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Abstract. Boundary integral equations corresponding to the differential equa-
tions describing a transient flow of incompressible viscous fluid in three dimen-
sions are considered. Emphasis is put on the treatment of edges and corners.
The boundary I' is assumed piecewise Lyapunov surface and the interior solid
angle O(z) at the non-smooth boundary point x must satisfy the inequality

1
lim sup — {/ |[dO- (y)| + |27 — @(x)|} <L
0—0 g 2w 0<|y—x|<6

Corresponding to the Dirichlet problem of the Navier-Stokes equations, the
following series of Volterra integral equations of the first kind for unknown
tractions a;") (1=1,2,3: n=0,1,2,...) is derived.

t
Goy" (1) = / / o™ (y, T)US (y, 75 2,1) dS (y)dr = b (,8),
(0] T

where U}; are components of the Stokes fundamental solution tensor and b;")
can be regarded as given functions. The integral Ga;") is the single layer poten-
tial. The integral involved in the definition of b;") (see the text) is the double
layer potential. Those integrals are shown to be weakly singular for the non-
smooth domain under consideration. It is proved that, with ¥ =T x [0, 7], the
operator

is coercive;

2
(G0N i) 2 BlllolI?, 4.y

with a constant 8 > 0, o = (01,02, 03).
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§1. INTRODUCTION

One of the favorable properties of the boundary element method is its high
accuracy in the numerical solution for singular problems due to edges and
corners of the domain in question. Another favorable property of the method
is due to its boundary only formulation. In order to make those properties
truly beneficial, it is important to derive boundary integral equations and to
show coercivity of the integral operator, for the coercivity property of integral
operator plays a crucial role in the convergence and stability of approximate
solutions of the boundary integral equations.

In this paper, boundary integral equations corresponding to the Navier-
Stokes equations describing the transient viscous fluid flow in non-smooth
domain in three dimensions are considered. The non-smoothness is character-
ized by the existence of edges and corners of some general kind. The Stokes
fundamental solution tensor is used as the kernel of the integral operator. Cor-
responding to the Dirichlet problem of the transient Navier-Stokes equations,
a series of Volterra integral equations of the first kind for unknown surface
tractions is derived. The integrals involved in the equations are shown to
be weakly singular even on the surface having the edges and corners. The
unique existence of the solution to the series of boundary integral equations
are presented in anisotropic Sobolev space. We show coercivity of the integral
operator on the non-smooth surface.

When the domain in question is smooth, the conventional mathematical
discussion about constructing the solution in the form of asymptotic expansion
is done according to the following process; a) the formal asymptotic series is
substituted into the Navier-Stokes equations; b) the differential equation for
each term of the series is derived. However, in this paper, we will consider the
non-smooth domain. In this case, we must be careful of limiting processes in
deriving the differential equation in the step b). To get around the difficulties,
unlike the conventional discussion, we will begin with the discussion of the
integral representation of solutions for the Navier-Stokes equations.

For a nonstationary viscous flow of compressible fluid, Hebeker and Hsiao
[5] showed the coercivity of the corresponding boundary integral operator for a
smooth domain. Their method of proof is based on the proof due to Costabel
et al. [3] for transient single layer heat potential, the elementary proof is
published later in Onishi et al. [9]. As far as the authors are aware, there have
been no papers published that are concerned with boundary integral approach
for incompressible viscous fluid flow in non-smooth domain.

To be more specific, we describe in §2 an initial-boundary value problem
of the Navier-Stokes equations. The non-smoothness of the domain will be
characterized by (2.12). We shall derive in §3 the boundary integral repre-
sentation of the solution in the form (3.1)-(3.3). The integral representation
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requires knowledge of velocity and traction on the boundary. The velocity on
the boundary is given as the Dirichlet data. The traction on the boundary
must be determined by boundary integral equations that will be derived in §4
as

Theorem 1. The unknown tractions O'i(n) (n =0,1,2,...) on a non-smooth
surface I' characterized by (2.12) are given by solutions of the following linear
Volterra integral equations of the first kind on the boundary.

