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Abstract. Suppose a dynamical system dx/dt = F(x; µ),x ∈ Rs, µ ∈ Rm,

has a hyperbolic saddle at x = 0 with a homoclinic loop, for µ = µ0. When µ
varies from µ0, the loop will be destroyed in general. For s = 2, Perko proved
that, if µ varies on an (m − 1) dimensional hypersurface, then the system
remains to admit homoclinic orbit. We consider here the same problem for

s = 3. The result is: if µ varies on an (m − 2) hypersurface, then the system
remains to admit homoclinic orbit.
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§1. Introduction

Consider a 3-dimensional dynamical system

(1)


dx1

dt
= F1(x1, x2, x3; µ),

dx2

dt
= F2(x1, x2, x3; µ),

dx3

dt
= F3(x1, x2, x3; µ),

Fj(0, 0, 0;µ) = 0, j = 1, 2, 3,

in which µ ∈ Rm, m ≥ 3. Fj are supposed to be of C2-class with respect to
both x = t(x1, x2, x3) and µ = t(µ1, ..., µm).

Suppose that, for µ = µ0, (1) has a hyperbolic saddle at (0,0,0) with a
homoclinic loop Γ : x = γ(t). When µ varies from µ0, the loop will be
destroyed in general. For standard exposition of these facts, see [2]. For 2-
dimensional systems of C∞ or Cω class, Perko [4] proved that, if µ varies
on an (m − 1) dimensional hypersurface, then the system remains to admit
homoclinic orbit. We consider here 3-dimensional case.
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Now we suppose that, for µ = µ0,F = t(F1, F2, F3) is expanded at (0,0,0)
as follows:

(2) F(x, µ0) = Λx + Φ0(x), Φ0(x) = O(|x|2),

in which

Λ =

λ1 ε 0
0 λ2 0
0 0 λ3


λj are real and λ1 ≤ λ2 < 0 < λ3, ε = 0 if λ1 6= λ2.

Now we put

(3) Ij =
∫ ∞

−∞
exp[−

∫ t

0

(∇F − tDF )(γ(s))ds]
{
F× ∂F

∂µj

}
(γ(t))dt

= t(Ij1, Ij2, Ij3),

for j = 1, ...,m, in which we assume µ = µ0 .
We will prove the following theorem:

Theorem. Suppose that, for µ = µ0, (1) has a hyperbolic saddle at (0, 0, 0)
with a homoclinic loop Γ, and F = t(F1, F2, F3) is expanded at (0, 0, 0) as
shown in (2), with the following condition (Λ):

λ3 > λ2 − λ1.

Further, suppose that

(4)
∣∣∣∣ I11 I21

I12 I22

∣∣∣∣ 6= 0

Then there are δ > 0 and two functions h1, h2 of (µ3, ..., µm) defined for
|µ3−µ3

0|+ ...+ |µm −µm
0| < δ such that, when µ = (µ1, µ2, µ3, ..., µm) varies

satisfying µj = hj(µ3, ..., µm), j = 1, 2, then (1) remains to admit homoclinic
loop at (0, 0, 0).

This is a 3-dimensional generalization of a theorem of Perko [4]. General-
izations to higher dimensional case will be further topics.
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§2. Proof of the Theorem

For simplicity, we write F(x, µ0) as F0(x), ∂F(x, µ0)/∂µj as ∂F0(x)/∂µj .
By taking suitable coordinates, we can assume that the local stable manifold

S0 and local unstable manifold U0 are

S0 : x3 = 0 and U0 : x1 = x2 = 0,

respectively, and that the condition (4) holds still. Then we have, in (2),

Φ0
1(0, 0, x3) = Φ0

2(0, 0, x3) = Φ0
3(x1, x2, 0) = 0.

For general µ, we write stable manifold and unstable manifold as MS
µ and

MU
µ , respectively. By the stable manifold theorem [3], these manifolds are C2

continuous with respect to µ.
We assume that γ(0) = x0 ∈ S0. Let Π be a plane crossing with Γ at x0.

