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Abstract. In this paper, we investigate sufficient conditions in order that a
family T (ε) = T0 + εT1 of closable linear operators with domain D

`

T (ε)
´

=
D(T0) ∩ D(T1) converge to T0 as ε ↓ 0 in the sense of uniform and strong

resolvent convergence. The obtained abstract results are applied to selfadjoint
and nonselfadjoint Schrödinger operators.
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Introduction

This paper is a continuation of the author’s [1]. Our aim is to describe
sufficient conditions for resolvent convergence of closed linear operators under
singular perturbations in cases of abstract operators in a Hilbert space and
Schrödinger operators in L2

(
Rn

)
. The term “singular perturbation” means

that the domain of the perturbed operator does not necessarily contain the
domain of the unperturbed operator (in other words, we do not assume that
perturbations are relatively bounded with respect to the unperturbed opera-
tors; the relatively bounded case is sufficiently discussed in Kato’s book [3]).
The problem of determining this convergence is closely connected with the
investigations of the stability of eigenvalues under perturbations [3] and the
behavior of solutions of singularly perturbed problems [7].

Let T0 be closed and T1 closable in a Hilbert space. Then the basic inequal-
ity in our new sufficient conditions is described as follows:

Re
(
T0u, T1u

)
≥ −c‖u‖2 − a‖T0u‖‖u‖ − b‖T0u‖2, u ∈ D(T0) ∩ D(T1),

where a, b and c are nonnegative constants. This inequality was first intro-
duced by Okazawa [9]. But in [9] he considered only the case of a = b = c = 0
and D(T0) ⊂ D(T1). For the generalization to the case with b, c ≥ 0 and a = 0
see Yoshikawa [15] and Okazawa [10]. The case of a 6= 0 was first considered by
Kato [4]. On the other hand, the domain inclusion was discarded in Okazawa
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[10, Theorem 3.4] and [11, Theorem 2.5]; see also Sohr [13] and Miyajima [8].
More recently, the perturbation theory based on this type of inequalities was
investigated by Kato [5], Okazawa [12] and Sohr [14].

In Section 1 we consider abstract selfadjoint and nonselfadjoint operators in
a Hilbert space. The sufficient conditions obtained here allow us to consider
a new class of perturbations, mainly for nonselfadjoint operators. Lemma
1 below is concerned with holomorphic families of type (A) of closed linear
operators and is a result of independent interest.

Section 2 includes applications of the abstract result to Schrödinger op-
erators in L2

(
Rn

)
. In case n = 1 we investigate nonselfadjoint Schrödinger

operators with complex-valued potentials.

1. Abstract operators in Hilbert spaces

Let T be a linear operator with domain D(T ) and range R(T ) in a sepa-
rable Hilbert space H. We denote the resolvent set by ρ(T ) and the residual
spectrum by σres(T ) (i.e., λ ∈ σres(T ) means that λ ∈ C is not an eigenvalue
of T and R(T − λI) is not dense in H). If the operator T is closable, then
we denote its closure by T̃ . C(H) is the set of all closed linear operators in
H. A family T (ε) ∈ C(H), defined for ε in a domain G ⊂ C, is said to be
holomorphic of type (A) if D

(
T (ε)

)
= D is independent of ε and T (ε)u is

holomorphic function of ε ∈ G for every u ∈ D.
Now let T0 and T1 be two linear operators in H, with D := D(T0) ∩D(T1)

dense in H: D = H. Then we can define a family of linear operators by
T (ε) := T0 + εT1 with D

(
T (ε)

)
:= D. Our basic result is the following

Theorem 1. Let T0 ∈ C(H) and T1 be closable. Assume that

(i) there are a, b, c ≥ 0 such that

(1) Re
(
T0u, T1u

)
≥ −c‖u‖2 − a‖T0u‖‖u‖ − b‖T0u‖2, u ∈ D.

Then T (ε) is closable for ε in the region G defined by

G :=
{

ε ∈ C; |Imε| <
1 − bRe ε

2 − bRe ε
Re ε, 0 < Re ε < b−1

}
,

with closure T̃ (ε) = T0 + εT̃1, and hence
{

T0 + εT̃1 ; ε ∈ G
}

forms a holo-

morphic family of type (A).
Assume further that

(ii) 0 ∈ ρ(T0),
(iii) 0 6∈ σres

(
T (ε)

)
for sufficiently small ε > 0.

