HOMOCLINIC ORBITS FOR 3-DIMENSIONAL SYSTEMS

Ilham ELI

(Received March 6, 1995)

Abstract. Suppose a dynamical system $d\mathbf{x}/dt = \mathbf{F}(\mathbf{x}; \mu), \mathbf{x} \in \mathbf{R}^s, \mu \in \mathbf{R}^m$, has a hyperbolic saddle at $\mathbf{x} = \mathbf{0}$ with a homoclinic loop, for $\mu = \mu^0$. When μ varies from μ^0 , the loop will be destroyed in general. For s = 2, Perko proved that, if μ varies on an (m-1) dimensional hypersurface, then the system remains to admit homoclinic orbit. We consider here the same problem for s = 3. The result is: if μ varies on an (m-2) hypersurface, then the system remains to admit homoclinic orbit.

AMS1991 Mathematics Subject Classification. Primary 58F30; Secondary 34D10.

Key words and phrases. Dynamical system, hyperbolic saddle, homoclinic loop, perturbations.

§1. Introduction

Consider a 3-dimensional dynamical system

(1)
$$\begin{cases} \frac{dx_1}{dt} = F_1(x_1, x_2, x_3; \mu), \\ \frac{dx_2}{dt} = F_2(x_1, x_2, x_3; \mu), \\ \frac{dx_3}{dt} = F_3(x_1, x_2, x_3; \mu), \end{cases}$$

$$F_j(0,0,0;\mu) = \mathbf{0}, j = 1,2,3,$$

in which $\mu \in \mathbf{R}^m$, $m \geq 3$. F_j are supposed to be of C^2 -class with respect to both $\mathbf{x} = {}^t(x_1, x_2, x_3)$ and $\mu = {}^t(\mu_1, ..., \mu_m)$.

Suppose that, for $\mu = \mu^0$, (1) has a hyperbolic saddle at (0,0,0) with a homoclinic loop Γ : $\mathbf{x} = \gamma(t)$. When μ varies from μ^0 , the loop will be destroyed in general. For standard exposition of these facts, see [2]. For 2-dimensional systems of C^{∞} or C^{ω} class, Perko [4] proved that, if μ varies on an (m-1) dimensional hypersurface, then the system remains to admit homoclinic orbit. We consider here 3-dimensional case.

74 I. ELI

Now we suppose that, for $\mu = \mu^0$, $\mathbf{F} = {}^t(F_1, F_2, F_3)$ is expanded at (0,0,0) as follows:

(2)
$$\mathbf{F}(\mathbf{x}, \mu^0) = \Lambda \mathbf{x} + \Phi^0(\mathbf{x}), \quad \Phi^0(\mathbf{x}) = O(|\mathbf{x}|^2),$$

in which

$$\Lambda = \begin{pmatrix} \lambda_1 & \epsilon & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

 λ_j are real and $\lambda_1 \leq \lambda_2 < 0 < \lambda_3$, $\epsilon = 0$ if $\lambda_1 \neq \lambda_2$.

Now we put

(3)
$$I_{j} = \int_{-\infty}^{\infty} \exp\left[-\int_{0}^{t} (\nabla \mathbf{F} - {}^{t}DF)(\gamma(s))ds\right] \left\{\mathbf{F} \times \frac{\partial \mathbf{F}}{\partial \mu_{j}}\right\} (\gamma(t))dt$$

$$= {}^{t}(I_{j1}, I_{j2}, I_{j3}),$$

for j = 1, ..., m, in which we assume $\mu = \mu^0$.

We will prove the following theorem:

Theorem. Suppose that, for $\mu = \mu^0$, (1) has a hyperbolic saddle at (0,0,0) with a homoclinic loop Γ , and $\mathbf{F} = {}^t(F_1, F_2, F_3)$ is expanded at (0,0,0) as shown in (2), with the following condition (Λ) :

$$\lambda_3 > \lambda_2 - \lambda_1$$
.

