SUT Journal of Mathematics Vol. 33, No. 1 (1997), 105–113

REGULARITY OF SOLUTIONS TO THE WAVE EQUATION WITH A NON SMOOTH COEFFICIENT

Keiichi Kato

(Received March 21, 1997)

Abstract. In this paper, we show that the regularity of solutions to wave equation with a non smooth coefficient propagates through the points at which the coefficient is singular.

AMS 1991 Mathematics Subject Classification. Primary 35L05

Key words and phrases. wave equation, regularity, propagation of singularity

1. Introduction

In this paper, we shall study the regularity of solutions to the wave equation

(1.1)
$$\Box u + a(t, x)u = 0$$

with a non smooth coefficient a(t, x) in an open neighbourhood Ω of the origin in $\mathbf{R}_t \times \mathbf{R}_x^n$, where $\Box = \frac{\partial^2}{\partial t}^2 - \Delta_x = \frac{\partial^2}{\partial t}^2 - \sum_{i=1}^n \frac{\partial^2}{\partial x_i}^2$. We assume that *a* satisfies the following assumption.

Assumption A. The coefficient *a* is in $\mathcal{D}'(\Omega)$ and there exists a positive number s_1 with $\frac{n+1}{2} - 1 < s_1$ and a vector $v \in \mathbf{R}^n$ with |v| < 1 such that

$$(1+\tau^2+|\xi|^2)^{s_1/2}(1+|\tau+v\cdot\xi|^2)^{s_2/2}\widehat{\varphi a}(\tau,\xi)\in L^2(\mathbf{R}^{n+1}_{\tau,\xi})$$

for any $s_2 > 0$ and any $\varphi(t, x) \in C_0^{\infty}(\Omega)$, where $\widehat{\varphi}a$ is the Fourier transform of φa and (τ, ξ) are the dual variables of (t, x).

We show that if a solution of (1.1) has H^r -regularity in $Char \Box \cap T^*K \setminus 0$ microlocally with a domain K, then the solution has H^r -regularity in $Char \Box \cap T^*\widehat{K} \setminus 0$, where \widehat{K} is a domain in which the value of the solution is determined by the value of the solution in K. (In the following, we call this domain a domain of determine.) To illustrate our results, let us suppose for the moment that a vanishes on $t \leq 0$ and $1 \leq t$. Our result asserts that if u is smooth in t < 0, then u is smooth in t > 1. In other words, the regularity of u propagates through the domain where a is singular.

Rauch [8] has studied the propagation of singularities of solutions to semilinear wave equations, $\Box u = f(u)$. He has shown that if a solution is in $H^s(s > \frac{n+1}{2})$ and if the solution is in $H^r(s < r < 2s - \frac{n+1}{2})$ at (x_0, ξ_0) microlocally, then the solution is in H^r on the null bicharcteristic curve starting from (x_0, ξ_0) . Bony [2] has had the same result as Rauch[8] for general nonlinear equations. Beals and Reed [1] investigated the propagation of H^r – singularity $(s < r < 2s - \frac{n+1}{2})$ for linear strictly hyperbolic equations assuming that the coefficients are in $H^s(s > \frac{n+1}{2})$. They have shown that if a solution is in $H^s(s > \frac{n+1}{2})$ and if the solutions is in $H^r(s < r < 2s - \frac{n+1}{2})$ at (x_0,ξ_0) microlocally, the solution is in H^r on the null bicharcteristic curve starting from (x_0, ξ_0) . Their technique is due to one in Rauch [8] and the commutator estimate. Bony [3][4] and Melrose and Ritter [7] studied H^r -regularity for all r > s for semilinear wave equations. Their technique to get regularity is to use suitable vector fields. In this article, we treat H^r -regularity for all r > sof solutions to wave equations with a non smooth coefficient assuming that the coefficient a is in $H^s(s > \frac{n+1}{2})$. Our technique is Lorentz transformation and multiplication estimate in some Sobolev spaces which is essentially due to Rauch [8].