Then D := D(T0) ∩ D(T1) is a core for T0 and hence

(2) T−1
0 = s − lim

ε↓0
T̃ (ε)−1.
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In particular, if T0 has a compact resolvent, then any number λ ∈ ρ(T0) also

belongs to the set ρ(T̃ (ε)) for sufficiently small ε > 0 and

(3)
∥∥∥(T̃ (ε) − λI)−1 − (T0 − λI)−1

∥∥∥ → 0 as ε ↓ 0.

In case of selfadjoint operators this theorem becomes simpler:

Theorem 2. Let T0 be a selfadjoint operator with compact resolvent and
T1 be a symmetric operator. Assume that conditions (i), (ii) in Theorem
1 are satisfied and for some ε1 ∈ (0, 1/b) the operator T (ε1) is essentially
selfadjoint. Then the operators T (ε), 0 ≤ ε < 1/b, are essentially selfadjoint,
and the uniform resolvent convergence (3) holds.

Remark 1. It is easily seen that Theorem 1 can be applied to the case where
0 6∈ ρ(T0). To this end we consider (T0−λ0I) instead of T0 for some λ0 ∈ ρ(T0).
Theorem 1 will be true if we replace conditions (i)-(iii) by

(i′) there are λ0 ∈ C and a, b, c ≥ 0 such that

(1′) Re
(
(T0 − λ0I)u, T1u

)
≥ −c‖u‖2 − a‖T0u‖‖u‖ − b‖T0u‖2, u ∈ D.

(ii′) λ0 ∈ ρ(T0).
(iii′) λ0 6∈ σres(T (ε))for sufficiently small ε > 0.

Indeed, it follows from (1’) that

Re
(
(T0−λ0I)u, T1u

)
≥ −c′‖u‖2−a′‖(T0−λ0I)u‖‖u‖−b‖(T0−λ0I)u‖2, u ∈ D,

for some constants a′, c′ ≥ 0.

The following lemma is interesting by itself. The result is concerned with
holomorphic families of closed linear operators.

Lemma 1. Under condition (i) in Theorem 1, the family
{

T0 + εT̃1 ; ε ∈ G
}

forms a holomorphic family of type (A).

Proof. Let us fix an ε1 ∈
(
0, b−1

)
arbitrarily. Applying [12, Lemma 1.1 ] to

the pair and A := T0 and B := ε1T1, we see that both operators T0 and ε1T1

are
(
T0 + ε1T1

)
-bounded. In particular, we have

‖ε1T1u‖ ≤ 2 − ε1b

1 − ε1b

∥∥(
T0 + ε1T1

)
u
∥∥ + K(ε1)‖u‖,

where K(ε1) is a positive constant depending on ε1. Since T0 is closed and
ε1T1 is closable, it follows that T0 + ε1T1 is also closable, with closure given
by (

T0 + ε1T1

)̃
= T0 + ε1T̃1.
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Furthermore, we see from [3, Theorem IV.1.1] that the operators T0 +
ε1T1 + ε(ε1T1) are closable for ε with |ε| < 1−ε1b

2−ε1b . This means that the family(
T0 + εT1

)̃
u = T0u + εT̃1u, u ∈ D(T0) ∩ D(T̃1), is holomorphic with respect

to ε in the open circle with center ε1 and radius 1−ε1b
2−ε1bε1.

Since the number ε1 ∈
(
0, 1/b

)
is arbitrary, the assertion is proved. ¤

Remark 2. Using T̃ (ε) = T0 + εT̃1 for small ε > 0, it is easy to show that
inequality (1) holds also for u ∈ D(T0) ∩ D(T̃1):

Re
(
T0u, T̃1u

)
≥ −c‖u‖2 − a‖T0u‖‖u‖ − b‖T0u‖2.

Lemma 2. Under conditions (i)-(iii) in Theorem 1 the set D = D(T0)∩D(T1)
is a core for the operator T0.