Further, suppose that

$$\begin{vmatrix} I_{11} & I_{21} \\ I_{12} & I_{22} \end{vmatrix} \neq 0$$

Then there are $\delta > 0$ and two functions h_1, h_2 of $(\mu_3, ..., \mu_m)$ defined for $|\mu_3 - \mu_3^0| + ... + |\mu_m - \mu_m^0| < \delta$ such that, when $\mu = (\mu_1, \mu_2, \mu_3, ..., \mu_m)$ varies satisfying $\mu_j = h_j(\mu_3, ..., \mu_m)$, j = 1, 2, then (1) remains to admit homoclinic loop at (0, 0, 0).

This is a 3-dimensional generalization of a theorem of Perko [4]. Generalizations to higher dimensional case will be further topics.

§2. Proof of the Theorem

For simplicity, we write $\mathbf{F}(\mathbf{x}, \mu^0)$ as $\mathbf{F}_0(\mathbf{x})$, $\partial \mathbf{F}(\mathbf{x}, \mu^0)/\partial \mu_j$ as $\partial \mathbf{F}_0(\mathbf{x})/\partial \mu_j$. By taking suitable coordinates, we can assume that the local stable manifold S_0 and local unstable manifold U_0 are

$$S_0: x_3 = 0$$
 and $U_0: x_1 = x_2 = 0$,

respectively, and that the condition (4) holds still. Then we have, in (2),

$$\Phi_1^0(0,0,x_3) = \Phi_2^0(0,0,x_3) = \Phi_3^0(x_1,x_2,0) = 0.$$

For general μ , we write stable manifold and unstable manifold as M_{μ}^{S} and M_{μ}^{U} , respectively. By the stable manifold theorem [3], these manifolds are C^{2} continuous with respect to μ .

We assume that $\gamma(0) = \mathbf{x}_0 \in S_0$. Let Π be a plane crossing with Γ at \mathbf{x}_0 . Take a point $\mathbf{b} \in U_0 \cap \Gamma$. Let $\mathbf{a}_{\mu} \in M_{\mu}^S$ and $\mathbf{b}_{\mu} \in M_{\mu}^U$ be points such that they depends on μ as C^2 -class functions, and $\mathbf{a}_{\mu_0} = \mathbf{x}_0$, $\mathbf{b}_{\mu_0} = \mathbf{b}$.

Now let $\phi(t, \xi, \mu)$, $\xi \in \mathbf{R}^3$, denote the solution of (1) which satisfies the initial condition $\phi(0, \xi, \mu) = \xi$. Let τ^U be the time such that $\phi(\tau^U, \mathbf{b}, \mu^0) = \mathbf{x}_0$, and τ^S_{μ} , τ^U_{μ} be the times such that $\phi(\tau^S_{\mu}, \mathbf{a}_{\mu}, \mu) \in \Pi$, $\phi(\tau^U_{\mu}, \mathbf{b}_{\mu}, \mu) \in \Pi$. The following lemma is proved easily, as in Perko [4].

Lemma 1. Under the hypothese of Theorem, we can take τ_{μ}^{S} and τ_{μ}^{U} so that $\tau_{\mu}^{S} \to 0$ and $\tau_{\mu}^{U} \to \tau^{U}$ as $\mu \to \mu^{0}$.

Write $\phi(t+\tau_{\mu}^S, \mathbf{a}_{\mu}, \mu)$ as $\mathbf{x}^S(t, \mu)$ and $\phi(t+\tau_{\mu}^U, \mathbf{b}_{\mu}, \mu)$ as $\mathbf{x}^U(t, \mu)$. Put

$$\mathbf{x}^{S}(0,\mu) = \mathbf{x}_{0}^{S}(\mu) \ \ and \ \ \mathbf{x}^{U}(0,\mu) = \mathbf{x}_{0}^{U}(\mu),$$

(5)
$$\mathbf{d}(\mu) = \mathbf{x}_0^U(\mu) - \mathbf{x}_0^S(\mu).$$

If $\mathbf{d}(\mu) = \mathbf{0}$, then $\mathbf{x}^S(t,\mu) = \mathbf{x}^U(t,\mu)$ represents a homoclinic loop. Write $\mathbf{x}^S(t,\mu)$ or $\mathbf{x}^U(t,\mu)$ simply as $\mathbf{x}(t,\mu)$, and

$$\xi_k(t,\mu) = \frac{\partial \mathbf{x}(t,\mu)}{\partial \mu_k},$$

$$\rho_k(t,\mu) = \xi_k(t,\mu) \times \mathbf{F}(\mathbf{x}(t,\mu),\mu),$$

then

$$\frac{d\xi_k}{dt} = D\mathbf{F}(\mathbf{x}(t,\mu),\mu)\xi_k + \frac{\partial \mathbf{F}(\mathbf{x}(t,\mu),\mu)}{\partial \mu_{k,i}}$$