t
Cijii(z,t) = Re / () _ av + /0 /F (003 — a5 dsdr
+ / / fU7 dVdr,

0—// U*deT—Re//uk u; U*dVdT

and form =2,3,...,

o_// U*deT—ReZ// DU v,

We shall present a jump relation in Theorem 2 for the non-smooth surface. A
boundary integral operator is defined by the single layer potential in (4.16).
For the coercivity of the integral operator we shall prove

Theorem 3. There exists a constant 3 > 0 depending only on ¥ such that

(Go.0)) ey = BlllI,

1
()

1
3

in §5. In discussions throughout this paper we shall require rather lengthy but
straightforward manipulation of equations, which are gathered in Appendices
I, IL, IIT for the main discussions to be made concise.

§2. NON-SMOOTH DIRICHLET PROBLEM

Let €2 be an open connected and bounded domain in three-dimensional Eu-
clidean space E3. The boundary of 2, which is denoted by I' = 99, is assumed
to consist of a finite number of open smooth surface I'y, (k = 1,2,...,N) so
that T' = Ul T';. Here T'; denotes the closure of the set T';.
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We consider the unsteady viscous flow of an incompressible Newtonian fluid
in Q. The set of governing equations can be written in dimensionless forms as
follows:

Equations of motion (i = 1,2, 3)

Re (d; + ujuij) = 045+ fi in Q, (2.1)

Continuity equation

U5 = 0 in Q, (2.2)

Constitutive equations (i,j = 1,2, 3)

0 = —Rep(sij + Ui+ U (2.3)

Here w; is the component of the flow velocity, p is the pressure, o;; is the
i, j-component of the Cauchy stress tensor, f; is the component of the given
external force, and Re is the Reynolds number of the fluid motion under
consideration. We use Einstein’s summation convention on repeated indices.
A comma, for example, in u;; is used to indicate the differentiation for w;
with respect to the corresponding spatial variable x;, a dot in 4; indicates
the differentiation with respect to the time variable, and d;; is the Kronecker
symbol.

For the set of governing equations above, we are interested in the following
side conditions:

Boundary condition.

u; =u; onl, (2.4)

Initial condition.

wi=ul” att= 0, (2.5)

1

(0)

7

velocity component. We assume that u; € C(I" x [0,7]) and ugo) e Cl()n

C(92). Moreover, we assume that @;(x,0) = ugo) (z) at x € T and that

where ;(x, t) is the prescribed velocity component, and u;  is the given initial

u) =0 inQ (2.6)
r

where n; is ith component of the unit outward normal n(z) at x € T'.
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We shall confine the geometry of I' as follows: Let each I'y be a piece of
Lyapunov surface so that the Lyapunov condition is satisfied:

|cosv| < Lly —z|® (0<k<1) (2.8)

for all x,y € I'y, where v is the angle between the normal n(z) and (z —y), L
is a constant depending only on I'. The set of points on I', where the surface
is not smooth, is denoted by dI'.
Let dO,(y) denote an infinitesimal solid angle at any 2 € E® subtending
the surface element dS(y) at y € I' — oI
0

10,(y) = ~ 55 ()45 () (2.9

with r = |y — z|. We set O(z) = /d@x(y). This is equal to the interior
r

solid angle at the vertex x of the cone, whose side surface is constructed by
all the half ray tangential lines to the surface I' radiating from x. The cone is
assumed to be simply connected. It follows that

sup / 140, (y)| < A (2.10)
xeE3JT

with a constant A > 0. Let us put

1
W) i= 5 { [ e+ r2w—@<x>|}, (211)
T\ Jo<ly—z|<s
and characterize 01" so as to satisfy the inequality:
lim sup Ws(z) =w < 1 (2.12)
0—0 T

with a constant w. The non-smooth surface characterized by (2.12) was intro-
duced in [14].

