ON RESIDUE FREE DIFFERENTIAL FORMS OF AN ALGEBRAIC SCHEME OVER A FIELD OF CHARACTERISTIC p

Tomio Uchibori

(Received March 10, 1997)

Abstract

Let V be an n-dimensional non-singular algebraic integral scheme over a perfect field k of characteristic $p>0$ and K its algebraic function field. In this paper, we will prove the following:

Theorem B. Let ω be a differential form in $Z_{\infty}(K / k)$. Then the following three conditions are equivalent: (1) ω is residue free on V, (2) there exists an integer N such that $C_{K}^{N}(\omega) \in G_{1}(V)$, (3) $\omega \in D(V)$.

The above theorem is a generalization of the main theorem in Nakakoshi[5]. He proved the theorem in case of degree $(\omega)=n$.

AMS 1991 Mathematics Subject Classification. Primary 13N05, 12H05.
Key words and phrases. Differential form, residue, residue free, Cartier operator.

1. Preliminaries

Throughout this paper, k will denote a perfect field of characteristic $p>0$. Let V be an n-dimensional non-singular algebraic integral scheme over k, where a scheme V is said to be algebraic over k if V is a separated scheme of finite type over k. We will denote by K the function field of V.

Let W be a prime divisor of V, R the local ring at the generic point of W. We know that R is a discrete valuation ring and call it the valuation ring of W. Let ν_{R} be its valuation. If $f \in R$, then we will denote by \bar{f} its canonical image in the residue field D of R. Since k is perfect, we can choose a family $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ of elements in R such that t_{1} is a prime element of R (i.e. $t_{1} R$ is the maximal ideal of R.) and $\left\{\bar{t}_{2}, \ldots, \bar{t}_{n}\right\}$ is a separating transcendental basis of D / k. We will call such a family $\underline{t}=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ a parameter of R. Then we know that $\left\{d \bar{t}_{2}, \ldots, d \bar{t}_{n}\right\}$ forms a basis of the module of Kähler differentials $\Omega^{1}(D / k)$ of D / k and $\left\{d t_{1}, \ldots, d t_{n}\right\}$ forms a free basis of $\Omega^{1}(R / k)$ as an R-module also a basis of $\Omega^{1}(K / k)$, (c.f. Kawahara-Uchibori[2]). We put $\Omega^{r}(K / k)=\bigwedge^{r} \Omega^{1}(K / k)$ and $\Omega(K / k)=\bigoplus_{r} \Omega^{r}(K / k)$. Then $\Omega(K / k)$ is
a graded K-algebra. Similarly we define $\Omega(R / k)$ and $\Omega(D / k)$. If there is no confusion, we will omit a symbol " k ".

Let \hat{R} be the completion of R. Then there exists a unique coefficient field E of \hat{R} such that $\hat{R}=E\left[\left[t_{1}\right]\right]$ and $E \supseteq k\left(t_{2}, \ldots, t_{n}\right)(c . f$. Th. 28.3 in Matsumura[4]). The quotient field of \hat{R} is the field $E\left(\left(t_{1}\right)\right)$ of formal power series and K can be regarded as a subfield of $E\left(\left(t_{1}\right)\right)$.

Let ω be a differential form in $\Omega^{r}(K)(r>0)$. Then ω can be uniquely expressed in the form

$$
\begin{array}{r}
\omega=\sum_{1<i_{1}<\ldots<i_{r}} g_{i_{1}, \ldots, i_{r}} d t_{i_{1}} \wedge \cdots \wedge d t_{i_{r}}+\sum_{1<i_{2}<\ldots<i_{r}} h_{i_{2}, \ldots, i_{r}} d t_{1} \wedge d t_{i_{2}} \wedge \cdots \wedge d t_{i_{r}}, \\
\left(g_{i_{1}, \ldots, i_{r}}, h_{i_{2}, \ldots, i_{r}} \in K\right) .
\end{array}
$$

