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Abstract. In this paper, we show that the regularity of solutions to wave
equation with a non smooth coefficient propagates through the points at which
the coefficient is singular.
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1. Introduction

In this paper, we shall study the regularity of solutions to the wave equation

(1.1) ¤u + a(t, x)u = 0

with a non smooth coefficient a(t, x) in an open neighbourhood Ω of the origin
in Rt × Rn

x , where ¤ = ∂2/(∂t)2 − 4x = ∂2/(∂t)2 −
∑n

i=1 ∂2/(∂xi)
2. We

assume that a satisfies the following assumption.

Assumption A. The coefficient a is in D′(Ω) and there exists a positive
number s1 with n+1

2 − 1 < s1 and a vector v ∈ Rn with |v| < 1 such that

(1 + τ2 + |ξ|2)
s1/2

(1 + |τ + v · ξ|2)
s2/2

ϕ̂a(τ, ξ) ∈ L2(Rn+1
τ,ξ )

for any s2 > 0 and any ϕ(t, x) ∈ C∞
0 (Ω), where ϕ̂a is the Fourier transform of

ϕa and (τ, ξ) are the dual variables of (t, x) .

We show that if a solution of (1.1) has Hr-regularity in Char¤ ∩ T ∗K\0
microlocally with a domain K, then the solution has Hr-regularity in Char¤∩
T ∗K̂\0, where K̂ is a domain in which the value of the solution is determined
by the value of the solution in K. (In the following, we call this domain a
domain of determine.) To illustrate our results, let us suppose for the moment
that a vanishes on t ≤ 0 and 1 ≤ t. Our result asserts that if u is smooth in
t < 0, then u is smooth in t > 1. In other words, the regularity of u propagates
through the domain where a is singular.
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Rauch [8] has studied the propagation of singularities of solutions to semi-
linear wave equations, ¤u = f(u). He has shown that if a solution is in
Hs(s > n+1

2 ) and if the solution is in Hr(s < r < 2s − n+1
2 ) at (x0, ξ0) mi-

crolocally, then the solution is in Hr on the null bicharcteristic curve start-
ing from (x0, ξ0). Bony [2] has had the same result as Rauch[8] for gen-
eral nonlinear equations. Beals and Reed [1] investigated the propagation of
Hr − singularity (s < r < 2s − n+1

2 ) for linear strictly hyperbolic equations
assuming that the coefficients are in Hs(s > n+1

2 ). They have shown that if
a solution is in Hs(s > n+1

2 ) and if the solutions is in Hr(s < r < 2s − n+1
2 )

at (x0, ξ0) microlocally, the solution is in Hr on the null bicharcteristic curve
starting from (x0, ξ0). Their technique is due to one in Rauch [8] and the com-
mutator estimate. Bony [3][4] and Melrose and Ritter [7] studied Hr-regularity
for all r > s for semilinear wave equations. Their technique to get regularity is
to use suitable vector fields. In this article, we treat Hr-regularity for all r > s
of solutions to wave equations with a non smooth coefficient assuming that
the coefficient a is in Hs(s > n+1

2 ). Our technique is Lorentz transformation
and multiplication estimate in some Sobolev spaces which is essentially due to
Rauch [8].

To state the main theorem precisely, we introduce some notations and func-
tion spaces. For s ∈ R, Hs(Rn) is the Sobolev space of order s and for a
domain O in Rn, Hs

loc(O) = {u ∈ D′(O);ϕu ∈ Hs(Rn) for any ϕ ∈ D(O)}.
For r ∈ R, we say u ∈ Hr at (t0, x0, τ0, ξ0) ∈ T ∗(Ω)\0 microlocally, if there
exist ϕ(t, x) ∈ C∞

0 (Ω) with ϕ(t0, x0) 6= 0 and a conic neighborhood Ξ(τ0, ξ0)
of (τ0, ξ0) in Rn+1

τ,ξ such that

∫∫
Ξ(τ0,ξ0)

(1 + |τ |2 + |ξ|2)
r
|ϕ̂u|2dτdξ < +∞.