Proof. By the condition (ii), 0 ∈ ρ(T0). Put

(4) ε0 := 2−1
(
c
∥∥T−1

0

∥∥2
+ a

∥∥T−1
0

∥∥ + b
)−1

.

Then it follows from (1) that for every ε > 0

‖T (ε)u‖2 ≥ ‖T0u‖2 + 2εRe
(
T0u, T1u

)
(5)

≥ ‖T0u‖2 − 2ε
(
c‖u‖2 + a‖u‖‖T0u‖ − b‖T0u‖2

)
≥

(
1 − 2ε(c‖T−1

0 ‖2 + a‖T−1
0 ‖ + b)

)
‖T0u‖2

≥
(
1 − ε

ε0

)
‖T−1

0 ‖−2‖u‖2, u ∈ D,

and hence T̃ (ε) is invertible for 0 < ε < ε0, with∥∥∥T̃ (ε)−1
∥∥∥ ≤

√
ε0(ε0 − ε)−1‖T−1

0 ‖.

Therefore we see from condition (iii) that R
(
T̃ (ε)

)
= H, that is, 0 ∈ ρ

(
T̃ (ε)

)
for sufficiently small 0 < ε < ε0.

To prove the assertion, we first note that D is a core for T̃ (ε). Since T0 is
T̃ (ε) -bounded, D is dense in D(T̃ (ε)) = D(T0) ∩ D(T̃1) with respect to the
graph norm of T0. Therefore, it suffices to show that D(T0) ∩ D(T̃1) is a core
for T0. To this end, we shall show that T0

[
D(T0) ∩ D(T̃1)

]
is dense in H [3,

Problem III.5.19]. Now let h ∈ H be orthogonal to T0

[
D(T0) ∩ D(T̃1)

]
:

(6)
(
h, T0u

)
= 0 ∀u ∈ D(T0) ∩ D(T̃1).
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We shall show that h = 0. Since 0 ∈ ρ(T̃ (ε)) for small ε > 0, there is a family
{uε} in D

(
T̃ (ε)

)
= D(T0) ∩ D(T̃1) such that

h = T̃ (ε)uε = T0uε + εT̃1uε.

It follows from (6) that

(
T̃1uε, T0uε

)
= −1

ε
‖T0uε‖2 ≤ − 1

2ε
‖T0uε‖2 − 1

2ε
∥∥T−1

0

∥∥2 ‖uε‖2.

Since we can take ε > 0 as small as we want, we see that the last inequality and
(1) (see Remark 2) can be true simultaneously only for uε = 0. Consequently,
we obtain h = T̃ (ε)uε = 0. ¤

Proof of Theorem 1. Let ε0 be as defined in (4). First we shall show that T̃1T
−1
0

is a densely defined and closed linear operator in H such that I + εT̃1T
−1
0 is

boundedly invertible, that is,
(
I + εT̃1T

−1
0

)−1

exists and R
(
I + εT̃1T

−1
0

)
=

H for small 0 < ε < ε0, with

(7)
∥∥∥(

I + εT̃1T
−1
0

)−1
∥∥∥ ≤

√
ε0(ε0 − ε)−1, 0 < ε < ε0.

Noting that T0D is contained in D
(
T̃1T

−1
0

)
= D1 := {T0u; u ∈ D(T0)∩D(T̃1)},

we see from Lemma 2 that T̃1T
−1
0 is densely defined. Since the closedness of

T̃1T
−1
0 is clear, it remains to prove (7). It follows from (5) that

∥∥(
T0 + εT1

)
u
∥∥2 ≥

(
1 − ε

ε0

)
‖T0u‖2

, u ∈ D.

Since D is a core for both T̃ (ε) = T0 + εT̃1 and T0, we have∥∥∥(
T0 + εT̃1

)
u
∥∥∥ ≥

√
ε−1
0 (ε0 − ε)‖T0u‖, u ∈ D(T0) ∩ D(T̃1),

and hence

(8)
∥∥∥(

I + εT̃1T
−1
0

)
v
∥∥∥ ≥

√
ε−1
0 (ε0 − ε)‖v‖, v ∈ D1.