As the solution of our initial-boundary value problem (2.1)-(2.5), we seek
such u; and p that u; € C*(Q % (0,T))NC (2 x [0,7]) and p € C1 (2 x (0,T7).
However, we cannot expect in general that o;; are continuous on the boundary,
because I' has edges and corners. Here we assume that tractions defined by
o; = oi;n; are pth-power summable function on I" with p > 2; i.e. o;(-,t) €
L¥(r),

1
o0l = { [ oo P dS(@)}” < +cc. (2.13)

Moreover, we assume that o;(x,t) is a function such that
tim (-, ) — 03 (D)l = 0 (2.14)
for all t € [0,T]. The space of all such functions is denoted by C'(LP(T") : [0,T1)

equipped with the norm: |||oy|||c(rr(r):(0,7)) = [Jnax lloi(-, t)]lp-
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§3. INTEGRAL REPRESENTATION

In this section, we shall derive the successive linear representation of the
solution in terms of integrals on the boundary as follows:

i (z,1) = Re/ («v3) _ av
// (o"03; —a3y;) dsar (3.1)
_7/F fini - <) S+//fZU*dVdT
(

47
uM(a,t) = // DUz dsdr — Re//uk u QU dvdr,  (3.2)
0 JI

and forn =2,3,...,

") (2, 1) // U*der—Re//<Zuk i )U*dVdT (3.3)

For this purpose, we consider a sequence of smooth surfaces {S,,} (m =
1,2,...) in Q such that (i) for each m there exists a one-to-one continuous
mapping ¢, from I' to S, such that ¢,,(y) — y as m — oo, and (ii) with the
constant A in (2.10) it holds that

[ lde.p)] < 4
Sm

uniformly for all x € E® and m. The existence of such {S,,} is shown in
Wendland [14, Hilfssatz 6]. We denote by £2,,, the open domain enclosed by
S

As is well-known, see Oseen [10, p. 38, Sec. 5|, Ladyzhenskaya [6, p. 78],
or Berker [1, p. 276, Sec. 77] for example, the Green formula for x € Q,,, with
smooth boundary yields

uj(x,t) = Re/ (UzU*) OdV(y)

+/ /m o;U ) dS(y)dr

—//W%aﬁmaw (3.4)

—Re/ / ur; kU, dVdT+/ / fiUg; dvdr,

where Uj; are components of the tensor given by the expression:
0?®
dy;0y;’

Uiy, m52,t) == —0;; A +
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Oy, my2,t) = % /Or E(p,t —71)dpH(t — 1) (3.6a)

1 1 r | Re
= —Erf | = H(t — .
47Rer : (2 t— 7') (t—7) (3.6b)

with Heaviside step function H(-). The function E(-,-) and the Gauss error
function Erf(-) are defined by

1

1 R,e 2 _ Re 2
E(r,t — = i(t—7) .
(rt=7) 27rRe (471' t— 7')) ¢ ’ (3.72)

Bi() = / 2 dc, (3.7b)

respectively. Moreover ¥7; is the pseudo-traction defined by the expression:
S5 miw ) = (Ui + Uiy ) e (3.8)

The equations (3.4) are derived in Appendix I, in which we will follow Oseen
[10, Sec. 5], Kupradze [4], Tosaka [12], and Tosaka and Kakuda [13] for the
way of the derivation. Essentially the same equations are presented in Oseen
[10, p. 44].

Remarks. The expression (3.6b) is more convenient than (3.6a) for the nu-
merical evaluation of ®. See, e.g. Yamauchi et al. [15, Chap. 9].

We shall derive an integral representation of u;(z,t) for x € Q by letting
(3.4) in the limit as m — oo. To this end, it is sufficient to show that next
two integrals are uniformly bounded for any m.

I, = /t/ Uii(y, 752, t) dS(y)dr, (3.9)
I = //m (y, 75, 8) dS(y)dr. (3.10)

Lemma 3.1. U;;(y,T . x,t) is weakly singular at y = x, 7 = t: Namely,
there exist two positive constants G1 and Go such that
1 Gy 1
| ’ - ( ),u r3—2u + (t _ 7-)1/71 ro—2v

1 3
with any u(§ < p <1, 1/(5 < v < 2). The integral (3.9) is absolutely
convergent.
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The lemma can be proved by the combination of ideas in Oseen [10, p. 69]
and Pogorzelski [11, p. 353]. The proof is given in Appendix II.

Lemma 3.2. The integral (3.10) is absolutely convergent for any x € 2 and
it is uniformly bounded for any m.