76 I. ELI

and

(6)
$$\frac{d\rho_k}{dt} = (\nabla \mathbf{F} - {}^t D \mathbf{F})(\mathbf{x}(t,\mu),\mu)\rho_k + \frac{\partial \mathbf{F}}{\partial \mu_k} \times \mathbf{F}(\mathbf{x}(t,\mu),\mu).$$

To see (6), writing ξ_k and ρ_k simply as ξ and ρ , respectively, and differentiating ρ by t,

$$\begin{split} \frac{d\rho}{dt} &= \frac{d\xi}{dt} \times \mathbf{F} + \xi \times \frac{d\mathbf{F}}{dt} \\ &= ((D\mathbf{F})\xi + \frac{\partial \mathbf{F}}{\partial \mu_k}) \times \mathbf{F} + \xi \times ((D\mathbf{F})\mathbf{F}). \end{split}$$

Let $D\mathbf{F} = (a_{ij})$. Then the first component of $\{((D\mathbf{F})\xi)\times\mathbf{F} + \xi\times((D\mathbf{F})\mathbf{F})\}$ is, by an easy calculation,

$$\begin{vmatrix} \sum a_{2j}\xi_j & F_2 \\ \sum a_{3j}\xi_j & F_3 \end{vmatrix} + \begin{vmatrix} \xi_2 & \sum a_{2j}F_j \\ \xi_3 & \sum a_{3j}F_j \end{vmatrix}$$

=
$$(a_{22} + a_{33})(\xi \times \mathbf{F})_1 - a_{21}(\xi \times \mathbf{F})_2 - a_{31}(\xi \times \mathbf{F})_3$$
.

The second and third components are obtained similarly, and we have

$$((D\mathbf{F})\xi)\times\mathbf{F} + \xi\times((D\mathbf{F})\mathbf{F}) = (\nabla\mathbf{F} - {}^{t}D\mathbf{F})(\xi\times\mathbf{F}),$$

which shows (6). Write

$$\nabla \mathbf{F} - {}^t D \mathbf{F} = \mathbf{H}, \quad \mathbf{H}(\mu = \mu_0) = \mathbf{H}_0.$$

Then (6) can be written as

(6')
$$\frac{d\rho_k}{dt} = H\rho_k + \frac{\partial \mathbf{F}}{\partial \mu_k} \times \mathbf{F}.$$

For $\rho_k = \rho_k^S$ with $\mu = \mu^0$ we have, solving the first order linear differential equation (6'),

$$\begin{split} & \left[\exp[-\int_0^t \mathbf{H}_0(\gamma(s)) ds] \rho_k^S(t, \mu^0) \right]_{t_0}^{t_1} \\ &= \int_{t_0}^{t_1} \exp[-\int_0^t \mathbf{H}_0(\gamma(s)) ds] \left\{ \frac{\partial \mathbf{F}}{\partial \mu_k} \times \mathbf{F} \right\} (\gamma(t)) dt. \end{split}$$

Letting $t_0 = 0$, $t_1 \to \infty$, we get

$$\lim_{t \to \infty} \left\{ \exp\left[-\int_0^t \mathbf{H}_0(\gamma(s))ds\right] \rho_k^S(t,\mu^0) \right\} - \rho_k^S(0,\mu^0)$$

$$= \int_0^\infty \exp[-\int_0^\infty \mathcal{H}_0(\gamma(s)) ds] \left\{ \frac{\partial \mathbf{F}}{\partial \mu_k} \times \mathbf{F} \right\} (\gamma(t)) dt.$$

