp k = kKp since Kp/kp is separable, and hence we also get
Rp ⊗kp k = kRp. Thus it follows that kRp/(tp1) = Rp/(tp1) ⊗kp k = Dp ⊗kp k

and that Dp ⊗kp k = kDp by separability of D/k. Similarly, we observe that
{t2p

, ..., tn
p} is a p-basis of kDp/k and that t(i) is a parameter of (Ki/k,Ri)

for each i.

We will define a k-linear map of degree −1, resR,t : Ω −→ Ω(D). Let R̂ be
the completion of R. Then there exists a unique coefficient field E = Et2,...,tn

of R̂ such that R̂ = E[[t1]] and E ⊃ k(t2, ..., tn) (c.f. Th. 28.3 in [2]).
The quotient field of R̂ is the formal power series field E((t1)) and K can be
regarded as a subfield of E((t1)). Let ω be a differential form in Ωr (r ≥ 1).
Then ω is uniquely expressed in the form

ω =
∑

1<i1<···<ir

gi1···irdti1 ∧ · · · ∧ dtir +
∑

1<i2<···<ir

hi2···irdt1 ∧ dti2 ∧ · · · ∧ dtir

where gi1···ir , hi2···ir ∈ K. Let hi2···ir =
∑
k

hi2···ir,kt
k
1 be the formal expression

of hi2···ir in K̂ = E((t1)). We define the residue of ω by

resR,t(ω) =
∑

i2<···<ir

hi2···ir,−1dti2 ∧ · · · ∧ dtir

where ā is the canonical image of a ∈ R̂ in D. Thus we can define the map
resR,t : Ω −→ Ω(D) by linearlity.
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We observe that resR,t has the following property

resR,t ◦ d + dD/k ◦ resR,t = 0.

It follows from this property that resR,t maps closed differentials to closed
ones and exact differentials to exact ones.

We will denote by Z(Ω) (= ker d), all of closed differentials in Ω and by
B(Ω) (= im d), all of exact differentials in Ω. If there is no confusion, we will
write Z,B instead of Z(Ω), B(Ω), respectively. It follows that Z is a graded
kKp-subalgebra of Ω with Z0 = kKp and that B is a two-sided homogeneous
ideal of Z.

Definition. For a parameter t = {t1, t2, ..., tn} of (K/k,R), we define the
graded subalgebras Hm(t) of Z and Im(t) of Z(Ω(R)) (m = 1, 2....) as follows;

Hm(t) := Km[tp
m−1

1 dt1, t
pm−1
2 dt2, · · · , tp

m−1
n dtn],

Im(t) := Rm[tp
m−1

1 dt1, t
pm−1
2 dt2, · · · , tp

m−1
n dtn].

We have by Exercise (6) in §5 of [1] that

Z = B
⊕

H1(t), Z(Ω(R)) = B(Ω(R))
⊕

I1(t)

for every parameter t of (K/k,R) (c.f. Lemma 1).

The Cartier operator CK/k (we denote it by C if there is no confusion) is
defined to be a surjective homomorphism of degree zero of graded K1-algebra
(K1 = kKp)

C : Z −→ Ω(K1/k)

such that C(B) = 0, C(a) = a for any a ∈ Z0 = K1 and C(tp−1
i dti) = d1t

p
i for

each i, where d1 is the differentiation of Ω(K1/k) (Exercise (6) in §5 of [1]). It
follows that C induces an isomorphism of H1(t) on Ω(K1/k), but C does not
depend on R and a fortiori C does not depend on t. Similarly we can also
define Cartier operators CR/k, CD/k, CKi/k and CRi/k. We have by Lemma 2
of [3] that

CD/k ◦ resR,t = resR1,tp ◦ C

for every parameter t of (K/k,R).

The Cartier opreators CKi/k (= Ci) (i = 0, 1, 2, ...) define the subsets Bm =
Bm(Ω) and Zm = Zm(Ω) of Ω inductively as follows: We first set B0(Ωi) = 0,



RESIDUES OF DIFFERENTIAL FORMS 107

Z0(Ωi) = Ωi for each i, where Ωi = Ω(Ki/k). We note that C0 = C and
Ω0 = Ω. Next we set, for every integer m ≥ 0,

Bm+1(Ωi) = C−1
i (Bm(Ωi+1)), Zm+1(Ωi) = C−1

i (Zm(Ωi+1)).