To state the main theorem precisely, we introduce some notations and function spaces. For $s \in \mathbf{R}$, $H^s(\mathbf{R}^n)$ is the Sobolev space of order s and for a domain \mathcal{O} in \mathbf{R}^n , $H^s_{loc}(\mathcal{O}) = \{u \in \mathcal{D}'(\mathcal{O}); \varphi u \in H^s(\mathbf{R}^n) \text{ for any } \varphi \in \mathcal{D}(\mathcal{O})\}$. For $r \in \mathbf{R}$, we say $u \in H^r$ at $(t_0, x_0, \tau_0, \xi_0) \in T^*(\Omega) \setminus 0$ microlocally, if there exist $\varphi(t, x) \in C_0^{\infty}(\Omega)$ with $\varphi(t_0, x_0) \neq 0$ and a conic neighborhood $\Xi(\tau_0, \xi_0)$ of (τ_0, ξ_0) in $\mathbf{R}^{n+1}_{\tau,\xi}$ such that

$$\iint_{\Xi(\tau_0,\xi_0)} (1+|\tau|^2+|\xi|^2)^r |\widehat{\varphi u}|^2 d\tau d\xi < +\infty.$$

Char $\Box = \{(t, x, \tau, \xi) \in T^* \mathbf{R}^{n+1} \setminus 0; \tau^2 - |\xi|^2 = 0\}.$ We write for $(t_0, x_0) \in \mathbf{R}_t \times \mathbf{R}_x^n$,

$$C^{-}_{(t_0,x_0)} = \{(t,x) \in \mathbf{R}^{n+1}; (t-t_0)^2 \ge |x-x_0|^2 \text{ and } t \le t_0\}.$$

For $w \in \mathbf{R}^n$, we set $T_w = \{(t,x) \in \mathbf{R}^{n+1}_{t,x}; t - w \cdot x = 0\}$. We call an ndimensional hyperplane T_w is spacelike if |w| < 1. For $K \subset T_w$ with |w| < 1and $K \subset \Omega$,

$$\widehat{K} = \{(t,x) \in \Omega; [C^-_{(t,x)} \cap T_w] \subset K \text{ and } [C^-_{(t,x)} \cap \{t - w \cdot x \ge 0\}] \subset \Omega\}$$

is the domain of determine with respect to K in Ω . The main result of this paper is given by the following theorem.

106

Theorem. Let Ω be as above and let $K \subset \Omega$ be a subset of a hyperplane $T_w = \{(t, x) \in \mathbf{R}_{t,x}^{n+1}; t - w \cdot x = 0\}$ with |w| < 1. Let a satisfy Assumption A and s be a positive real number satisfying $s_1 + s - \frac{n+1}{2} > 0$. Suppose that u satisfies $(1.1), u \in H^s_{loc}(\Omega)$ and

$$u \in H^r$$
 on $(K \times \mathbf{R}^{n+1}_{\tau, \mathcal{E}} \setminus \{0\}) \cap Char \square$ microlocally.

Then

(1.2)
$$(1+\tau^2+|\xi|^2)^{s/2} (1+|\tau+v\cdot\xi|^2)^{(r-s)/2} \widehat{\varphi u}(\tau,\xi) \in L^2(\mathbf{R}^{n+1}_{\tau,\xi})$$

for all $\varphi(t,x) \in C_0^{\infty}(\widehat{K})$ where \widehat{K} is the domain of determine with respect to K in Ω .

Remark 1. A typical example of the coefficient a is given by a(t,x) = f(x+vt) with $f(x) \in H^{s_1}_{loc}(\mathbf{R}^n)$.

Remark 2. The theorem implies, in particular, $u \in H^r$ on $(\widehat{K} \times \mathbf{R}^{n+1}_{\tau,\xi} \setminus \{0\}) \cap Char \square$ microlocally.

Remark 3. If $a(t, x) \in C^{\infty}$ in a neighborhood of $(t_0, x_0) \in \widehat{K}$, then $u \in H^r$ in a neighborhood of (t_0, x_0) .

The proof of the theorem will be given by a series of lemmas in $\S 2$.