Char¤ = {(t, x, τ, ξ) ∈ T ∗Rn+1\0; τ2 − |ξ|2 = 0}. We write for (t0, x0) ∈
Rt × Rn

x ,

C−
(t0,x0)

= {(t, x) ∈ Rn+1; (t − t0)
2 ≥ |x − x0|2 and t ≤ t0}.

For w ∈ Rn, we set Tw = {(t, x) ∈ Rn+1
t,x ; t − w · x = 0}. We call an n-

dimensional hyperplane Tw is spacelike if |w| < 1. For K ⊂ Tw with |w| < 1
and K ⊂ Ω,

K̂ = {(t, x) ∈ Ω; [C−
(t,x) ∩ Tw] ⊂ K and [C−

(t,x) ∩ {t − w · x ≥ 0}] ⊂ Ω}

is the domain of determine with respect to K in Ω. The main result of this
paper is given by the following theorem.
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Theorem. Let Ω be as above and let K ⊂ Ω be a subset of a hyperplane
Tw = {(t, x) ∈ Rn+1

t,x ; t − w · x = 0} with |w| < 1. Let a satisfy Assumption A

and s be a positive real number satisfying s1 + s − n+1
2 > 0. Suppose that u

satisfies (1.1), u ∈ Hs
loc(Ω) and

u ∈ Hr on (K × Rn+1
τ,ξ \{0}) ∩ Char¤ microlocally.

Then

(1.2) (1 + τ2 + |ξ|2)
s/2

(1 + |τ + v · ξ|2)
(r−s)/2

ϕ̂u(τ, ξ) ∈ L2(Rn+1
τ,ξ )

for all ϕ(t, x) ∈ C∞
0 (K̂) where K̂ is the domain of determine with respect to

K in Ω.

Remark 1. A typical example of the coefficient a is given by a(t, x) =
f(x + vt) with f(x) ∈ Hs1

loc(R
n).

Remark 2. The theorem implies, in particular, u ∈ Hr on (K̂×Rn+1
τ,ξ \{0})∩

Char¤ microlocally.
Remark 3. If a(t, x) ∈ C∞ in a neighborhood of (t0, x0) ∈ K̂, then u ∈ Hr

in a neighborhood of (t0, x0).
The proof of the theorem will be given by a series of lemmas in §2.
The author would like to thank Professor Kenji Yajima for helpful discus-

sions.

2. Proof of Theorem

We prepare the following three lemmas to prove the theorem.

Lemma 1. If the theorem holds when v = 0, so does it for general |v| < 1.

Proof. Without loss of generality, we may assume v = (v1, 0, . . . , 0). By the
Lorentz transformation t = t′+v1x′

1√
1−v2

1

, x1 = x′
1+t′v1√
1−v2

1

, x2 = x′
2, . . . , xn = x′

n, the

equation (1.1) is transformed to

¤ ũ(t, x) + ã(t, x)ũ(t, x) = 0,

where
ũ(t, x) = u(

t + v1x1√
1 − v2

1

,
x1 + tv1√

1 − v2
1

, x2, . . . , xn)

and
ã(t, x) = a(

t + v1x1√
1 − v2

1

,
x1 + tv1√

1 − v2
1

, x2, . . . , xn).

We denote the image of Ω, K and K̂ under the Lorentz trasformation by Ω̃, K̃

and ˜̂
K respectively. Since Lorentz trasformation maps spacelike hyperplanes
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to spacelike hyperplanes, K̃ is spacelike. Obviously, ũ ∈ Hs
loc(Ω̃) and ũ ∈ Hr

on (K̃ × Rn+1
τ,ξ \{0}) ∩ Char¤ microlocally.