For example, B2 = B2(Ω) is obtained as follows; B1(Ω1) = C−1
1 (0) and

B2(Ω) = C−1
0 (B1(Ω1)) = C−1

0 (C−1
1 (0)).

We can easily see that B1 = B, Z1 = Z and

0 = B0 ⊂ B1 ⊂ · · · ⊂ Bm ⊂ · · · ⊂ Zm ⊂ · · · ⊂ Z1 ⊂ Z0 = Ω.

It follows that Zm (m ≥ 0) is a graded Km-subalgebra of Ω and that Bm is
a two-sided homogeneous ideal of Zm such that Zm/Bm ' Ωm. Furthermore,

we set Z∞ =
∞⋂

m=1

Zm and B∞ =
∞⋃

m=1

Bm.

Let t = {t1, t2, ..., tn} be a parameter of (K/k,R). Then for every element
ω of Ω, we define νR(ω) as follows;

νR(ω) = max{s ∈ Z| t−s
1 ω ∈ Ω(R)}.

If ω ∈ Ω0 = K, then νR(ω) is the valuation value of ω such that νR(t1) = 1.
We note that νR(ω) is dependent on R but not dependent on the parameter t.

Furthermore we fix a special basis of Ω over K for the parameter t named
Λ;

Λ = {dti1 ∧ dti2 ∧ · · · ∧ dtir | 0 ≤ r ≤ n, 1 ≤ i1 < · · · < ir ≤ n }

(when r = 0, dti1 ∧ · · · ∧ dtir means 1). Then Λ is also a basis of Ω(R) over R.
Furthermore we see that an element ω =

∑
ai1,...,irdti1 ∧ · · · ∧ dtir belongs to

Ω(R) if and only if all ai1,...,ir belong to R.

Lemma 2. For any parameter t of (K/k,R) and for any natural number m,

Zm = Bm

⊕
Hm(t)

as Km-modules (additive groups or k-modules).

Proof. We shall prove this by induction on m, it holding for m = 1 (Exercise
(6) in §5 in [1]). We assume it for m− 1(m ≥ 2). By using the assumption of
induction to the case of the parameter tp of (K1/k,R1), we have that

Zm−1(Ω1) = Bm−1(Ω1)
⊕

Hm−1(tp),
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where Hm−1(tp) = kKpm−1

1 [(tp1)
pm−1−1dtp1, (t

p
2)

pm−1−1dtp2, · · · , (tpn)pm−1−1dtpn].
Since Km = kKpm−1

1 and tp
m−1

j dtj = (tpj )
pm−1−1tp−1

j dtj , it follows that
C(Hm(t)) = Hm−1(tp). By the definition of Zm and Bm,

Zm = C−1(Zm−1(Ω1)) and Bm = C−1(Bm−1(Ω1)).

If ω ∈ Bm ∩ Hm(t), then C(ω) ∈ Bm−1(Ω1) ∩ Hm−1(tp) = (0); hence
ω ∈ ker C ∩ Hm(t) ⊂ B1 ∩ H1(t) = (0).

It holds that Zm ⊃ Bm + Hm(t). Conversely, we will prove that Zm ⊂
Bm + Hm(t). Let ω ∈ Zm. Then C(ω) = x + y for some x ∈ Bm−1(Ω1) and
y ∈ Hm−1(tp). Since C is surjective, there exist α ∈ Bm and β ∈ Hm(t) such
that C(α) = x and C(β) = y. Hence ω − α − β ∈ ker C = B = B1 ⊂ Bm.

Thus Zm = Bm + Hm(t).

Let t be a parameter of (K/k,R). Any element a 6= 0 of K can be uniquely
expressed in the form

a =
∑

αs1,···,snts1
1 ts2

2 · · · tsn
n , αs1,···,sn ∈ kKp,

where si runs over {0, 1, · · · , p − 1} for each i. Then we have the following
lemma.

Lemma 3. νR(a) = min
s1,···,sn

(νR(αs1,···,snts1
1 · · · tsn

n )).

Proof. It is easy to see that νR(αs1,···,sn) are multiples of p, νR(ti) = 0 for
i ≥ 2 and νR(t1) = 1. Therefore the values of valuation νR of the following p

elements are distinct to each other except ∞ = ∞ ;∑
α0,s2,···,snts2

2 · · · tsn
n , (

∑
α1,s2,···,snts2

2 · · · tsn
n )t1, · · · , (

∑
αp−1,s2,···,snts2

2 · · · tsn
n )tp−1

1 .