Similarly we have

$$\lim_{t \to -\infty} \left\{ \exp\left[-\int_0^t \mathbf{H}_0(\gamma(s))ds\right] \rho_k^U(t,\mu^0) \right\} - \rho_k^U(0,\mu^0)$$
$$= \int_0^{-\infty} \exp\left[-\int_0^t \mathbf{H}_0(\gamma(s))ds\right] \left\{ \frac{\partial \mathbf{F}}{\partial \mu_k} \times \mathbf{F} \right\} (\gamma(t))dt.$$

By the condition (Λ) , we obtain that

(7) the first and second components of

$$\exp[-\int_0^t \mathcal{H}_0(\gamma(s))ds]\rho_k^S(t,\mu_0) \ \ \text{tend to 0 as } t\to\infty,$$

and that

(7')
$$\lim_{t \to -\infty} \exp\left[-\int_0^t \mathcal{H}_0(\gamma(s))ds\right] \rho_k^U(t,\rho^0) = \mathbf{0},$$

respectively, which will be shown later. Then we get

(8)
$$\rho_{k}^{U}(0,\mu^{0}) - \rho_{k}^{S}(0,\mu^{0})$$

$$= \left[\frac{\partial \mathbf{x}^{U}(0,\mu^{0})}{\partial \mu_{k}} - \frac{\partial \mathbf{x}^{S}(0,\mu^{0})}{\partial \mu_{k}}\right] \times \mathbf{F}_{0}(\mathbf{x}_{0})$$

$$= \frac{\partial \mathbf{d}(\mu_{0})}{\partial \mu_{k}} \times \mathbf{F}_{0}(\mathbf{x}_{0})$$

$$= \int_{-\infty}^{\infty} \exp\left[-\int_{0}^{t} \mathbf{H}_{0}(\gamma(s))ds\right] \left\{\frac{\partial \mathbf{F}}{\partial \mu_{k}} \times \mathbf{F}\right\} (\gamma(t))dt + \begin{pmatrix} 0\\0\\c_{k} \end{pmatrix}$$

$$= I_{k} + \begin{pmatrix} 0\\0\\c_{k} \end{pmatrix}.$$

Since there holds, for vectors $\mathbf{A}, \mathbf{B}, \mathbf{F}$,

$$(\mathbf{A} \times \mathbf{F}) \times (\mathbf{B} \times \mathbf{F}) = ((\mathbf{A} \times \mathbf{B}) \cdot \mathbf{F}) \mathbf{F},$$

the third components of

$$\mathbf{I}_1 \times \mathbf{I}_2$$
 and $\left(\left\{ \frac{\partial \mathbf{d}(\mu^0)}{\partial \mu_1} \times \frac{\partial \mathbf{d}(\mu^0)}{\partial \mu_2} \right\} \cdot \mathbf{F}_0(\mathbf{x}_0) \right) \mathbf{F}_0(\mathbf{x}_0)$

78 I. ELI

coincide. If (4) holds, then $[\partial \mathbf{d}(\mu^0)/\partial \mu_1] \times [\partial \mathbf{d}(\mu^0)/\partial \mu_2] \neq 0$. Therefore, we may take, for example, that

$$\begin{vmatrix} \partial d_1(\mu^0)/\partial \mu_1 & \partial d_1(\mu^0)/\partial \mu_2 \\ \partial d_2(\mu^0)/\partial \mu_1 & \partial d_2(\mu^0)/\partial \mu_2 \end{vmatrix} \neq 0.$$

Then, by the implicite function theorem, there are two functions h_1, h_2 of $(\mu_3, ..., \mu_m)$, defined for $|\mu_3 - \mu_3^0| + ... + |\mu_m - \mu_m^0| < \delta$ with sufficiently small $\delta > 0$, such that, when $\mu = (\mu_1, \mu_2, \mu_3, ..., \mu_m)$ varies satisfying $\mu_j = h_j(\mu_3, ..., \mu_m)$, j = 1, 2, then $d_1(\mu) = d_2(\mu) = 0$. Since $\mathbf{d}(\mu)$ moves on the plane Π , we obtain that $\mathbf{d}(\mu) = \mathbf{0}$, which proves the existence of homoclinic loop.

It remains to prove (7) and (7').