The author would like to thank Professor Kenji Yajima for helpful discussions.

2. Proof of Theorem

We prepare the following three lemmas to prove the theorem.

Lemma 1. If the theorem holds when v = 0, so does it for general |v| < 1. *Proof.* Without loss of generality, we may assume $v = (v_1, 0, ..., 0)$. By the Lorentz transformation $t = \frac{t'+v_1x'_1}{\sqrt{1-v_1^2}}, x_1 = \frac{x'_1+t'v_1}{\sqrt{1-v_1^2}}, x_2 = x'_2, ..., x_n = x'_n$, the equation (1.1) is transformed to

$$\Box \,\widetilde{u}(t,x) + \widetilde{a}(t,x)\widetilde{u}(t,x) = 0,$$

where

$$\widetilde{u}(t,x) = u(\frac{t+v_1x_1}{\sqrt{1-v_1^2}}, \frac{x_1+tv_1}{\sqrt{1-v_1^2}}, x_2, \dots, x_n)$$

and

$$\widetilde{a}(t,x) = a(\frac{t+v_1x_1}{\sqrt{1-v_1^2}}, \frac{x_1+tv_1}{\sqrt{1-v_1^2}}, x_2, \dots, x_n).$$

We denote the image of Ω , K and \hat{K} under the Lorentz transformation by $\tilde{\Omega}$, \tilde{K} and \tilde{K} respectively. Since Lorentz transformation maps spacelike hyperplanes

to spacelike hyperplanes, \widetilde{K} is spacelike. Obviously, $\widetilde{u} \in H^s_{loc}(\widetilde{\Omega})$ and $\widetilde{u} \in H^r$ on $(\widetilde{K} \times \mathbf{R}^{n+1}_{\tau,\xi} \setminus \{0\}) \cap Char \square$ microlocally.

Note that $\tilde{a}(t,x)$ satisfies Assumption A with v = 0. Indeed, for any $\varphi(t,x) \in C_0^{\infty}(\tilde{\Omega})$, we have, with the same notation for $\tilde{\varphi}$ as above,

where we made the change of variables $\tau = \frac{\tau' + v_1 \xi'_1}{\sqrt{1 - v_1^2}}, \xi_1 = \frac{\xi'_1 + \tau' v_1}{\sqrt{1 - v_1^2}}, \xi_2 = \xi'_2, \ldots, \xi_n = \xi'_n$ in the second step. If the statement of the theorem for the case v = 0 is valid, we have $(1 + \tau^2 + |\xi|^2)^{s/2} (1 + \tau^2)^{(s-r)/2} |\widehat{\varphi u}(\tau, \xi)| \in L^2(\mathbf{R}^n_{\tau,\xi})$ for all $\varphi(t, x) \in C_0^{\infty}(\widetilde{K})$. Hence by the argument similar to (2.1), we obtain

$$\iint (1+\tau^2+|\xi|^2)^s (1+|\tau+v\cdot\xi|^2)^{r-s} |\widehat{\widetilde{\varphi}u}(\tau,\xi)|^2 d\tau d\xi < +\infty. \quad \Box$$

Lemma 2. Let $0 \le s, t \le \frac{n}{2}$ with $s + t - \frac{n}{2} > 0$ and suppose that $u \in H^s_{loc}(\Omega)$ and $v \in H^t_{loc}(\Omega)$. Then

$$uv \in H^{s+t-(n/2)-\epsilon}_{loc}(\Omega)$$

for any $\epsilon > 0$.