Proof.  We shall show in Appendix III that

. . 8ijTk + ki (Re\2rE(r,t — 1)
Up 4 Upyy = — a7 Okt <> rent—7)

r 2 (t — 7’)2
. . . 2 T _
| Gigm + Sy + By (Re> T/ Ert—s) (3.11)
r 2 —00 (t - 5)3

Ty <Re>3T3/T E(r,t —s) s

73 2 oo (t—8)t

where 7; = y; — x;. From (3.7a) we can see that

1 1 1 Rer? )2 " Rer?
" gz ipdRel# (E ) {4<t =) } o [‘4@—)1
Gy 1
— (t—T)r 2

asze
3
(22“_1715Re1_“)

restrict p as to satisfy g < 1. Similarly we can see that

(3) [

B /T 1 1 1 Rer?
)i 932w i Re2V (t— 8)Y 1072 | 4t — )

Re"? wv-1 1
- 23_2'/77% (t _ 7-)1/—1 r6—2v
Gy 1
(t _ T)V—l r6—2v

. We shall

)
with 0 < 5 ~H=as Here we put Gs(u) =

[SI

oy [ Rer? ]
FPNTH =)

—oy

g
ayte
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Re"™ 2042‘4 e

PR , and that
29—2Vm2

With0<g—1/:a4, Gy(v)=(r—-1)

O =»

9_
/T Re?2 1 1 Rer? |2 A Rer? d
12773 (t—5)) r6-2% | 4(t — s) Pl ag—sy| ™

A
Re*™?  A—1 1 . .
= 93-2w 8 (t— )AL 62T
Gs 1
(t _ 7-)>\—1 r6—2A

Re* 2a2%e~as

— 5 — . We shall restrict v and
23—2v 3

A further as to satisfy 0 < v —1 < 1and 0 < A —1 < 1. Note that i

From (3.8) and (3.11) we have

¢
L,
2Gs 1 3G, 1 Gs 1
/ / { t— )i + (t — 7)1 pb-2v + (t— ) 1 r62)\} dSdr

dS(y) /t 3Gy / dS(y)
< d + o d —77
/0 (t— T)“ g oS<TEz /Sm r4—2p o (t—T1)"~ g OS<11[<)t L, 62

dS(y)
d .
+/ t —7) T OS<EI<)t /sm r6—22

The integrations with respect to the variable 7 are convergent. Since x is in
Q, we can choose §(z) > 0 and an integer M (z) € N such that r = |[y—x| > §
for any y € S,;, and m > M. This completes the proof. a

with0<g—)\:a5, Gs(A) = (A—1)

<1

From Lemmas 3.1 and 3.2, the integrals (3.9) and (3.10) have the corre-
sponding finite value as m — oco. Therefore, we have

%@w// oiUf; — u;S dS dT—//O’Z - )dS()d

Similarly we can see

0 (1 0 /1
li iNi=— | — = ini=— | — .
Jim Smun ay; (r) dS(y) /Fun ay; (7") dS(y)
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Hence, from (3.4) as m — oo, we have
uj(x,t) = Re /Q (uiU;})T:O dv(y)
t
+/ / ’LUZ* —uiE’-*- dS d
e (o5 ;) dS(y)dr
1 0
_E/ mzay]( ) Re/ /ukulkU dV (y)dr
—l—/ /fZU* av(y

with o € €. This is a representation formula for u;(x,t). However it involves
the volume integral of the nonlinear term uzu;. In order to linearize the
formula, we introduce a parameter A in (3.12) according to Oseen [10, p. 71].
This leads to the equation:

uj(z,t) = Re/ (uZUZ*) o av
+// al i Wi Z]) dSdr
——/ Ui —=—— 4 ( )dS )\Re/ /ukulkU dvdr
0y;
+/ /flU-*jdVdT.