Note that ã(t, x) satisfies Assumption A with v = 0. Indeed, for any ϕ(t, x) ∈
C∞

0 (Ω̃), we have, with the same notation for ϕ̃ as above,

∫∫
(1 + τ2 + |ξ|2)

s1(1 + τ2)
s2 |ϕ̂ã(τ, ξ)|

2
dτdξ

(2.1)

=
∫∫

(1 + τ2 + |ξ|2)
s1(1 + τ2)

s2 |̂̃ϕa(
τ − v1ξ1√

1 − v2
1

,
ξ1 − τv1√

1 − v2
1

, ξ2, . . . , ξn)|
2

dτdξ

=
∫∫ (

1 +
(τ + v1ξ1)

2

1 − v2
1

+
(ξ1 + τv1)

2

1 − v2
1

+ ξ2
2 + . . . + ξ2

n

)s1

×
(
1 +

(τ + v1ξ1)
2

1 − v2
1

)s2

|̂̃ϕa(τ, ξ)|
2
dτdξ

≤C

∫∫
(1 + τ2 + |ξ|2)

s1(1 + |τ + v · ξ|2)
s2 |̂̃ϕa(τ, ξ)|

2
dτdξ < +∞,

where we made the change of variables τ = τ ′+v1ξ′
1√

1−v2
1

, ξ1 = ξ′
1+τ ′v1√

1−v2
1

, ξ2 = ξ′2, . . . ,

ξn = ξ′n in the second step. If the statement of the theorem for the case v = 0

is valid, we have (1 + τ2 + |ξ|2)
s/2

(1 + τ2)(s−r)/2|ϕ̂ũ(τ, ξ)| ∈ L2(Rn
τ,ξ) for all

ϕ(t, x) ∈ C∞
0 ( ˜̂

K). Hence by the argument similar to (2.1), we obtain∫∫
(1 + τ2 + |ξ|2)

s
(1 + |τ + v · ξ|2)

r−s
|̂̃ϕu(τ, ξ)|

2
dτdξ < +∞. ¤

Lemma 2. Let 0 ≤ s, t ≤ n
2 with s + t− n

2 > 0 and suppose that u ∈ Hs
loc(Ω)

and v ∈ Ht
loc(Ω). Then

uv ∈ H
s+t−(n/2)−ε
loc (Ω)

for any ε > 0.

Proof. Replacing u and v by ϕu and ϕv respectively with ϕ ∈ C∞
0 (Ω), it

suffices to show uv ∈ Hs+t−(n/2)−ε(Rn) when u ∈ Hs(Rn) and v ∈ Ht(Rn).

Write
√

1 + |ξ|2 = 〈ξ〉. Then

〈ξ〉s+t−(n/2)−ε|ûv(ξ)|

=C〈ξ〉s+t−(n/2)−ε

∣∣∣∣∫ û(ξ − η)v̂(η)dη

∣∣∣∣
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≤C〈ξ〉s+t−(n/2)−ε
(∫

D1

|û(ξ − η)v̂(η)|dη +
∫

D2

|û(ξ − η)v̂(η)|dη

+
∫

D3

|û(ξ − η)v̂(η)|dη +
∫

D4

|û(ξ − η)v̂(η)|dη
)

=I1 + I2 + I3 + I4,

where

D1 = {η ∈ Rn; |ξ − η| ≥ 1
2
|ξ| and

1
2
|ξ| ≥ |η|},

D2 = {η ∈ Rn; |ξ − η| ≤ 1
2
|ξ| and

1
2
|ξ| ≤ |η|},

D3 = {η ∈ Rn; |ξ − η| ≥ |η| ≥ 1
2
|ξ|},

D4 = {η ∈ Rn; |η| ≥ |ξ − η| ≥ 1
2
|ξ|}.

As s > 0 and t − n
2 − ε < 0,

I1 ≤C

∫
D1

〈ξ − η〉s|û(ξ − η)|〈η〉t−(n/2)−ε|v̂(η)|dη

≤C

∫
Rn

〈ξ − η〉s|û(ξ − η)|〈η〉t−(n/2)−ε|v̂(η)|dη.