On the local stable manifold for $\mu = \mu^0$, we have $x_3 = 0$ and

$$\Phi_3^0(x_1, x_2, 0) = 0, \quad \frac{\partial \Phi_3^0(x_1, x_2, 0)}{\partial x_1} = \frac{\partial \Phi_3^0(x_1, x_2, 0)}{\partial x_2} = 0.$$

Then (1,3) and (2,3) elements h_{13}^0 and h_{23}^0 of H_0 are zero. As $x_1^S(t,\mu^0) = \exp[\lambda_1 t](a+o(1)), x_2^S(t,\mu^0) = \exp[\lambda_2 t](b+o(1)),$ we get, when $t\to\infty$,

$$\mathbf{H}_{0} = \begin{pmatrix} \lambda_{2} + \lambda_{3} & & \\ & \lambda_{3} + \lambda_{1} & \\ & & \lambda_{1} + \lambda_{2} \end{pmatrix} + \begin{pmatrix} O(\exp[\lambda_{2}t]) & 0 \\ O(\exp[\lambda_{2}t]) & 0 \\ O(\exp[\lambda_{2}t]) & \end{pmatrix},$$

$$-\int_0^t H_0 ds = \begin{pmatrix} -(\lambda_2 + \lambda_3)t & & \\ & -(\lambda_3 + \lambda_1)t & \\ & & -(\lambda_1 + \lambda_2)t \end{pmatrix} + \begin{pmatrix} O(1) & 0 \\ O(1) & 0 \\ O(1) \end{pmatrix},$$

hence

$$\exp\left[-\int_0^t \mathbf{H}_0 ds\right] = \begin{pmatrix} O(\exp\left[-(\lambda_3 + \lambda_1)t\right]) & 0\\ O(\exp\left[-(\lambda_3 + \lambda_1)t\right]) & 0\\ O(\exp\left[-(\lambda_1 + \lambda_2)t\right]) \end{pmatrix}.$$

As $\rho_k^S(t) = O(\exp[\lambda_2 t])$, we have

$$\exp\left[-\int_0^t \mathbf{H}_0 ds\right] \rho_k^S(t) = \begin{pmatrix} O(\exp\left[(-\lambda_1 + \lambda_2 - \lambda_3)t\right]) \\ O(\exp\left[(-\lambda_1 + \lambda_2 - \lambda_3)t\right]) \\ O(\exp\left[-\lambda_1 t\right]) \end{pmatrix}.$$

Since $-\lambda_1 + \lambda_2 - \lambda_3 < 0$ by (Λ) , the first and second elements of the right side tend to 0 as $t \to \infty$, which proves (7).

Next, as $t \to -\infty$, we have

$$\exp[-\int_0^t \mathbf{H}_0 ds] = O(\exp[-(\lambda_2 + \lambda_3)t]) + O(1),$$

$$\rho_k^U(t) = O(\exp[\lambda_3 t]).$$

$$\exp[-\int_0^t \mathbf{H}_0 ds] \rho_k^U(t) = O(\exp[-\lambda_2 t]) + O(\exp[\lambda_3 t]).$$

Since $\lambda_2 < 0 < \lambda_3$, the right side tends to **0** as $t \to \infty$, which proves (7').

REMARK. When **F** is expanded at (0,0,0) as follows:

$$\mathbf{F}(\mathbf{x}, \mu^0) = \Lambda \mathbf{x} + O(|\mathbf{x}|^2),$$

$$\Lambda = \begin{pmatrix} \lambda_1 & -\nu & 0 \\ \nu & \lambda_1 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix},$$

$$\lambda_i$$
, ν are real, and $\lambda_1 < 0 < \lambda_3$,

then we can obtain also a similar result as above.

References

- [1] G. F. D. Duff, Limit cycles and rotated vector fields, Ann. Math. (2) 67 (1953), 15-31.
- [2] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci. vol.42, Springer-Verlag, 1983.
- [3] J. Palis, Jr. and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, 1982.
- [4] L. M. Perko, Homoclinic loop and multiple limit cycle bifurcation surfaces, Trans. Amer. Math. Soc. 344 (1994), 101-130.

Ilham Eli

Department of Mathematics, Graduate School of Science and Technology, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263, Japan