Proof. Replacing u and v by φu and φv respectively with $\varphi \in C_0^{\infty}(\Omega)$, it suffices to show $uv \in H^{s+t-(n/2)-\epsilon}(\mathbf{R}^n)$ when $u \in H^s(\mathbf{R}^n)$ and $v \in H^t(\mathbf{R}^n)$. Write $\sqrt{1+|\xi|^2} = \langle \xi \rangle$. Then

$$\begin{aligned} &\langle \xi \rangle^{s+t-(n/2)-\epsilon} |\widehat{uv}(\xi)| \\ = &C \langle \xi \rangle^{s+t-(n/2)-\epsilon} \left| \int \widehat{u}(\xi-\eta) \widehat{v}(\eta) d\eta \right| \end{aligned}$$

108

$$\leq C\langle\xi\rangle^{s+t-(n/2)-\epsilon} \Big(\int_{D_1} |\widehat{u}(\xi-\eta)\widehat{v}(\eta)|d\eta + \int_{D_2} |\widehat{u}(\xi-\eta)\widehat{v}(\eta)|d\eta \\ + \int_{D_3} |\widehat{u}(\xi-\eta)\widehat{v}(\eta)|d\eta + \int_{D_4} |\widehat{u}(\xi-\eta)\widehat{v}(\eta)|d\eta \Big)$$
$$= I_1 + I_2 + I_3 + I_4,$$

where

$$D1 = \{ \eta \in \mathbf{R}^{n}; |\xi - \eta| \ge \frac{1}{2} |\xi| \text{ and } \frac{1}{2} |\xi| \ge |\eta| \},$$

$$D2 = \{ \eta \in \mathbf{R}^{n}; |\xi - \eta| \le \frac{1}{2} |\xi| \text{ and } \frac{1}{2} |\xi| \le |\eta| \},$$

$$D3 = \{ \eta \in \mathbf{R}^{n}; |\xi - \eta| \ge |\eta| \ge \frac{1}{2} |\xi| \},$$

$$D4 = \{ \eta \in \mathbf{R}^{n}; |\eta| \ge |\xi - \eta| \ge \frac{1}{2} |\xi| \}.$$

As s > 0 and $t - \frac{n}{2} - \epsilon < 0$,

$$I_{1} \leq C \int_{D1} \langle \xi - \eta \rangle^{s} |\widehat{u}(\xi - \eta)| \langle \eta \rangle^{t - (n/2) - \epsilon} |\widehat{v}(\eta)| d\eta$$
$$\leq C \int_{\mathbf{R}^{n}} \langle \xi - \eta \rangle^{s} |\widehat{u}(\xi - \eta)| \langle \eta \rangle^{t - (n/2) - \epsilon} |\widehat{v}(\eta)| d\eta.$$

Since $\langle \xi \rangle^s |\hat{u}(\xi)| \in L^2$ and $\langle \xi \rangle^{t-(n/2)-\epsilon} |\hat{v}(\xi)| \in L^1$, Hausdorff-Young's inequality implies that $I_1 \in L^2(\mathbf{R}^n_{\xi})$. Using the same argument as above, we see I_2 also belongs to $L^2(\mathbf{R}^n_{\xi})$. As $s + t - \frac{n}{2} - \epsilon > 0$ and $t - \frac{n}{2} - \epsilon < 0$,

$$I_{3} \leq C \int_{D3} \langle \xi - \eta \rangle^{s+t-(n/2)-\epsilon} |\widehat{u}(\xi - \eta)\widehat{v}(\eta)| d\eta$$

$$\leq C \int_{D3} \langle \xi - \eta \rangle^{s} |\widehat{u}(\xi - \eta)| \langle \eta \rangle^{t-(n/2)-\epsilon} |\widehat{v}(\eta)| d\eta$$

$$\leq C \int_{\mathbf{R}^{n}} \langle \xi - \eta \rangle^{s} |\widehat{u}(\xi - \eta)| \langle \eta \rangle^{t-(n/2)-\epsilon} |\widehat{v}(\eta)| d\eta.$$

Since $\langle \xi \rangle^s | \widehat{u}(\xi) | \in L^2$ and $\langle \xi \rangle^{t-(n/2)-\epsilon} | \widehat{v}(\xi) | \in L^1$, Hausdorff-Young's inequality implies that $I_3 \in L^2(\mathbf{R}^n_{\xi})$. Using the same argument as above, we see $I_4 \in L^2(\mathbf{R}^n_{\xi})$. Hence,

$$\langle \xi \rangle^{s+t-(n/2)-\epsilon} |\widehat{uv}(\xi)| \in L^2(\mathbf{R}^n_{\xi}).$$