This implies that I + εT̃1T
−1
0 is invertible. Furthermore, since

R
(
T0 + εT̃1

)
= R

(
T̃ (ε)

)
= H, we see that

R
(
I + εT̃1T

−1
0

)
= R

(
T0 + εT̃1

)
= H.
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Therefore, (7) follows from (8).
As its consequence we have

(9) I = s − lim
ε↓0

(
I + εT̃1T

−1
0

)−1

,

(10) I = s − lim
ε↓0

(
I + εT̃1T

−1
0

)−1∗
.

To prove (10), let ν ∈ D(T ∗
1 ). Then

(
I + εT̃1T

−1
0

)∗−1
ν − ν =

(
I + εT̃1T

−1
0

)∗−1
{

I −
(
I + εT̃1T

−1
0

)∗}
ν

=
(
I + εT̃1T

−1
0

)∗−1(−ε)T−1∗

0 T ∗
1 ν,

we see from (7) that∥∥∥(
I + εT̃1T

−1
0

)∗−1
ν − ν

∥∥∥ ≤ ε
√

ε0(ε0 − ε)−1
∥∥T ∗−1

0 T1ν
∥∥ → 0 as ε → 0.

Since D(T ∗
1 ) is dense in H, we obtain (10) by the Banach - Steinhaus theorem.

The proof of (9) is simpler than that of (10). Hence we obtain (2).
Suppose now that T−1

0 and hence T−1∗

0 are compact. Therefore the well-
known Schmidt decomposition [2] is true: T−1∗

0 =
∑∞

i=1 si( · , zi)yi, where
{yi}∞i=1 and {zi}∞i=1 are orthonormal systems of eigenvectors of the operators
T0T

∗
0 and T ∗

0 T0 , respectively, and
{
s−2

i

}∞
i=1

are the sequence of corresponding
eigenvalues enumerated in the increasing order. Denote by BN the orthogonal
projector of the space H onto the linear hull of the vectors {zi}N

i=1.
To prove the theorem, it is required to show that for any α > 0 there exists

β = β(α) > 0 such that∥∥∥T̃−1(ε) − T−1
0

∥∥∥ ≤ α for ∀ε ∈ (0, β).

Fix an arbitrary number α > 0. Select N such that

si < α/2
(√

ε0(ε0 − ε)−1 + 1
)

for i > N.

We have

(11)
∥∥T−1∗

0

(
I − BN

)∥∥ <
α

2
(√

ε0(ε0 − ε)−1 + 1
) .
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Next (10) implies a uniform convergence of the operators

(
εT̃1T

−1
0 + I

)−1∗
T−1∗

0 BN → T−1∗
0 BN as ε ↓ 0.

Select β > 0 such that

(12)
∥∥∥∥{(

εT̃1T
−1
0 + I

)−1∗
− I

}
T−1∗

0 BN

∥∥∥∥ <
α

2
, ε ∈ (0, β).

It follows from (7), (11), (12) that∥∥∥∥(
εT̃1 + T0

)−1

− T−1
0

∥∥∥∥ =
∥∥∥∥T−1

0

{(
εT̃1T

−1
0 + I

)−1

− I

}∥∥∥∥
=

∥∥∥∥{(
εT̃1T

−1
0 + I

)−1∗
− I

}
T−1∗

0

∥∥∥∥
≤

∥∥∥∥{(
εT̃1T

−1
0 + I

)−1∗
− I

}
T−1∗

0 BN

∥∥∥∥
+

∥∥∥∥{(
εT̃1T

−1
0 + I

)−1∗
− I

}
T−1∗

0

(
I − BN

)∥∥∥∥
≤ α

2
+

(√
ε0(ε0 − ε)−1 + 1

) α

2
(√

ε0(ε0 − ε)−1 + 1
) = α.

Thus we have proved convergence (3) for λ = 0. We have (3) for any number
λ ∈ ρ(T0) from [3, Theorem IV.2.25]. This completes the proof of Theorem
1. ¤

Remark 3. Condition (iii) in Theorem 1 and Lemma 2 can be replaced by the
condition

(iii′′) 0 6∈ σres

(
T (ε1)

)
for some ε1 ∈ (0, ε0),where the constant ε0 is defined

by (4).