We try to find the solution corresponding to this equation in the form:

(3.12)

(3.13)

uj(x,t) = Z )\"u§~n) (x,1), (3.14)
plo,t) = 3 A (a,0), (3.15)
n=0

respectively. We impose here that uz(") (,0) =0(n >1) in Q. We define

oij(,t) == X% Ao (x, 1) (3.16)
with

ot (z,t) = —Rep™sy;+ul” +ul" inQ, (3.17)
o‘fn) = O‘Z(Jn)nj on F, (318)

if the series are absolutely convergent. Substituting (3.14) and (3.15) into
(3.13), and equating the like powers of A, we obtain (3.1)—(3.3). These relations
are successive linear representations of u;(z,t) at z € Q in terms of velocities

(0)

u; and tractions o; "’ on the boundary. &
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84. BOUNDARY INTEGRAL EQUATIONS

In this section we shall transform the initial-boundary value problem in the
non-smooth domain described in section 2 into a series of boundary integral
equations of the first kind.

Theorem 1. The unknown tractions ai(n) (n =0,1,2,...) on a non-smooth
surface I' characterized by (2.12) are given by solutions of the following linear
Volterra integral equations of the first kind on the boundary.

Cijii(z,t) = Re / (u"0) _ av+ / / DUy - wy;) dSdr
A _

t
+ / / fiU% dvr,
0 JQ
o_// U deT—Re/ /uk AU avr, (4.2)

and form =2,3,...,

n—1
0= / / UL dSdr —Re Y / / dOdm VY avde, (43)
=0 0 JQ ’

To begin with, let us define potential functions:

Single layer potential

Goj(x,t) / /U, (y, U5y, 732, t) dS(y)dr, (4.4)

Double layer potential

Huj(x,t) / /u2 Y, 7)35(y, T2, 1) dS(y)dT. (4.5)
About the continuity of (4.4) we have

Lemma 4.1. Under the assumption (2.13), the single layer potential Goj(x,t)
is continuous in E3 x [0,T].
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Proof.  From (1.30) and (IL.4), the kernel U}; can be written in the form:

_ Re rir;\ E(r,t —7) Re rir;\ [T E(r,t—s)
; 0ij = =5 ) =7 —— (0 - J)/ 2L s,
Uij 2 <J 7“2> t—T1 4 (J 3r2 oo (t—8)2 5
(4.6)

We first show that

//O'] (y, 7 — )dS( )dt

is continuous. Since the integral is absolutely convergent from Lemma 3.1,
we can transform the multiple integral into iterated integrals. The variable

. r Re .
transformation: 7 — o = N~ yields
-7

1 1 0o ) Rer?
)= —— | = o\ vt s e ) do aS().
gl(IE ) W%Re /F , {/gﬁe g (y 4o2 ) U} (y)

Let us put the integral in {---} as ®1(y;x,t). This &4, as a function of y € T,
is pth-power summable with p > 2: In fact,

/F|‘I’1\pd5(y) < /F/Oooeazslipaj(ym)]dap
- [ ast) (%)

From (2.13) we know that sup |o;(y,7)| is also in LP (I'). This implies that
T

Q(-;x,t) € LP(T).
Using the theorem in Wendland [14, Hilfssatz 2.3.2] we know that

nlant) = —— [ P g,

3
m2Re JT r

dS(y)

is continuous in E3 x [0, T]. The continuity at ¢ = 0 is understood in the sense:
g1(z,t) > 0ast— 0.
Secondly we show that

t) :/Ot/FUj(y,T) {Pze/TOOE((;_ts))ds} dsS(y)dr

is continuous. This can be shown in the similar way as in (4.6): By s +— ¢ =
Re

— , we have
2\ t—s

Re (7 E(r,t—s) / \/> ¢2 —@dC (4.7)

4 ) (=52 7 iRer?
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Therefore we can see that

1 t 1 oy o
go(x,t) = —3 //paj(ym)ﬁ/o ( )§2€ <2dCdS(y)d7'

m2Re /0

1 1 oo 1 o 9 _42 Rer2
o3 /r r {/Qﬁ 03/0 e doj(y,t — 5 )do o dS(y)

Let us put the integral in {---} as ®o(y;x,t). We now show that ®o(-;z,t) €

LP(T') with p > 2: In fact,

0 1] o B P
Jlerase) < [|[7 55 [ e ac swlojtw o] asw)
r riJo o¢=Jo T

Jr

= / sup |o(y, 7)[” dS(y)(T)p.
r 7

The last equality follows from the relation

o 1 g
75 [ e acar = VT
o o0°Jo 4

Hence go(x,t) is continuous in £ x [0, 7).
Moreover, we can see that the following G, g» are also continuous in E? x