Definition. For $s, s' \in \mathbf{R}$, we say $u \in H^{s,s'}(\mathbf{R}^{n+1}_{t,x})$ if $u \in \mathcal{S}'(\mathbf{R}^{n+1}_{t,x})$ and

$$(1+\tau^2+|\xi|^2)^{s/2}(1+\tau^2)^{s'/2}\widehat{u}(\tau,\xi)\in L^2(\mathbf{R}^{n+1}_{\tau,\xi}).$$

 $H^{s,s'}_{loc}(\Omega) = \{\varphi u \in \mathcal{D}'(\Omega); \varphi u \in H^{s,s'}(\mathbf{R}^{n+1}_{t,x}) \text{ and for any } \varphi \in C^{\infty}_0(\Omega)\}.$

Remark. The $H_{loc}^{s,s'}(\Omega)$ in this definition is slightly different from the one in Hörmander's book[5].

Lemma 3. Let $0 < s \le \frac{n+1}{2}$ and $\frac{n+1}{2} - 1 < s_1 \le \frac{n+1}{2}$ with $s + s_1 - \frac{n+1}{2} > 0$ and let r > s. Suppose that $u \in H^{s,r-s}_{loc}(\Omega)$ and $v \in H^{s_1,s_2}_{loc}(\Omega)$ for all $s_2 > 0$, then

$$uv \in H^{t_1,t_2}_{loc}(\Omega)$$

where $t_1 = s + s_1 - \frac{n+1}{2} - \epsilon$ and $t_2 = r - s$ for any $\epsilon > 0$.

Proof. Replacing u and v by φu and φv respectively with $\varphi \in C_0^{\infty}(\Omega)$, it suffices to show $uv \in H^{t_1,t_2}(\mathbf{R}_{t,x}^{n+1})$ for $u \in H^{s,r-s}(\mathbf{R}_{t,x}^{n+1})$ and $v \in H^{s_1,s_2}(\mathbf{R}_{t,x}^{n+1})$. We denote $(1 + \tau^2 + |\xi|^2)^{1/2}$ and $(1 + \tau^2)^{1/2}$ by $\langle \tau, \xi \rangle$ and $\langle \tau \rangle$ respectively. We set $\zeta = (\tau, \xi)$. We show that $\langle \tau, \xi \rangle^{t_1} \langle \tau \rangle^{t_2} |\widehat{uv}(\tau, \xi)| \in L^2(\mathbf{R}_{\tau,\xi}^{n+1})$.

$$\begin{aligned} &\langle \tau, \xi \rangle^{t_1} \langle \tau \rangle^{t_2} |\widehat{uv}(\tau, \xi)| \\ &= \langle \tau, \xi \rangle^{t_1} \langle \tau \rangle^{t_2} \left| \iint \widehat{u}(\tau - \tau', \xi - \xi') \widehat{v}(\tau', \xi') d\tau' d\xi' \right| \\ &\leq \langle \tau, \xi \rangle^{t_1} \langle \tau \rangle^{t_2} \sum_{i=1}^8 \iint_{D_i} |\widehat{u}(\tau - \tau', \xi - \xi') \widehat{v}(\tau', \xi')| d\tau' d\xi' = \sum_{i=1}^8 J_i, \end{aligned}$$

where the domain of the integrations Di are as follows:

(D1)
$$|\zeta - \zeta'| \ge \frac{1}{2} |\zeta| \ge |\zeta'|, \qquad |\tau - \tau'| \ge \frac{1}{2} |\tau|;$$

(D2)
$$|\zeta - \zeta'| \ge \frac{1}{2} |\zeta| \ge |\zeta'|, \quad |\tau'| \ge \frac{1}{2} |\tau|$$

(D3)
$$|\zeta - \zeta'| \le \frac{1}{2} |\zeta| \le |\zeta'|, \quad |\tau - \tau'| \ge \frac{1}{2} |\tau|;$$