In fact, since bounded invertability is stable under relatively bounded small
perturbation[3, Theorem IV.1.16],0 ∈ ρ

(
T̃ (ε1)

)
implies that 0 ∈ ρ

(
T̃ (ε)

)
for

∀ε ∈ (0, ε0) (see also [12, Proposition 1.6]).

Now it is easy to prove Theorem 2. In fact, Lemma 1 and [3, Section VII.3]
imply that T̃ (ε), 0 < ε < b−1, is a selfadjoint holomorphic family of type
(A). Since the residual spectrum is empty for selfadjoint operators, the norm
convergence (3) follows from Theorem 1.
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2. Applications

As an application of the obtained result, consider the following operators
in L2(Rn):

(13) T (ε)u = T0u + εT1u = −444u + V (x)u + εV1(x)u, ε > 0,

where D(Ti) = {u : Tiu, u ∈ L2(Rn)} , i = 0, 1; V, V1 ∈ C1(Rn).
Assume also that if n ≥ 2, then the functions V, V1 are real-valued; if n = 1

then the functions are complex-valued.

Theorem 3. Let either

lim
|x|→∞

ReV (x) = ∞ or lim
|x|→∞

ImV (x) = ∞(−∞)

(the last for n = 1). Assume that there are constants b, c > 0 and M ∈ R
such that the following two inequalities hold:

(14) Re
(
V1 + 2bV

)
> M > −∞,

(15) 4 Re
(
V1 + 2bV − M

)(
Re

(
V V1

)
+ b|V |2 + c

)
≥ |∇∇∇(V1 + 2bV )|2 .

Then T̃ (ε) converge to T0 as ε ↓ 0 in the sense of uniform resolvent convergence
(3).

Proof. Under the imposed assumptions it is known that the following are
true [6, pp. 56-65]: the operator T0 possesses a compact resolvent; the set
of functions C∞

0 (Rn) is a core for the operators T (ε), ε > 0; ρ(T (ε)) 6= ∅ ,
σres(T (ε)) 6= ∅.

First we prove Theorem 3 in case 0 ∈ ρ(T0). We need to check (1) or the
equivalent inequality

(16) Re
(
T0u, T1u

)
+ c‖u‖2 + b‖T0u‖2 ≥ 0

with some constants c, b ≥ 0. Let u ∈ C∞
0 (Rn). Then the left-hand side of

(16) is written as

Re
∫
Rn

(−444u + V u)V1udx + c

∫
Rn

|u|2dx + b

∫
Rn

(−444u + V u)(−444u + V u)dx

= Re
∫
Rn

(−444u)(V1 + 2bV )udx + b

∫
Rn

|444u|2dx

+
∫
Rn

(
Re

(
V V1

)
+ c + b|V |2

)
|u|2dx

≥ b

∫
Rn

|444u|2dx + M

∫
Rn

|∇∇∇u|2dx +
∫
Rn

Qx(|u|, |∇∇∇u|)dx,
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where

Qx(s, t) := Re(V1+2bV −M)s2−|∇∇∇(V1 + 2bV )| st+
(
Re(V V1) + b|V |2 + c

)
t2.

The form Qx(s, t) is nonnegative if (14) and (15) hold. Noting further that

b

∫
Rn

|444u|2dx + M

∫
Rn

|∇∇∇u|2dx ≥ b‖444u‖2 − |M |δ‖444u‖2 − |M | 1
4δ

‖u‖2,

we can obtain (16). The assertion is proved in case 0 ∈ ρ(T0).
Next, let us consider the general case. Since the spectrum of T0 is discrete,

we can take some λ0 ∈ ρ(T0) ∩ R, λ0 < 0. Set

S(ε) := T (ε) − λ0I = −444u + (V − λ0)u + εV1u.