[0,T7]:
= //gj TZTJMds(y)dT
1 <I>1(yr ) " )
s, t) v
7T2Re/ r r? a5(w),

/Ot/rffj(y, 7)% {ie /_TOO st} dS(y)dr

_ 1 /‘I)2(y;$7t)7"z‘7“j dS(y)

o3 r r2

(4.9)

rizj | <|®k| (k= 1,2) and they are pth-power summable. There-

because |y,

fore, the lemma is proved. ]

Next lemma shows that the double layer potential (4.5) with continuous
density satisfies a jump relation on the boundary.

Lemma 4.2. Suppose that u; € C(Q x [0,T]) with j = 1,2,3. Then, as
x € Q approaches a boundary point z € I, at which I' is smooth, the double
layer potential Hu;(x,t) satisfies

1
lim Huj(x,t) = —iuj(z, t) + Huj(z,t). (4.10)

r—z
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Instead of giving the proof of this well-known lemma, we consider another
limit than (4.10): Let = be on the boundary I". Here, x may be the point
at edges and corners. Let Ks(z) be a sphere of radius § with the center z;
Ks(x) = {y||ly — z| < 6}. Define Q5 = Q — Ks(x). The boundary of Qs
consists of two parts; Ss = QN OKs(x) and T's =T — S5. As § — 0, we see
that I's — I'. If § is sufficiently small, S5 is simply connected. In this case,
since z is an exterior point of 5, we have the Green formula:

0 = Re /Q 5 (wil) v+ /Ot /am (U35 = wisy;) dSdr

. (4.11)
+/ / (fi — Reukui,k) Ui*j dvdr,
0 Jos

which corresponds (3.12).

Theorem 2. For any u; € C%(Q x [0,7]) N C(2 x [0,T]) and x € T, it holds
that

t
%in%)/ / ui(y, 7)555(y, 7, t) dS(y)dr = Cijui(z,t) + Huj(z,t), (4.12)
—0J0o JoQs

where C;; is given by the expression:

1 : i 1
Cij = — lim (r]m — 3Lk nk> 2 dS(y). (4.13)
Ss

47 §—0 r r3

Proof.  We divide the integral in (4.12) into two parts:

t t t
/ / u;3;; dSdr :/ / +/ / . (4.14)
0 JoQs 0 JIs 0 JSs

The first part converges to Huj(x,t) in the sense of Cauchy’s principal value
as 0 — 0. We know that ¥;; as in (3.11) consists of three terms. To examine
the limit of the second part, we consider corresponding three integrals:

t Re\ 2 rE(r,t — )
I = i\Y, —_— ' 7 d
1 /OU(yT)<2> (t_T)Q T
B Rer?

1 [oe]
—— ui(y, t
I, /2 ™ iyt =

o /Ot wi(y, ) (T)zr{/_; st} dr

)
Yo?e 7 do,
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2 o0 r2 4e=C g
T/ uz(yv - P} )fOC 3 C Ua
mar2 J5 /B 4o 7

Iy = /OtUi(y,T) (?)37“3{/;%%} o
_ ? Jo ¢S ¢ d<

42) o3

(o)
w
=e e
Let t > 0, which is arbitrary, be fixed. We can choose r so small that the

Re < v Rer
2V t 2
the integral involved in I; into two parts and consider that

inequality: is satisfied: In fact, » < t is sufficient. We divide

Rer

Rer
2 —O’
Ui (Y, do= [ _+[ _
/ Us; y 102 ) g = / / CT
/ A Rer )0'2670 do + ui(z,t) /oo o2 do
/Rc 40’2 ’ \/f;cr

Rer? 2
+ @ {u (y’t o F) - Uz(x,t)} 0'26 dO’.

Since w; is bounded on Q x [0, T], we can write max ¢ ; |u;(x, )| < M for some
constant M. The ﬁrst integral on the most right hand side converges to zero
with the order O(r2) This can be shown as follows:

Rer Re'r
/ lug| o?e “de < M/ 14+ 0(0%)) do
\/7 \/ﬁ ( )

Vv Rer
0.3 2
= M|— +0(c)
3 T Re
=3V T
Re% 3 5
- M 51 rz2 4+ 0(rz) asr —0.