(D4)
$$|\zeta - \zeta'| \le \frac{1}{2} |\zeta| \le |\zeta'|, \qquad |\tau'| \ge \frac{1}{2} |\tau|;$$

(D5)
$$\frac{1}{2}|\zeta| \le |\zeta - \zeta'| \le |\zeta'|, \qquad |\tau - \tau'| \ge \frac{1}{2}|\tau|;$$

(D6)
$$\frac{1}{2}|\zeta| \le |\zeta - \zeta'| \le |\zeta'|, \qquad |\tau'| \ge \frac{1}{2}|\tau|;$$

(D7)
$$\frac{1}{2}|\zeta| \le |\zeta'| \le |\zeta - \zeta'|, \qquad |\tau - \tau'| \ge \frac{1}{2}|\tau|;$$

(D8)
$$\frac{1}{2}|\zeta| \le |\zeta'| \le |\zeta - \zeta'|, \qquad |\tau'| \ge \frac{1}{2}|\tau|$$

First we estimate J_1 .

$$J_{1} \leq C \iint_{\mathbf{R}^{n+1}} \langle \tau - \tau', \xi - \xi' \rangle^{s} \langle \tau - \tau' \rangle^{r-s} |\widehat{u}(\tau - \tau', \xi - \xi')| \\ \times \langle \tau', \xi' \rangle^{s_{1} - \frac{n+1}{2} - \epsilon} |\widehat{v}(\tau', \xi')| d\tau' d\xi'.$$

Since $\langle \tau, \xi \rangle^s \langle \tau \rangle^{r-s} |\widehat{u}(\tau, \xi)| \in L^2(\mathbf{R}^{n+1}_{\tau, \xi}) \text{ and } \langle \tau, \xi \rangle^{s_1 - \frac{n+1}{2} - \epsilon} |\widehat{v}(\tau, \xi)| \in L^1(\mathbf{R}^{n+1}_{\tau, \xi}),$

Housdorff-Young's inequality yields that $J_1 \in L^2(\mathbf{R}_{\tau,\xi}^{n+1})$. Using the same argument as above, we see that J_2, J_3 and J_4 are also in $L^2(\mathbf{R}_{\tau,\xi}^{n+1})$. Next we estimate J_5 . Note that $\langle \tau, \xi \rangle^{t_1} \leq C \langle \tau', \xi' \rangle^{t_1} \leq C \langle \tau - \tau', \xi - \xi' \rangle^{s - \frac{n+1}{2} - \epsilon} \langle \tau', \xi' \rangle^{s_1}$ in D5. Hence,

$$J_{5} \leq C \iint_{\mathbf{R}^{n+1}} \langle \tau - \tau', \xi - \xi' \rangle^{s - \frac{n+1}{2} - \epsilon} \langle \tau - \tau' \rangle^{r-s} |\widehat{u}(\tau - \tau', \xi - \xi')| \\ \times \langle \tau', \xi' \rangle^{s_{1}} |\widehat{v}(\tau', \xi')| d\tau' d\xi'.$$

Since $\langle \tau, \xi \rangle^{s - \frac{n+1}{2} - \epsilon} \langle \tau \rangle^{r-s} |\widehat{u}(\tau, \xi)| \in L^1(\mathbf{R}^{n+1}_{\tau, \xi}) \text{ and } \langle \tau, \xi \rangle^{s_1} |\widehat{v}(\tau, \xi)| \in L^2(\mathbf{R}^{n+1}_{\tau, \xi}),$

Hausdorff-Young's inequality proves $J_5 \in L^2(\mathbf{R}^{n+1}_{\tau,\xi})$. Using the same argument as above, we see that J_6, J_7 and J_8 are also in $L^2(\mathbf{R}^{n+1}_{\tau,\xi})$.

Proof of the theorem. By virtue of the lemma 1, it suffices to prove the theorem for the case v = 0. We devide the proof of the theorem into two steps. We shall show in the first step that $u \in H_{loc}^{\frac{n+1}{2}}(\widehat{K})$ by using the lemma 2, and in the second step $u \in H_{loc}^{s,r-s}(\widehat{K})$ by using the lemma 3.