Therefore it holds that

νR(a) = min
i=0,1,···,p−1

( νR(
∑

αi,s2,···,snti1t
s2
2 · · · tsn

n ) ).

Let min
s2,···,sn

(νR(αi,s2,···,sn)) = rip (ri ∈ Z) and αi,s2,···,sn = trip
1 α′

i,s2,···,sn

(α′
i,s2,···,sn

∈ kRp) for each i. Then
∑

α′
i,s2,···,sn

ts2
2 · · · tsn

n is an element of R

and its image
∑

α′
i,s2,···,sn

t2
s2 · · · tnsn in D is not zero, because {t2, · · · , tn} is

a p-basis of D/kDp and at least one of the elements {α′
i,s2,···,sn

} is not zero.
Therefore, for each i, it holds that

νR(
∑

αi,s2,···,snti1t
s2
2 · · · tsn

n ) = min
s2,···,sn

(νR(αi,s2,···,snti1t
s2
2 · · · tsn

n )).
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This completes the proof.

Lemma 4. Let α, β ∈ H1(t). If νR(α) = νR(β), then νkRp(C(α)) = νkRp(C(β)).

Proof. Since α, β ∈ H1(t) = kKp[tp−1
1 dt1, · · · , tp−1

n dtn], it follows that νR(α) =
νR(β) = mp, or νR(α) = νR(β) = mp + p − 1, for some integer m. Since kRp

is a discrete valuation ring with a prime element tp1, νkRp(tp1) = 1 and since
C(tp−1

i dti) = dtpi for each i, we obtain that νkRp(C(α)) = νkRp(C(β)) = m.

§2. Main theorems

Let ω be an element of Zm (m ≥ 1). Then we have by Lemma 2 that ω is
uniquely expressed in the form ω1 + ω2 , where ω1 ∈ Bm, ω2 ∈ Hm(t).

Theorem 1. Let ω, ω1, and ω2 be as above. Then we have
νR(ω) = min(νR(ω1), νR(ω2)).

Proof. If νR(ω1) 6= νR(ω2), then we have νR(ω) = min(νR(ω1), νR(ω2)). There-
fore we may assume that νR(ω1) = νR(ω2) = s. Then it is enough to show
that νR(ω) = s. We prove this by induction on m.

First we prove the case of m = 1. Using the base Λ of Ω over K, we can
express ω1 and ω2 as follows ;

ω1 = · · · + xdti1 ∧ · · · ∧ dtir + · · ·
ω2 = · · · + ydti1 ∧ · · · ∧ dtir + · · ·.

In the case νR(x) = νR(y) = s, it will be enough to show νR(x + y) = s. Since
ω2 ∈ H1(t), y is of the form αtp−1

i1
· · · tp−1

ir
(α ∈ kKp). Since ω1 ∈ B, ω1 = dω0

for some ω0 ∈ Ω. Since any element a of K is uniquely written in the form

a =
p−1∑

i1,···,ir=0

αi1···inti11 · · · tinn (αi1···in ∈ kKp),

hence the definition of da, the definition of dω0 and Lemma 3 show that
νR(x + y) = s.

Next we assume that this theorem is true for 1, 2, · · · ,m − 1 (m ≥ 2). We
may assume that νR(ω1) = νR(ω2) = s. Since Bm ⊂ Zm−1, it follows that
Bm = Bm∩Zm−1 = Bm∩(Bm−1 +Hm−1) = Bm−1 +Bm∩Hm−1 (direct sum).
Therefore ω1 ∈ Bm is uniquely written in the form ω11+ω12, where ω11 ∈ Bm−1

and ω12 ∈ Bm ∩ Hm−1. Since ω11 ∈ Bm−1 and ω12 ∈ Hm−1, we get by the
assumption of induction that

s = νR(ω1) = min(νR(ω11), νR(ω12)).
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Case I. νR(ω11) = s. It is easy to see that ω12 + ω2 ∈ Hm−1 + Hm = Hm−1

and νR(ω11 + ω2) ≥ s. Since ω11 ∈ Bm−1, we get by the assumption of
induction on m that

νR(ω) = νR(ω1 + ω2) = νR(ω11 + (ω12 + ω2))
= min(νR(ω11), νR(ω12 + ω2)) = s.