Note that the norm convergence (3) and

(17) S(ε)−1 =
(
T (ε) − λ0I

)−1 →
(
T0 − λ0I

)−1 = S(0)−1, ε ↓ 0,

are equivalent. So if we prove (17), then we obtain Theorem 3.
It is easily seen that 0 ∈ ρ(S(0)). We have already proved that if (14) and

(15) with V replaced by V − λ0 holds then we have the assertion. So we need
to prove that (14) and (15) yield the following inequalities for some constant
cs ≥ 0:

(18a) Re
(
V1 + 2b(V − λ0)

)
> M,

(18b) 4Re
(
V1 − M + 2b(V − λ0)

) (
Re

{
(V − λ0)V1

}
+ b|V − λ0|2 + cs

)
≥

∣∣∇∇∇(
V1 + 2b(V − λ0)

)∣∣2 = |∇∇∇(V1 + 2bV )|2 .

Since λ0 < 0, (18a) is obvious. Next we estimate two factors on the left-hand
side of (18b) separately. Since λ0 < 0,

(19) Re
(
V1 − M + 2b(V − λ0)

)
≥ Re(V1 + 2bV − M).

From (14) we obtain

Re
{
(V − λ0)V1

}
+ b|V − λ0|2 + cs(20)

= Re
(
V V1

)
− λ0ReV1 + b|V |2 − 2bλ0ReV + bλ2

0 + cs

≥ Re
(
V V1

)
+ b|V |2 − λ0M + bλ2

0 + cs − c + c

≥ Re
(
V V1

)
+ b|V |2 + c.

Here we have chosen the constant cs ≥ 0 such that bλ2
0 − λ0M + cs − c ≥ 0.

From (15), (19) and (20) we have (18b). This completes the proof of Theorem
3. ¤
Remark 4. It is clear that for any V, V1 ∈ C1(Rn), (14), (15) holds for x ∈ K,
where K is any compact set. Hence it remains to check (14), (15) for large
|x|.
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Example 1. Let us consider the operator (13) for V (x) = |x|2:

T (ε)u = −444u + |x|2u + εV1u.

CASE 1: ReV1(x) is bounded below: ReV1(X) > −M . To check (15) for
sufficiently large |x|, we should have

4(2b|x|2 + ReV1)(|x|2ReV1 + b|x|4 + c) ≥ |∇∇∇V1 + 4bx|2 (M = 0),

or equivalently for large |x|,

(21) |x|4ReV1 + |x|6 + |x|2
(
ReV1

)2 ≥ C1|∇∇∇V1|2,

where C1 > 0 is a constant.
Now assume that

(22) |x|3 + |x|ReV1 ≥ C|∇∇∇V1| for large |x|,

where C > 0 is a constant. Then we have(
|x|3 + |x|ReV1

)2 ≥ C2|∇∇∇V1|2 for large |x|,

and hence (21).
The inequality (21) holds, for example, if

a) V1 = |x|α1 , ∀α1 > 1 ; or
b) V1 = |x|α1 ± i|x|β1 if {α1 > 1, 1 < β1 < 4} or α1 > β1 − 2.

Case 2: ReV1 → −∞ as |x| → ∞. The conclusions of Theorem 3 are true if

ReV1 = o
(
|x|2

)
, |∇∇∇V1| = O

(
|x|3

)
as |x| → ∞.

Example 2. Let the operator (13) is given by

T (ε)u = −u′′ +
(
−|x|α ± i|x|β

)
u + ε

(
|x|α1 ± i|x|β1

)
(n = 1).

The conclusion of Theorem 3 is true if α1 > α > 1 and

max {α1 + β + β1 ; 2β + α1} > max {α + 2α1 ; 2α1 − 2} .
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13. H. Sohr, Über die Selbstadjungiertheit von Schrödinger-Operatoren, Math. Z. 160 (1978),
255-261.

14. H. Sohr, A new perturbation criterion for two nonlinear m-accretive operators with
applications to semilinear equations, J. Reine Angew. Math. 333 (1982), 1-11.

15. A. Yoshikawa, On perturbation of closed operators in Banach space, J. Fac. Sci. Hokkaido
Univ. 22 (1972), 50-61.

Victor Borisov
Department of Mathematics

Science University of Tokyo
Wakamiya 26, Shinjuku-ku
Tokyo 162, Japan
and

Departments of Mathematics
Ryazan Radio Engineering Academy
Ryazan 390005, Russia