Since 〈ξ〉s|û(ξ)| ∈ L2 and 〈ξ〉t−(n/2)−ε|v̂(ξ)| ∈ L1, Hausdorff-Young’s inequality
implies that I1 ∈ L2(Rn

ξ ). Using the same argument as above, we see I2 also
belongs to L2(Rn

ξ ). As s + t − n
2 − ε > 0 and t − n

2 − ε < 0,

I3 ≤C

∫
D3

〈ξ − η〉s+t−(n/2)−ε|û(ξ − η)v̂(η)|dη

≤C

∫
D3

〈ξ − η〉s|û(ξ − η)|〈η〉t−(n/2)−ε|v̂(η)|dη

≤C

∫
Rn

〈ξ − η〉s|û(ξ − η)|〈η〉t−(n/2)−ε|v̂(η)|dη.

Since 〈ξ〉s|û(ξ)| ∈ L2 and 〈ξ〉t−(n/2)−ε|v̂(ξ)| ∈ L1, Hausdorff-Young’s inequality
implies that I3 ∈ L2(Rn

ξ ). Using the same argument as above, we see I4 ∈
L2(Rn

ξ ). Hence,

〈ξ〉s+t−(n/2)−ε|ûv(ξ)| ∈ L2(Rn
ξ ). ¤
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Definition. For s, s′ ∈ R, we say u ∈ Hs,s′
(Rn+1

t,x ) if u ∈ S ′(Rn+1
t,x ) and

(1 + τ2 + |ξ|2)
s/2

(1 + τ2)
s′/2

û(τ, ξ) ∈ L2(Rn+1
τ,ξ ).

Hs,s′

loc (Ω) = {ϕu ∈ D′(Ω);ϕu ∈ Hs,s′
(Rn+1

t,x ) and for any ϕ ∈ C∞
0 (Ω)}.

Remark. The Hs,s′

loc (Ω) in this definition is slightly different from the one in
Hörmander’s book[5].

Lemma 3. Let 0 < s ≤ n+1
2 and n+1

2 − 1 < s1 ≤ n+1
2 with s + s1 − n+1

2 > 0
and let r > s. Suppose that u ∈ Hs,r−s

loc (Ω) and v ∈ Hs1,s2
loc (Ω) for all s2 > 0,

then
uv ∈ Ht1,t2

loc (Ω),

where t1 = s + s1 − n+1
2 − ε and t2 = r − s for any ε > 0.

Proof. Replacing u and v by ϕu and ϕv respectively with ϕ ∈ C∞
0 (Ω), it suffices

to show uv ∈ Ht1,t2(Rn+1
t,x ) for u ∈ Hs,r−s(Rn+1

t,x ) and v ∈ Hs1,s2(Rn+1
t,x ). We

denote (1 + τ2 + |ξ|2)
1/2

and (1 + τ2)1/2 by 〈τ, ξ〉 and 〈τ〉 respectively. We set
ζ = (τ, ξ). We show that 〈τ, ξ〉t1〈τ〉t2 |ûv(τ, ξ)| ∈ L2(Rn+1

τ,ξ ).

〈τ, ξ〉t1〈τ〉t2 |ûv(τ, ξ)|

=〈τ, ξ〉t1〈τ〉t2
∣∣∣∣∫∫

û(τ − τ ′, ξ − ξ′)v̂(τ ′, ξ′)dτ ′dξ′
∣∣∣∣

≤〈τ, ξ〉t1〈τ〉t2
8∑

i=1

∫∫
Di

|û(τ − τ ′, ξ − ξ′)v̂(τ ′, ξ′)|dτ ′dξ′ =
8∑

i=1

Ji,

where the domain of the integrations Di are as follows:

|ζ − ζ ′| ≥ 1
2
|ζ| ≥ |ζ ′| , |τ − τ ′| ≥ 1

2
|τ | ;(D1)

|ζ − ζ ′| ≥ 1
2
|ζ| ≥ |ζ ′| , |τ ′| ≥ 1

2
|τ | ;(D2)

|ζ − ζ ′| ≤ 1
2
|ζ| ≤ |ζ ′| , |τ − τ ′| ≥ 1

2
|τ | ;(D3)

|ζ − ζ ′| ≤ 1
2
|ζ| ≤ |ζ ′| , |τ ′| ≥ 1

2
|τ | ;(D4)

1
2
|ζ| ≤ |ζ − ζ ′| ≤ |ζ ′| , |τ − τ ′| ≥ 1

2
|τ | ;(D5)

1
2
|ζ| ≤ |ζ − ζ ′| ≤ |ζ ′| , |τ ′| ≥ 1

2
|τ | ;(D6)

1
2
|ζ| ≤ |ζ ′| ≤ |ζ − ζ ′| , |τ − τ ′| ≥ 1

2
|τ | ;(D7)
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1
2
|ζ| ≤ |ζ ′| ≤ |ζ − ζ ′| , |τ ′| ≥ 1

2
|τ | .(D8)

First we estimate J1.