Take a point b ∈ U0∩Γ. Let aµ ∈ MS
µ and bµ ∈ MU

µ be points such that they
depends on µ as C2-class functions, and aµ0 = x0, bµ0 = b.

Now let φ(t, ξ, µ), ξ ∈ R3, denote the solution of (1) which satisfies the
initial condition φ(0, ξ, µ) = ξ. Let τU be the time such that φ(τU ,b, µ0) = x0,
and τS

µ , τU
µ be the times such that φ(τS

µ ,aµ, µ) ∈ Π, φ(τU
µ ,bµ, µ) ∈ Π. The

following lemma is proved easily, as in Perko [4].

Lemma 1. Under the hypothese of Theorem, we can take τS
µ and τU

µ so that

τS
µ → 0 and τU

µ → τU as µ → µ0.

Write φ(t + τS
µ ,aµ, µ) as xS(t, µ) and φ(t + τU

µ ,bµ, µ) as xU (t, µ). Put

xS(0, µ) = xS
0 (µ) and xU (0, µ) = xU

0 (µ),

(5) d(µ) = xU
0 (µ) − xS

0 (µ).

If d(µ) = 0, then xS(t,µ) = xU (t,µ) represents a homoclinic loop. Write
xS(t, µ) or xU (t, µ) simply as x(t, µ), and

ξk(t, µ) =
∂x(t, µ)

∂µk
,

ρk(t, µ) = ξk(t, µ) × F(x(t, µ), µ),

then
dξk

dt
= DF(x(t, µ), µ)ξk +

∂F(x(t, µ), µ)
∂µkj
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and

(6)
dρk

dt
= (∇F − tDF)(x(t, µ), µ)ρk +

∂F
∂µk

×F(x(t, µ), µ).

To see (6), writing ξk and ρk simply as ξ and ρ, respectively, and differentiating
ρ by t,

dρ

dt
=

dξ

dt
×F + ξ×dF

dt

= ((DF)ξ +
∂F
∂µk

)×F + ξ×((DF)F).

Let DF = (aij). Then the first component of {((DF)ξ)×F + ξ×((DF)F)}
is, by an easy calculation,∣∣∣∣ Σa2jξj F2

Σa3jξj F3

∣∣∣∣ +
∣∣∣∣ ξ2 Σa2jFj

ξ3 Σa3jFj

∣∣∣∣
= (a22 + a33)(ξ×F)1 − a21(ξ×F)2 − a31(ξ×F)3.

The second and third components are obtained similarly, and we have

((DF)ξ)×F + ξ×((DF)F) = (∇F − tDF)(ξ×F),

which shows (6). Write

∇F − tDF = H, H(µ = µ0) = H0.

Then (6) can be written as

(6’)
dρk

dt
= Hρk +

∂F
∂µk

×F.

For ρk = ρS
k with µ = µ0 we have, solving the first order linear differential

equation (6’), [
exp[−

∫ t

0

H0(γ(s))ds]ρS
k (t, µ0)

]t1

t0

=
∫ t1

t0

exp[−
∫ t

0

H0(γ(s))ds]
{

∂F
∂µk

×F
}

(γ(t))dt.

Letting t0 = 0, t1 → ∞, we get

lim
t→∞

{
exp[−

∫ t

0

H0(γ(s))ds]ρS
k (t, µ0)

}
− ρS

k (0, µ0)
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=
∫ ∞

0

exp[−
∫ ∞

0

H0(γ(s))ds]
{

∂F
∂µk

×F
}

(γ(t))dt.

Similarly we have

lim
t→−∞

{
exp[−

∫ t

0

H0(γ(s))ds]ρU
k (t, µ0)

}
− ρU

k (0, µ0)

=
∫ −∞

0

exp[−
∫ t

0

H0(γ(s))ds]
{

∂F
∂µk

×F
}

(γ(t))dt.

