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Abstract. Suppose a dynamical system dx/dt = F(x;u),x € R%, u € R™,
has a hyperbolic saddle at x = 0 with a homoclinic loop, for = 9. When py
varies from u®, the loop will be destroyed in general. For s = 2, Perko proved
that, if p varies on an (m — 1) dimensional hypersurface, then the system
remains to admit homoclinic orbit. We consider here the same problem for
s = 3. The result is: if u varies on an (m — 2) hypersurface, then the system
remains to admit homoclinic orbit.
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§1. Introduction

Consider a 3-dimensional dynamical system

d
C;tl = Fi (21,22, 23; 1),
X
(1) 72 = F2($1,902,1’3;M)>
i
7; = F3(x1, 22, x3; 1),

F5(0,0,0;1) = 0,5 = 1,2,3,

in which p € R™, m > 3. F} are supposed to be of C?-class with respect to
both x = (21, 22, 23) and g = (1, ..vs fhm)-

Suppose that, for © = p°, (1) has a hyperbolic saddle at (0,0,0) with a
homoclinic loop T' : x = 7(¢t). When pu varies from u°, the loop will be
destroyed in general. For standard exposition of these facts, see [2]. For 2-
dimensional systems of C* or C* class, Perko [4] proved that, if p varies
on an (m — 1) dimensional hypersurface, then the system remains to admit
homoclinic orbit. We consider here 3-dimensional case.
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Now we suppose that, for u = p®, F = *(Fy, Fy, F3) is expanded at (0,0,0)
as follows:

(2) F(x, 1°) = Ax + 9°(x), @°(x) = O(|x[*),
in which
)\1 € 0
A= 0 X O
0 0 Xs

A;j arereal and A < A <0 < As, e=0 if Ay # Ao,

Now we put

® L= [ el [ (V8- DG P G0

="(I;1,12,1;3),

for j = 1,...,m, in which we assume p = u° .
We will prove the following theorem:

Theorem. Suppose that, for y = p°, (1) has a hyperbolic saddle at (0,0,0)
with a homoclinic loop T, and F = '(Fy, F5, F3) is expanded at (0,0,0) as
shown in (2), with the following condition (A):

)\3 > )\2 — )\1.
Further, suppose that

Ly In
4 0
@ Ly In

Then there are § > 0 and two functions hy, hs of (us, ..., ) defined for
lpg — ps® |+ .. + |t — pm®| < & such that, when p = (1, fi2, 13, -+, fm ) varies
satisfying p1; = hj(ps, ..., ftm), j = 1,2, then (1) remains to admit homoclinic
loop at (0,0,0).

This is a 3-dimensional generalization of a theorem of Perko [4]. General-
izations to higher dimensional case will be further topics.
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§2. Proof of the Theorem

For simplicity, we write F(x, u°) as Fo(x), OF (x, u°)/0p; as OFo(x)/0p;.
By taking suitable coordinates, we can assume that the local stable manifold
So and local unstable manifold Uy are

So:x3=0 and Uy:xy =22 =0,
respectively, and that the condition (4) holds still. Then we have, in (2),
®9(0,0,73) = ®3(0,0, x3) = ®Y(21,22,0) = 0.

For general u, we write stable manifold and unstable manifold as M /f and
M HU , respectively. By the stable manifold theorem [3], these manifolds are C*
continuous with respect to p.

We assume that v(0) = x¢ € Sp. Let II be a plane crossing with I' at xg.
Take a point b € UgNTI'. Let a, € le and b, € M[f be points such that they
depends on j as C?-class functions, and a,, = Xg, b,, = b.

Now let ¢(t, &, 1), € € R3, denote the solution of (1) which satisfies the
initial condition ¢(0, &, 1) = &. Let 7Y be the time such that ¢(7Y, b, u°) = xo,
and TE, T[LJ be the times such that gb(Ti,au,u) e I, gf)(TE,bH,M) € II. The
following lemma is proved easily, as in Perko [4].

Lemma 1. Under the hypothese of Theorem, we can take 75 and Tg so that

o
TS—>OandTg—>TU

P as p — puP.

Write ¢(t + 77, a,, 1) as x5 (¢, 1) and ¢(t + 7Y, by, p) as xY (¢, p). Put

x%(0, 1) = x5 (1) and x"(0, 1) = xg (),

(5) d(p) = x{ (1) — %5 ().

If d(u) = 0, then x°(t,1) = xY(t,iu) represents a homoclinic loop. Write
x(t, u) or xY(t, ) simply as x(t, 1), and

0
Ek(thu') = Xa(;’ku)a

Pk (tv :u’) = &(t, ,U,) x F(x(t, :u)a M)?

then
e,
dt

OF (x(t, 1), 1)

= DF(x(t, jv), 1)k + Opir,
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and

(6) Y~ (VF " DF)x(t. ). )i+ <P x(t ). ).