J1 ≤ C

∫∫
Rn+1

〈τ − τ ′, ξ − ξ′〉s〈τ − τ ′〉r−s|û(τ − τ ′, ξ − ξ′)|

× 〈τ ′, ξ′〉s1−n+1
2 −ε|v̂(τ ′, ξ′)|dτ ′dξ′.

Since 〈τ, ξ〉s〈τ〉r−s|û(τ, ξ)| ∈ L2(Rn+1
τ,ξ ) and 〈τ, ξ〉s1−n+1

2 −ε|v̂(τ, ξ)| ∈ L1(Rn+1
τ,ξ ),

Housdorff-Young’s inequality yields that J1 ∈ L2(Rn+1
τ,ξ ). Using the same ar-

gument as above, we see that J2, J3 and J4 are also in L2(Rn+1
τ,ξ ). Next we es-

timate J5. Note that 〈τ, ξ〉t1 ≤ C〈τ ′, ξ′〉t1 ≤ C〈τ − τ ′, ξ − ξ′〉s−
n+1

2 −ε〈τ ′, ξ′〉s1

in D5. Hence,

J5 ≤ C

∫∫
Rn+1

〈τ − τ ′, ξ − ξ′〉s−
n+1

2 −ε〈τ − τ ′〉r−s|û(τ − τ ′, ξ − ξ′)|

× 〈τ ′, ξ′〉s1 |v̂(τ ′, ξ′)|dτ ′dξ′.

Since 〈τ, ξ〉s−
n+1

2 −ε〈τ〉r−s|û(τ, ξ)| ∈ L1(Rn+1
τ,ξ ) and 〈τ, ξ〉s1 |v̂(τ, ξ)| ∈ L2(Rn+1

τ,ξ ),

Hausdorff-Young’s inequality proves J5 ∈ L2(Rn+1
τ,ξ ). Using the same argu-

ment as above, we see that J6, J7 and J8 are also in L2(Rn+1
τ,ξ ).

Proof of the theorem. By virtue of the lemma 1, it suffices to prove the theorem
for the case v = 0. We devide the proof of the theorem into two steps. We
shall show in the first step that u ∈ H

n+1
2

loc (K̂) by using the lemma 2, and in
the second step u ∈ Hs,r−s

loc (K̂) by using the lemma 3.
(First Step) Let (t0, x0, τ0, ξ0) ∈ T ∗K̂\0∩Char¤. Since K̂ is the domain of

determine with respect to K in Ω, there exists a point (t̃0, x̃0) ∈ K such that the
null bicharacteristic curve starting from the point (t̃0, x̃0, τ0, ξ0) passes through
(t0, x0, τ0, ξ0). The assumption A implies a ∈ Hs1

loc(Ω) and u is in Hs
loc(Ω).

Hence the lemma 2 yields u a ∈ H
s+s1−(n+1)/2−ε
loc (Ω) for any ε > 0. Thus

¤u = −au ∈ H
s+s1−(n+1)/2−ε
loc (Ω) and u ∈ Hr at (t̃0, x̃0, τ0, ξ0) microlocally.

It follows by
Hörmander’s theorem for propagation of singularities (e.g. Taylor[6]) that

u ∈ Hmin(s+δ,r) at (t0, x0, τ0, ξ0) microlocally with δ = s1 −
n + 1

2
+ 1 − ε.