2
Since |y — x| = r (=6 with y € S5) and 0 < 1167;
o

have for arbitrary ¢ > 0 that

< r in the last integral, we

Rer?

max |u;(y, t
y7o-

with sufficiently small §. Therefore we see that

R 2 —o2 o 2 —g2 _ \/7?
/\/7 i(y,t gy 2) ui(x,t)] oe d0'<8/0 o’e da-sT.
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Next, we consider the integral involved in I» and divide it into two parts as

before: Namely,
) fo C4 7( dC / Rer /
40 £ /B2 vRer

2 Jo ¢l g

/\/ﬁ y,t—
) g 4*C2d
foCe Cda

Rer
_/ iyt~ 402) A uant) [ 2
Rer? JocteCd¢
+ m{ui(yat_ 402)—Ui(907t>}03d0

The ﬁrst integral on the most right hand side converges to zero with the order
of O(r2) This can be seen from the estimate:

Re’!‘ o 4 _CQd 3
/ : fOCeig Cdg:l?;(jr%-kO(rg) as r— 0.
. /Be o

The last integral can be made arbitrary small as we can see that

o0 Rer? J§ ¢le S d¢
/@ ‘ul(y?t_ 40_2 )_UZ(x7t)‘OTdU
2

o0 1 o
< 5/ 7/ e dedo = ¥
o o3 Jo 8

Similarly we consider the integral involved in I3 as follows:

0 6 e—¢? dC
= ui(y,t — 4 2 )fO 3
N o
vRer 2 f 6 _<2 00 o 6 _C2
_ [ 0 Clem dC Jo ¢"e™¢"d(
- wi(y,t — 4 5 3 do + ui(x,t) /\/? B do
t
oo Rer? Iy Cﬁe_CQ d¢
e {uxy,t R - um:,t)} L

The first integral on the right hand side is the order of O(r?) as r — 0. The

3
absolute value of the last integral is bounded by e—— \F
From (3.8) and (3.11) we can write the last mtegral in (4.14) as follows:

¢ 1 5 OkjTi o0 2
/ / wiksydsdr = — | {- OigTh + Ot 1 t RO 20 gy
Ss T3 T T 51 /Re 4o
dijTk + OjkTi + 5ki7“ ¢te=¢" a .
4% j j / iyt — )fo ]
T VB 4 o
g 4 Rer2 [9 8¢~ d¢
; / g 0 = g ) oy
/Re 4o o
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From the estimates so far for each integration with respect to o, we can see
that

t S St wi (. 00
%in(l)/ / u;¥; dSdr = hn% { ik Ok ul(l; ) /\/T o%e " do
- 0 S(; T T TGT
+5z'j7“k + 0T + Opi; 2ui($, t) [ Jo e d¢ o
r 72 YEer o3
2
ririre dug(z,t) (0 [T 8¢ dC
B R Vo H= g do}—s i dS(y)
_w@t) [ 1 it + digri 1V
71'2 5—>0 T r2 4
(Szjrk + 5‘7]67"1 + 5kzrj EL _ ririTk 4 3\/7} e dS
T r2 8 r3 2 16 70K
= C’Z-jui(x, t).
Hence we put Cj; as
Cy = % %ir%/ {_5z‘j7’k + Opj7i n 0ijTk + 0jkri + Okt B 37’17‘]37“;9} g
T 0—0J5s T T T
_ 1 lim {5;“-7"]- B 37"27“]7%} " s,
41 5—0 r r3 r2
which completes the proof of the theorem. |

Remarks. Coefficients C;; depends only on the geometry of the boundary I

1
=

at . When I is smooth at z, we have C;; = 5

From Lemmas 3.1 and 4.1, we know that all integrals involving U} in (4.11)
are continuous in E3 x [0, T] Therefore, the formula (4.11) yields the equation:

Cijui(xz,t) = Re/ (uZ py dV+// o;U uiZ;‘j) dsdr

+ / / — Reupu; k) U{; dvdr
(4.15)
with z € I'. We introduce the parameter A to the nonlinear term as in (3.13).
Corresponding to (3.1)-(3.3), we then have the series of boundary integral
equations (4.1)—(4.3). These equations are Volterra integral equations of the
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first kind for unknown al(n) (n=0,1,2,...). They have the common form:

Goj(z,t) = //Uly, Uii(y, 75 2,t) dS(y)dr
= bj(x,t).