(First Step) Let $(t_0, x_0, \tau_0, \xi_0) \in T^* \widehat{K} \setminus 0 \cap Char \square$. Since \widehat{K} is the domain of determine with respect to K in Ω , there exists a point $(\widetilde{t_0}, \widetilde{x_0}) \in K$ such that the null bicharacteristic curve starting from the point $(\widetilde{t_0}, \widetilde{x_0}, \tau_0, \xi_0)$ passes through $(t_0, x_0, \tau_0, \xi_0)$. The assumption A implies $a \in H^{s_1}_{loc}(\Omega)$ and u is in $H^s_{loc}(\Omega)$. Hence the lemma 2 yields $u a \in H^{s+s_1-(n+1)/2-\epsilon}_{loc}(\Omega)$ for any $\epsilon > 0$. Thus $\square u = -au \in H^{s+s_1-(n+1)/2-\epsilon}_{loc}(\Omega)$ and $u \in H^r$ at $(\widetilde{t_0}, \widetilde{x_0}, \tau_0, \xi_0)$ microlocally. It follows by

Hörmander's theorem for propagation of singularities (e.g. Taylor[6]) that

$$u \in H^{\min(s+\delta,r)}$$
 at $(t_0, x_0, \tau_0, \xi_0)$ microlocally with $\delta = s_1 - \frac{n+1}{2} + 1 - \epsilon$.

If $(t_0, x_0, \tau_0, \xi_0) \in T^* \widehat{K} \setminus 0 \cap (Char \Box)^c$ where $(Char \Box)^c$ is the complement of $Char \Box$ in $T^* \widehat{K} \setminus 0$, then \Box is elliptic at $(t_0, x_0, \tau_0, \xi_0)$ microlocally. Thus

 $u \in H^{\min(s+\delta+1,r)}$ at $(t_0, x_0, \tau_0, \xi_0)$ microlocally.

Hence, since $(t_0, x_0) \in \widehat{K}$ is chosen arbitrarily, we have $u \in H^{\min(s+\delta,r)}(\widehat{K})$. Repeating the same argument as above (m-1)-times until $s + m\delta$ becomes greater than $\frac{n+1}{2}$, we have

(2.2)
$$u \in H^{\min(s+m\delta,r)}(\widehat{K}), \quad s + (m-1)\delta \le \frac{n+1}{2} < s + m\delta.$$

Note that if $s + m\delta > \frac{n+1}{2}$, the argument as above does not work as the lemma 2 does not apply to this case. If $r \leq s + m\delta$, we are done, since (2.2) implies (1.2).

(Second Step) Suppose that $r > s + m\delta$. Note that if b > 0, $H^{s-b,s'+b} \subset H^{s,s'}$. Hence (2.2) shows

(2.3)
$$u \in H^{s+(m-1)\delta,\delta}_{loc}(\widehat{K})$$

By virtue of (2.3) and the assumption A, the lemma 3 implies that

with $t_1 = s + (m-1)\delta + s_1 - \frac{n+1}{2} - \epsilon$. We use the same notation as in the first step. Let $(t_0, x_0, \tau_0, \xi_0) \in T^* \widehat{K} \setminus 0 \cap Char \square$. The same argument as in the first step guarantees the existence of the null bicharacteristic curve Γ starting from the point $(\widetilde{t_0}, \widetilde{x_0}, \tau_0, \xi_0)$ and passing through $(t_0, x_0, \tau_0, \xi_0)$. Recalling the definition of $H^{s,s'}$, we immediately have from (2.4) that

(2.5)
$$au \in H^{s+m\delta+s_1-\frac{n+1}{2}-\epsilon}$$
 on $\Gamma \cap T^*\widehat{K} \setminus 0$ microlocally.