Elzein[1] defined the residue $\operatorname{res}_{R, \underline{t}}(\omega)$ of $\omega \in \Omega(K)$ as follows. The coefficient $h_{i_{2}, \ldots, i_{r}}$ can be uniquely expressed as an element of $E\left(\left(t_{1}\right)\right)$ in the following form:

$$
h_{i_{2}, \ldots, i_{r}}=\sum_{k} h_{i_{2}, \ldots, i_{r}, k} t_{1}^{k} \quad\left(h_{i_{2}, \ldots, i_{r}, k} \in E\right) .
$$

Then the residue of ω is defined by

$$
\operatorname{res}_{R, \underline{t}}(\omega)=\sum_{1<i_{2}<\ldots<i_{r}} \bar{h}_{i_{2}, \ldots, i_{r},-1} d \bar{t}_{i_{2}} \wedge \cdots \wedge d \bar{t}_{i_{r}},
$$

where $\bar{h}_{i_{2}, \ldots, i_{r},-1}$ is the canonical image of $h_{i_{2}, \ldots, i_{r},-1}$ in the residue field D of \hat{R}. Moreover Elzein[1] proved the following property

$$
\operatorname{res}_{R, \underline{t}} \circ d+d \circ \operatorname{res}_{R, \underline{t}}=0 .
$$

It follows from this property that res ${ }_{R, t}$ maps a closed differential to closed one and an exact differential to exact one. Since the map res $R, t, \Omega^{r}(K) \rightarrow \Omega^{r-1}(D)$ is k-linear, we can define the map $\operatorname{res}_{R, t}: \Omega(K) \rightarrow \Omega(D)$ by linearity.

We will denote by $Z_{1}(K)(=\operatorname{ker} d)$ all of closed differential forms and by $B_{1}(K)(=\operatorname{im} d)$ all of exact differential forms in $\Omega(K)$. We define the graded subalgebra $H(\underline{t})$ of $\Omega(K)$ as follows:

$$
H(\underline{t}):=K^{P}\left[t_{1}^{p-1} d t_{1}, t_{2}^{p-1} d t_{2}, \ldots, t_{n}^{p-1} d t_{n}\right] .
$$

We have by Exercise(6) in $\S 5$ of E. Kunz[3] that

$$
Z_{1}(K)=B_{1}(K) \oplus H(\underline{t}) \quad \text { (direct sum as } K^{P} \text {-modules). }
$$

The Cartier operator $C_{K}: Z_{1}(K) \rightarrow \Omega(K)$ is a surjective ring-homomorphism which is defined by the following equations:

$$
\begin{gathered}
C_{K}(\omega)=0 \quad\left(\omega \in B_{1}(K)\right), \quad C_{K}\left(a^{p}\right)=a \quad\left(a^{p} \in K^{P}\right), \\
C_{K}\left(t_{i}^{p-1} d t_{i}\right)=d t_{i} \quad(\text { for each } i) .
\end{gathered}
$$

The Cartier operator C_{K} is independent on the choice of a parameter \underline{t} and also independent on the choice of R. We put, for every integer $m>0$,

$$
B_{m+1}(K)=C_{K}^{-1}\left(B_{m}(K)\right), \quad Z_{m+1}(K)=C_{K}^{-1}\left(Z_{m}(K)\right)
$$

Moreover we also put $B_{\infty}(K)=\bigcup_{m=1}^{\infty} B_{m}(K)$ and $Z_{\infty}(K)=\bigcap_{m=1}^{\infty} Z_{m}(K)$. Similarly we can define C_{D} and C_{R} (because a parameter $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ of R is a p-basis of R, see Lemma 1 of Ohi $[6])$. Moreover we can define $B_{m}(D)$, Lemma 2 of Suzuki[7] that

$$
C_{D} \circ \operatorname{res}_{R, \underline{t}}=\operatorname{res}_{R, \underline{t}} \circ C_{K}
$$

The following composition of two maps:

$$
Z_{\infty}(K) \xrightarrow[\operatorname{res}_{R, \underline{t}}]{ } Z_{\infty}(D) \xrightarrow[\text { natural surjection }]{ } Z_{\infty}(D) / B_{\infty}(D)
$$

is independent on the choice of a parameter \underline{t} and denoted by res_{R} (c.f. [7], also see [6]). Furthermore, when R is the valuation ring of $W, \operatorname{res}_{R}$ is denoted by res_{W}.