Case II. νR(ω12) = s and νR(ω11) > s. In this case, we have that ω12 ∈
Bm ∩ Hm−1 ⊂ H1, ω2 ∈ Hm ⊂ H1 and νR(ω12) = νR(ω2) = s, where s =
mp, or s = mp + p − 1 for some integer m (see Lemma 4). By Lemma 4,
νkRp(C(ω12)) = νkRp(C(ω2)) = m. On the other hand, since ω12 ∈ Bm and
ω2 ∈ Hm, we have C(ω12) ∈ Bm−1(Ω1) and C(ω2) ∈ Hm−1(tp). By the
assumption of induction on m, we get that

νkRp(C(ω12 + ω2)) = νkRp(C(ω12) + C(ω2))
= min(νkRp(C(ω12)), νkRp(C(ω2))) = m.

It then follows that νR(ω12 + ω2) = mp or mp + p − 1 (c.f. Lemma 4).
Furthermore one can observe that νR(ω12 + ω2) = s (c.f. Lemma 3). Since
νR(ω11) > s, we get that νR(ω) = νR(ω11 + ω12 + ω2) = s, as desired.

Theorem 2. Let ω be an element of Zm such that νR(ω) ≥ −pm + 1. Let
t = {t1, · · · , tn} and u = {u1, · · · , un} be two parameters of (K/k,R). Then
resR,t(ω) − resR,u(ω) is an element of BmΩ(D/k). In other words, resR,t(ω)
is uniquely determined by R up to addition by differentials in BmΩ(D/k).

Proof. By Lemma 2 we have ω = ω1 + ω2, where ω1 ∈ Bm and ω2 ∈ Hm(t).
Theorem 1 says that νR(ω2) ≥ −pm + 1. On the other hand, since Hm(t) =
Km[tp

m−1
1 dt1, · · · , tp

m−1
n dtn], we get νR(ω2) ≡ 0,−1 (mod pm). Hence it fol-

lows that νR(ω2) ≥ −1. From E. Kunz (Exercise (1) in §17 of [1]), we have
resR,t(ω2) = resR,u(ω2). Since both resR,t and resR,u map Bm to BmΩ(D/k),
we get that

resR,t(ω) − resR,u(ω) = resR,t(ω1) − resR,u(ω1) ∈ BmΩ(D/k).

From this theorem, we can define the residue map resR, which is indepen-
dent from the choice of a parameter t.

Corollary. resR : Z∞ −→ Z∞Ω(D/k)/B∞Ω(D/k) is well defined.

We will show an example which asserts that the number −pm + 1 in The-
orem 2 is the best possible. In fact, we can find a function field K/k, a
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valuation ring R of K/k, two parameters t and u of (K/k,R) and a differ-
ential form ω ∈ Zm such that νR(ω) = −pm, resR,u(ω) = 0 and such that
resR,t(ω) /∈ Zm+1(Ω(D)). So the difference resR,t(ω) − resR,u(ω) does not
belong to B∞(Ω(D)) because B∞(Ω(D)) ⊂ Zm+1(Ω(D)).

Example. Let K = k(x, y, z) be the rational function field of 3 variables x, y, z

over k and let R = k(y, z)[x](x). Then t = {x, y, z} is a parameter of (K/k,R).
If we set y1 = y − x, then u = {x, y1, z} is also a parameter of (K/k,R). We
note that R = k(y1, z)[x](x) and that R̂ = k(y, z)[[x]] = k(y1, z)[[x]].

Let ω = (x−1y)pm
ypm−1zpm−1dy ∧ dz. It follows that ω ∈ Hm(t) ⊂ Zm and

resR,t(ω) = 0. On the other hand,

ω = (1 + x−1y1)pm
(x + y1)pm−1zpm−1{(dx + dy1) ∧ dz}.

From this, it follows that
resR.u(ω) = y1

pm
zpm−1dz and Cm

D/k(y1
pm

zpm−1dz) = y1
pm

dzpm
,

where Cm
D/k = CDm−1/k ◦ · · · ◦ CD/k (Di = kDpi

).
Since {y1

pm
, zpm} is a p-basis of Dm/k, we have

d(y1
pm

dzpm
) = dy1

pm ∧ dzpm 6= 0.

Thus we get that y1
pm

dzpm
/∈ Z(Ω(Dm)) and resR,u(ω) /∈ Zm+1(Ω(D)).
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