From (2.5) and the assumption that $u \in H^r$ at $(\tilde{t_0}, \tilde{x_0}, \tau_0, \xi_0)$, Hörmander's theorem for propagation of singularities implies $u \in H^{min(s+(m+1)\delta,r)}$ at $(t_0, x_0, \tau_0, \xi_0)$ microlocally. We set $\Sigma_{\epsilon_1} = \{(\tau, \xi) \in \mathbf{R}^{n+1}; \tau^2 \ge (1+\epsilon_1)|\xi|^2 \text{ or } \tau^2 \le (1-\epsilon_1)|\xi|^2\}$. Since $(t_0, x_0, \tau_0, \xi_0)$ is chosen arbitrarily in $T^* \widehat{K} \setminus 0 \cap Char \Box$, we have

(2.6) $u \in H^{s+(m+1)\delta}$ on $\widetilde{K} \times \Sigma_{\epsilon_1}^c$ microlocally,

for sufficiently small $\epsilon_1 > 0$ where $\Sigma_{\epsilon_1}^c$ is the complement of Σ_{ϵ_1} in $\mathbf{R}_{\tau,\xi}^{n+1} \setminus \{0\}$. We take and fix $\varphi(t,x) \in C_0^{\infty}(\widehat{K})$ and we define F(t,x) by

(2.7)
$$\Box(\varphi u) = \frac{\partial \varphi}{\partial t} \frac{\partial u}{\partial t} + \frac{\partial^2 \varphi}{\partial t^2} u - 2\nabla \varphi \cdot \nabla u - (\triangle \varphi) u - \varphi a u =: F(t, x).$$

From (2.3), (2.4) and the fact that $s_1 - \frac{n+1}{2} - \epsilon > -1$, we have $F(t, x) \in H^{s+(m-1)\delta-1,\delta}(\widehat{K})$. Taking the Fourier transformation of both sides of (2.7), we

have $(\tau^2 - |\xi|^2)\widehat{\varphi u}(\tau,\xi) = \widehat{F}(\tau,\xi)$. From the fact $\left|\frac{\tau^2 + |\xi|^2}{\tau^2 - |\xi|^2}\right| \leq C$ on Σ_{ϵ_1} , we obtain

(2.8)
$$(1 + \tau^2 + |\xi|^2)^{s + (m-1)\delta + 1} (1 + \tau^2)^{\delta} |\widehat{\varphi u}(\tau, \xi)|^2 \in L^1(\Sigma_{\epsilon_1}).$$

Hence we have from (2.6), (2.8) and the fact that $\delta = s_1 - \frac{n+1}{2} + 1 - \epsilon < 1$, $u \in H_{loc}^{min(s+m\delta,r-\delta),\delta}(\widehat{K})$. Repeating the same argument as above (l-1)-times until $r \leq s + m\delta + l\delta$, we obtain $u \in H_{loc}^{r-l\delta,l\delta}(\widehat{K})$. Since $s < r - l\delta$, this implies (1.2). \Box

References

- M. Beals and R. Reed, Propagation of Singularities for Hyperbolic Pseudodifferential Operators with Non-Smooth Coefficients, Comm. on Pure and Appl. Math. 35 (1982), 169–184.
- J. M. Bony, Calcul symbolique et propagation des sungularités pour les équation aux dérivées partielles non linéaire, Ann. Scient. Ec. Norm. Sup.4e serie t. 14 (1981), 209–246.
- J. M. Bony, Propagation des singularités pour les équation aux dérivées partielles non linéaire, Seminaire Goulauic-Schwartz 22 (1979–1980).
- J. M. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Taniguchi Symp. H. E. R. T. Katata (1984), 11–49.
- 5. L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, 1964.
- 6. M. E. Taylor, Pseudodifferential Operators, Princeton Univ. Press, 1981.
- 7. R. Melrose and N. Ritter, Interaction of nonlinear progressing waves for semilinear wave equations, Ann. of Math. **121** (1985), 187–213.
- J. Rauch, Singularities of solutions to semilinear wave equations, J. Math. pures et appl. 58 (1979), 299–308.

Keiichi Kato

Department of Mathematics, Science University of Tokyo Wakamiya 26, Shinjuku, Tokyo 162 Japan

E-mail: kato@ma.kagu.sut.ac.jp