2. Auxiliary Theorem

Let W be a prime divisor of V, R its valuation ring and \underline{t} a parameter of R. For a differential form $\omega \in \Omega(K)$, we define $\nu_{R}(\omega)$ as follows:

$$
\nu_{R}(\omega):=-\min \left\{s \mid t_{1}^{s} \omega \in \Omega(R), s: \text { integer }\right\}
$$

It is clear that $\nu_{R}(\omega)$ is independent on the choice of a prime element t_{1} of R. For an element ω of $Z_{\infty}(K)$, by Lemma 3 in [7], there exists an integer N such that

$$
\nu_{R}\left(C_{K}^{m}(\omega)\right) \geq-1 \quad(m \geq N)
$$

A differential form $\omega \in \Omega^{r}(K)$ can be uniquely expressed in the form $\omega_{1}+\omega_{2}$, where

$$
\begin{aligned}
& \omega_{1}=\sum_{1<i_{1}<\ldots<i_{r}} g_{i_{1}, \ldots, i_{r}} d t_{i_{1}} \wedge \cdots \wedge d t_{i_{r}} \\
& \omega_{2}=\sum_{1<i_{2}<\ldots<i_{r}} h_{i_{2}, \ldots, i_{r}} d t_{1} \wedge d t_{i_{2}} \wedge \cdots \wedge d t_{i_{r}}, \quad\left(g_{i_{1}, \ldots, i_{r}}, h_{i_{2}, \ldots, i_{r}} \in K\right) .
\end{aligned}
$$

Lemma 1. For a closed differential form $\omega \in \Omega^{r}(K)$, let $\omega_{1}+\omega_{2}$ be the above expression of ω. Then the inequality $\nu_{R}(\omega) \geq-1$ implies that ω_{1} belongs to $\Omega^{r}(R)$.
Proof. The inequality $\nu_{R}(\omega) \geq-1$ means $t_{1} \omega \in \Omega^{r}(R)$, hence $d\left(t_{1} \omega\right) \in$ $\Omega^{r+1}(R)$. Since ω is closed and $d t_{1} \wedge \omega_{2}=0$, we have that

$$
d\left(t_{1} \omega\right)=d t_{1} \wedge \omega=d t_{1} \wedge\left(\omega_{1}+\omega_{2}\right)=d t_{1} \wedge \omega_{1}
$$

Therefore we have $d t_{1} \wedge \omega_{1} \in \Omega^{r+1}(R)$, which implies $\omega_{1} \in \Omega^{r}(R)$.

Theorem A. Let W be a prime divisor of V and R its valuation ring. For a differential form ω in $Z_{\infty}(K)$, the following three conditions are equivalent:
(1) $\operatorname{res}_{W}(\omega)=0$,
(2) there exists an integer N such that $C_{K}^{N}(\omega) \in \Omega(R)$,
(3) there exists $\omega_{R} \in B_{\infty}(K)$ such that $\omega-\omega_{R} \in \Omega(R)$.

Proof. (1) \Rightarrow (2). We can assume that $\omega \in \Omega^{r}(K)$ by the linearity of C_{K}, C_{D} and res_{W}. $\operatorname{By~res}_{W}(\omega)=0$, we have $\operatorname{res}_{R, \underline{t}}(\omega) \in B_{\infty}(D)$ for any parameter \underline{t} of R. Hence there exists an integer N such that $C_{D}^{N}\left(\operatorname{res}_{R, t}(\omega)\right)=0$ and so we have $\operatorname{res}_{R, \underline{t}}\left(C_{K}^{N}(\omega)\right)=0$. Moreover for a sufficiently large N, we can assume that $\nu_{R}\left(C_{K}^{N}(\omega)\right) \geq-1$. The differential form $C_{K}^{N}(\omega)$ can be expressed in the form $\omega_{1}+\omega_{2}$, where