If (t0, x0, τ0, ξ0) ∈ T ∗K̂\0 ∩ (Char¤)c where (Char¤)c is the complement of
Char¤ in T ∗K̂\0, then ¤ is elliptic at (t0, x0, τ0, ξ0) microlocally. Thus

u ∈ Hmin(s+δ+1,r) at (t0, x0, τ0, ξ0) microlocally.
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Hence, since (t0, x0) ∈ K̂ is chosen arbitrarily, we have u ∈ Hmin(s+δ,r)(K̂).
Repeating the same argument as above (m − 1)-times until s + mδ becomes
greater than n+1

2 , we have

(2.2) u ∈ Hmin(s+mδ,r)(K̂), s + (m − 1)δ ≤ n + 1
2

< s + mδ.

Note that if s+mδ > n+1
2 , the argument as above does not work as the lemma

2 does not apply to this case. If r ≤ s + mδ, we are done, since (2.2) implies
(1.2).

(Second Step) Suppose that r > s + mδ. Note that if b > 0 , Hs−b,s′+b ⊂
Hs,s′

. Hence (2.2) shows

(2.3) u ∈ H
s+(m−1)δ,δ
loc (K̂).

By virtue of (2.3) and the assumption A, the lemma 3 implies that

(2.4) au ∈ Ht1,δ
loc (K̂),

with t1 = s + (m − 1)δ + s1 − n+1
2 − ε. We use the same notation as in the

first step. Let (t0, x0, τ0, ξ0) ∈ T ∗K̂\0 ∩Char¤. The same argument as in the
first step guarantees the existence of the null bicharacteristic curve Γ starting
from the point (t̃0, x̃0, τ0, ξ0) and passing through (t0, x0, τ0, ξ0). Recalling the
definition of Hs,s′

, we immediately have from (2.4) that

(2.5) au ∈ Hs+mδ+s1−n+1
2 −ε on Γ ∩ T ∗K̂\0 microlocally.

From (2.5) and the assumption that u ∈ Hr at (t̃0, x̃0, τ0, ξ0), Hörmander’s the-
orem for propagation of singularities implies u ∈ Hmin(s+(m+1)δ,r) at (t0, x0, τ0,

ξ0) microlocally. We set Σε1 = {(τ, ξ) ∈ Rn+1; τ2 ≥ (1 + ε1)|ξ|2 or τ2 ≤
(1 − ε1)|ξ|2}. Since (t0, x0, τ0, ξ0) is chosen arbitrarily in T ∗K̂\0 ∩ Char¤, we
have

(2.6) u ∈ Hs+(m+1)δ on K̃ × Σc
ε1 microlocally,

for sufficiently small ε1 > 0 where Σc
ε1 is the complement of Σε1 in Rn+1

τ,ξ \{0}.
We take and fix ϕ(t, x) ∈ C∞

0 (K̂) and we define F (t, x) by

(2.7) ¤(ϕu) =
∂ϕ

∂t

∂u

∂t
+

∂2ϕ

∂t2
u − 2∇ϕ · ∇u − (4ϕ)u − ϕau =: F (t, x).

From (2.3), (2.4) and the fact that s1 − n+1
2 − ε > −1, we have F (t, x) ∈

Hs+(m−1)δ−1,δ(K̂). Taking the Fourier trasformation of both sides of (2.7), we
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have (τ2 − |ξ|2)ϕ̂u(τ, ξ) = F̂ (τ, ξ). From the fact
∣∣∣ τ2+|ξ|2

τ2−|ξ|2

∣∣∣ ≤ C on Σε1 , we
obtain

(2.8) (1 + τ2 + |ξ|2)
s+(m−1)δ+1

(1 + τ2)
δ|ϕ̂u(τ, ξ)|2 ∈ L1(Σε1).

Hence we have from (2.6), (2.8) and the fact that δ = s1 − n+1
2 + 1 − ε < 1,

u ∈ H
min(s+mδ,r−δ),δ
loc (K̂). Repeating the same argument as above (l−1)-times

until r ≤ s + mδ + lδ, we obtain u ∈ Hr−lδ,lδ
loc (K̂). Since s < r − lδ, this implies

(1.2). ¤
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