To see (6), writing & and p, simply as € and p, respectively, and differentiating
p by t,

dp  d§ dF
i EXF—kng
OF
= ((DF)¢ + 8—)><F + (X ((DF)F).
Kk

Let DF = (a;;). Then the first component of {((DF){)xF + {x((DF)F)}
is, by an easy calculation,

52 Zangj

Zagjfj F2
£s Yag; I

Eagjfj F3

= (a2 + a33)(§xF)1 — a1 (§xF)2 — azi (EXF)s.
The second and third components are obtained similarly, and we have
((DF)§)xF + {x((DF)F) = (VF — "DF)({xF),
which shows (6). Write
VF —-'DF =H, H(p=po) = Hp.

Then (6) can be written as
F
(6) — =Hpp + — xF.

For pr = p;y with p = pu° we have, solving the first order linear differential

equation (67),
ty

[exp[— /0 t Ho(y(s))ds]pj (t, MO)}

-/ exol [ Hotr (o)) { 2} (1)

Letting to = 0, t; — oo, we get

t—oo

i el [ ala(e)ashof (.0} - 0.10)
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= [ el [ Horenast { 5 xF | o

Mk
Similarly we have

lim {exp[ | st snasiof <w°>} Y (0.0)

t——oo

= [Tt | " Ho(+(s))ds] {22 <0}ty

By the condition (A), we obtain that

(7) the first and second components of

t
exp[—/ Ho(7(s))ds]p (t, o) tend to 0 as t — oo,
0

and that

¢

(7) Jim_expl— [ Holo(s)dslof (t.%) =0,
0

respectively, which will be shown later. Then we get

(8) Pk (0, 1°) = pg (0, 1u°)

oxY(0,u°)  9x5(0, pu°)
Opig g,

— ad()u()) XFO (XO)

Opg

-/ Z exp|— / Hy((s)ds] {ng} (+(t))dt + ( : )

Ck
0
=I.+|0|.
Cr

Since there holds, for vectors A, B, F,

= [ ] xFo(x0)

(AxF)x(BxF) = ((AxB)-F)F,
the third components of

od(°)  od(n°)
Oy Opio

I, and ({ }'Fo<xD>>Fo<xO>
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coincide. If (4) holds, then [Od(u®)/0u1]x[0d(u°)/Ouz] # 0. Therefore, we
may take, for example, that

9dy(1°) /01 9dy(1°)/Ope 20
Ada(1°) /01 Dda(1°)/Opiz '

Then, by the implicite function theorem, there are two functions hi,hy of
(U3, oy i), defined for |uz — pd| + ... + |pm — p2,| < § with sufficiently
small § > 0, such that, when pu = (p1, o, 3, .., ) varies satisfying p; =
hj(ps, .oy tm), j = 1,2, then di(p) = do(p) = 0. Since d(p) moves on the
plane II, we obtain that d(x) = 0, which proves the existence of homoclinic
loop.

It remains to prove (7) and (7).

On the local stable manifold for u = u°, we have x3 = 0 and

8@03;7;5,0 8(I)Ol',x,0
@g($17x270) :0, S(alxl 2 ) — 3(8;2 2 ) —0

Then (1,3) and (2,3) elements kY5 and h3; of Hy are zero. As z7(t,u%) =
exp[Ait](a+ o(1)), 25 (t, u°) = exp[A2t](b + 0o(1)), we get, when ¢ — oo,

Ao + A3 O(exp[/\gt]) 0
Hy = Az + A + | O(exp[A2t]) 0],
)\1 + )\2 O(exp[)\gﬂ)
t —(A2 + A3)t o) 0
—/ Hods — —Og 4 A +{ o) o,
0 —()\1 + )\Q)t 0(1)
hence

t O(exp[—(/\g + Al)t]) 0
exp[—/ Hods] = | O(exp[—(As+A1)t]) 0 ].
0 O(exp[—(A1 + A2)t])
As pi (t) = O(exp[Aat]), we have
O(exp[(=A1 + A2 — A3)t])

exp|— / Hodsl oS () = [ Olexpl(—As + Ae — A])
0 O(exp[—A1t])

Since —A1 + A2 — A3 < 0 by (A), the first and second elements of the right side
tend to 0 as t — oo, which proves (7).
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Next, as t — —oo, we have
t
exp[—/ Hods] = O(expl— (s + As)t]) + O(1),
0

pi (t) = O(exp[Ast]).
exp|— /0 Hods]pl (£) = O(exp[—Aat]) + O(exp[Ast]).

Since A2 < 0 < As, the right side tends to 0 as t — oo, which proves (7).
REMARK. When F is expanded at (0,0,0) as follows:

F(x, 1) = Ax + O(|x[?),

)\1 4 0
A= v Al 0 5
0 0 X3

Aj, v oarereal, and A\ <0 < Ag,

then we can obtain also a similar result as above.
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