$$
\begin{aligned}
& \omega_{1}=\sum_{1<i_{1}<\ldots<i_{r}} g_{i_{1}, \ldots, i_{r}} d t_{i_{1}} \wedge \cdots \wedge d t_{i_{r}}, \\
& \omega_{2}=\sum_{1<i_{2}<\ldots<i_{r}} h_{i_{2}, \ldots, i_{r}} d t_{1} \wedge d t_{i_{2}} \wedge \cdots \wedge d t_{i_{r}}, \quad\left(g_{i_{1}, \ldots, i_{r}}, h_{i_{2}, \ldots, i_{r}} \in K\right) \\
& \quad h_{i_{2}, \ldots, i_{r}}=\sum_{k \geq-1} h_{i_{2}, \ldots, i_{r}, k} t_{1}^{k}, \quad\left(h_{i_{2}, \ldots, i_{r}, k} \in E\right) .
\end{aligned}
$$

From the relation above $\operatorname{res}_{R, \underline{t}}\left(C_{K}^{N}(\omega)\right)=0$, we have

$$
\sum_{1<i_{2}<\ldots<i_{r}} \bar{h}_{i_{2}, \ldots, i_{r},-1} d \bar{t}_{i_{2}} \wedge \ldots \wedge d \bar{t}_{i_{r}}=0
$$

which implies $\bar{h}_{i_{2}, \ldots, i_{r},-1}=0$ for any $1<i_{2}<\ldots<i_{r}$. Since the natural surjection: $\hat{R} \rightarrow D$ is injective on the coefficient field E of \hat{R}, we have $h_{i_{2}, \ldots, i_{r},-1}=0$ and thus $\omega_{2} \in \Omega(R)$. On the other hand, by Lemma 1 we have $\omega_{1} \in \Omega(R)$. Therefore, we get $C_{K}^{N}(\omega) \in \Omega(R)$.
$(2) \Rightarrow(3)$. Since the map $C_{R}^{N}: Z_{N}(R) \rightarrow \Omega(R)$ is surjective, there exist $\eta \in Z_{N}(R)$ such that $C_{R}^{N}(\eta)=C_{K}^{N}(\omega)$. We put $\omega_{R}=\omega-\eta$. Since $C_{R}^{N}(\eta)=$ $C_{K}^{N}(\eta)$, we have that $\omega \in B_{N}(K) \subset B_{\infty}(K)$ and $\omega-\omega_{R}=\eta \in Z_{N}(R) \subset \Omega(R)$.
$(3) \Rightarrow(1)$. By $\omega-\omega_{R} \in \Omega(R)$, we have $\operatorname{res}_{R, \underline{t}}\left(\omega-\omega_{R}\right)=0$ and hence $\operatorname{res}_{R, \underline{t}}(\omega)=\operatorname{res}_{R, \underline{t}}\left(\omega_{R}\right)$. Since $\omega_{R} \in B_{\infty}(K)$, there exists an integer N such that $C_{K}^{N}\left(\omega_{R}\right)=0$. Therefore, we have $C_{D}^{N}\left(\operatorname{res}_{R, \underline{t}}(\omega)\right)=\operatorname{res}_{R, \underline{t}}\left(C_{K}^{N}\left(\omega_{R}\right)\right)=0$ and thus we get $\operatorname{res}_{R, \underline{t}}(\omega) \in B_{N}(K)$, which implies $\operatorname{res}_{W}(\omega)=0$.

3. Main Theorem

In this section, we denote by R_{W} the valuation ring R of a prime divisor W.

Definition 1. For a differential form $\omega \in Z_{\infty}(K)$, we define ω is residue free on V if $\operatorname{res}_{W}(\omega)=0$, for any prime divisor W of V.

We set $G_{1}(V)=\bigcap_{W} \Omega\left(R_{W}\right)$. A differential form in $G_{1}(V)$ is said to be the first kind.