By the condition (Λ), we obtain that

(7) the first and second components of

exp[−
∫ t

0

H0(γ(s))ds]ρS
k (t, µ0) tend to 0 as t → ∞,

and that

(7’) lim
t→−∞

exp[−
∫ t

0

H0(γ(s))ds]ρU
k (t, ρ0) = 0,

respectively, which will be shown later. Then we get

(8) ρU
k (0, µ0) − ρS

k (0, µ0)

= [
∂xU (0, µ0)

∂µk
− ∂xS(0, µ0)

∂µk
]×F0(x0)

=
∂d(µ0)

∂µk
×F0(x0)

=
∫ ∞

−∞
exp[−

∫ t

0

H0(γ(s))ds]
{

∂F
∂µk

×F
}

(γ(t))dt +

 0
0
ck


= Ik +

 0
0
ck

 .

Since there holds, for vectors A,B,F,

(A×F)×(B×F) = ((A×B)·F)F,

the third components of

I1×I2 and (
{

∂d(µ0)
∂µ1

×∂d(µ0)
∂µ2

}
·F0(x0))F0(x0)
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coincide. If (4) holds, then [∂d(µ0)/∂µ1]×[∂d(µ0)/∂µ2] 6= 0. Therefore, we
may take, for example, that∣∣∣∣ ∂d1(µ0)/∂µ1 ∂d1(µ0)/∂µ2

∂d2(µ0)/∂µ1 ∂d2(µ0)/∂µ2

∣∣∣∣ 6= 0.

Then, by the implicite function theorem, there are two functions h1, h2 of
(µ3, ..., µm), defined for |µ3 − µ0

3| + ... + |µm − µ0
m| < δ with sufficiently

small δ > 0, such that, when µ = (µ1, µ2, µ3, ..., µm) varies satisfying µj =
hj(µ3, ..., µm), j = 1, 2, then d1(µ) = d2(µ) = 0. Since d(µ) moves on the
plane Π, we obtain that d(µ) = 0, which proves the existence of homoclinic
loop.

It remains to prove (7) and (7’).
On the local stable manifold for µ = µ0, we have x3 = 0 and

Φ0
3(x1, x2, 0) = 0,

∂Φ0
3(x1, x2, 0)

∂x1
=

∂Φ0
3(x1, x2, 0)

∂x2
= 0.

Then (1,3) and (2,3) elements h0
13 and h0

23 of H0 are zero. As xS
1 (t, µ0) =

exp[λ1t](a + o(1)), xS
2 (t, µ0) = exp[λ2t](b + o(1)), we get, when t → ∞,

H0 =

 λ2 + λ3

λ3 + λ1

λ1 + λ2

 +

 O(exp[λ2t]) 0
O(exp[λ2t]) 0
O(exp[λ2t])

 ,

−
∫ t

0

H0ds =

−(λ2 + λ3)t
−(λ3 + λ1)t

−(λ1 + λ2)t

 +

 O(1) 0
O(1) 0
O(1)

 ,

hence

exp[−
∫ t

0

H0ds] =

 O(exp[−(λ3 + λ1)t]) 0
O(exp[−(λ3 + λ1)t]) 0

O(exp[−(λ1 + λ2)t])

 .

As ρS
k (t) = O(exp[λ2t]), we have

exp[−
∫ t

0

H0ds]ρS
k (t) =

 O(exp[(−λ1 + λ2 − λ3)t])
O(exp[(−λ1 + λ2 − λ3)t])

O(exp[−λ1t])

 .

Since −λ1 +λ2 −λ3 < 0 by (Λ), the first and second elements of the right side
tend to 0 as t → ∞, which proves (7).
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Next, as t → −∞, we have

exp[−
∫ t

0

H0ds] = O(exp[−(λ2 + λ3)t]) + O(1),

ρU
k (t) = O(exp[λ3t]).

exp[−
∫ t

0

H0ds]ρU
k (t) = O(exp[−λ2t]) + O(exp[λ3t]).

Since λ2 < 0 < λ3, the right side tends to 0 as t → ∞, which proves (7’).

REMARK. When F is expanded at (0,0,0) as follows:

F(x, µ0) = Λx + O(|x|2),

Λ =

 λ1 −ν 0
ν λ1 0
0 0 λ3

 ,

λj , ν are real, and λ1 < 0 < λ3,

then we can obtain also a similar result as above.
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