Definition 2. We define the subsets $D_{N}(V)$ and $D(V)$ of $\Omega(K)$ as follows: for a differential form $\omega \in \Omega(K), \omega$ belongs to $D_{N}(V)$ if and only if for any prime divisor W of V, there exists $\omega_{R_{W}} \in B_{N}(K)$ such that $\omega-\omega_{R_{W}} \in \Omega\left(R_{W}\right)$. We put $D(V)=\bigcup_{N=1}^{\infty} D_{N}(V)$.

Lemma 2. Let f be an element of K. Then f belongs to R_{W} for almost all of W.

Proof. Let $\operatorname{spec}(A)$ be an affine open subset of V. Since $V-\operatorname{spec}(A)$ has only finite irreducible componets, almost all of the prime divisors meet to $\operatorname{spec}(A)$. We consider a prime divisor W such that $W \cap \operatorname{spec}(A) \neq \emptyset$. We can put $f=b / a(a, b \in A)$. The closed subset $V(a)$ of $\operatorname{spec}(A)$ has only finite irreducible components and thus $f \in R_{W}$ for almost all of W.

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a p-basis of K / k. Then any element ω of $\Omega^{r}(K)$ can be expressed in the form

$$
\omega=\sum_{i_{1}<\ldots<i_{r}} h_{i_{1}, \ldots, i_{r}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{r}} \quad\left(h_{i_{1}, \ldots, i_{r}} \in K\right) .
$$

Lemma 3. Let ω be an element of $\Omega(K)$. Then ω belongs to $\Omega\left(R_{W}\right)$ for almost all of W.

Proof. We assume $\omega \in \Omega^{r}(K)$ and use the above expression of ω. By Lemma 2, for almost all of W, R_{W} contains all of the elements $h_{i_{1}, \ldots, i_{r}}\left(i_{1}<\ldots<i_{r}\right)$ and $x_{i}(1 \leq i \leq n)$, and thus $\omega \in \Omega\left(R_{W}\right)$ for almost all of W.

Theorem B. Let ω be a differential form in $Z_{\infty}(K)$. Then the following three conditions are equivalent:
(1) ω is residue free on V,
(2) there exists an integer N such that $C_{K}^{N}(\omega) \in G_{1}(V)$,
(3) $\omega \in D(V)$.

Proof. (1) \Rightarrow (2). By Lemma 3, the set S of prime divisor W such that $\omega \notin \Omega\left(R_{W}\right)$ is finite. Put $S=\left\{W_{1}, \ldots, W_{S}\right\}$. By Lemma A, there exists N_{i} such that $C_{K}^{N_{i}}(\omega) \in \Omega\left(R_{W_{i}}\right)$ for each i. We put $N=\max \left\{N_{1}, \ldots, N_{S}\right\}$, then we have $C_{K}^{N}(\omega) \in G_{1}(V)$. The implications $(2) \Rightarrow(3)$ and $(3) \Rightarrow(1)$ are immediately proved by Theorem A.

References

1. F. Elzein, Residues en Géométrie Algébrique, Compositio Mathematica 23 (1971), 379-405.
2. Y. Kawahara and T. Uchibori, On residues of differential forms in algebraic function fields of several variables, TRU Math. 21 (1985), 173-180.
3. E. Kunz, Kähler Differentials, Vieweg Advanced Lectures in Mathematics, 1986.
4. H. Matsumura, Commutative Algebra (SecondEdition), Benjamin, New York, 1980.
5. K. Nakakoshi, Differential forms of the second kind over a field characteristic p, Arch. Math. 58 (1992), 248-250.
6. T. Ohi, On residues of differential forms over a field of characterisic p, SUT J. of Math. 31 (1995), 103-111.
7. Y. Suzuki, A remark on residues of differential forms in algebraic function fields of several variables, SUT J. of Math. 29 (1993), 311-322.

Tomio Uchibori

Department of Agricultural Engineering, Faculty of Agriculture, Tokyo University of Agriculture
1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156, Japan