For (4.1), b; has the form:

bt

t
]0)(.7},t) = Cijﬁi(aj‘,t)—i-/o /1_‘ﬁ¢2fdedT

t
_ ©) = _ U
ML@U@ﬂwaéﬁ%wm

and for (4.2), (4.3), it has the form:

xt ReZ/ /uk f;l 1U~*jdVd7'

with n =1,2,3,... .

§5. COERCIVITY OF THE INTEGRAL OPERATOR

(4.16)

(4.17)

(4.18)

We shall show the existence of the solution to the boundary integral equa-
tion (4.16). The way of arguments will proceed in parallel with the one used

in Onishi [8].

We consider the properties of the integral operator G in the space Hai (%)
and in its dual space H 31 () with ¥ = T' x [0,7T], introduced by Lions

and Magenes [7, p. 10 and p. 44]:
H>5 (2) = L2 ([0,7]; B2 (1)) 0 H ([0, T); L (I))

equipped with the norm:

(1) - s
el g g = [ 02, e+ [ rRE

even for our non-smooth I". We shall use also the Banach space
HY (Q) = L? ([0, 7]; H' () n H= ([0,T]; L (©))

with Q@ = Q x [0,T].

H””dﬁ
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For three component vector function w = (w1, wa, ws), the product spaces
are defined by

and

with the norm:

w

2
g g, = 22015

The space H20(X) is similarly defined. Let L2(3) := L2(X) x L(Z) x L2(2).
We denote by ((+,+))o the scalar product:

Then, we have

Lemma 5.1. There exists a constant C > 0 such that

2
Gl 0y < CUCR O g,

for any o = (01, 09,03) in L? (2).

The proof is done by the direct extension of the proof for heat equation in
Onishi et al. [9, Lemma 1]. Next lemma essentially due to Lions and Magenes
[7] for heat equation implies the unique existence of the solution o to the

equation (4.16) in H™21 (%),

Lemma 5.2. The operator

A=

G:H 37 1(3) — H> ()

is an isomorphism.

From the lemma, we know that there exists a constant o > 0 depending only
on X such that

(5.1)

—1
ool -y .

gy NGOl gy 1 <alliolily

Moreover, in a similar way as in the proof of Theorem 1 in Onishi et al. [9] it
can be proved that G is coercive.
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Theorem 3. There exists a constant § > 0 depending only on ¥ such that

2
(G0N ey 2 Bllollly

Proof of Theorem 3. Let C denote a generic constant. From Lemma 5.1 and
from the continuous dependence of solutions on Dirichlet data, we can see

AV

2
(Go0) gy = OGOy,

Y

2
Ol Py -

By the extension of the result in Lions and Magenes [7] for heat equations, we
know that the trace operator

h0: H"3(Q) — HP4(X)
is bounded. Namely, there exists a constant C' (> 0) such that
1169l 4., < NGOl g

From Costabel [2, Lemma 2.15] we know that

|”GUH|H1’%(Q) < CH’GO_’HHI’O(Q)

holds for some constant C' (> 0). Therefore we have

(G0N gy 2 CllIGOlIpa g,
> CllGally,
> CllGellyy g
> Clllolly gy
The last inequality follows from (5.1). O
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APPENDIX I

In this appendix, we shall transform the set of differential equations (2.1)-
(2.3) into the set of integro-differential equations (3.4). To this end we write
(2.1)-(2.3) formally in the matrix form:

—ReD; + A + D% D1Ds D1Dg Dy
DyD4 —ReD; + A + D% DyDsg Do
D3 Dy D3 D, —ReD; + A+ D% Ds
D1 Do D3 0
(L1)
(75} Reujul,j — f1
(5 Reujuzj - f2
X = )
us Reuju&j - f3
—Rep 0
where D; = 88—(2, D; = 3—2, and A is the Laplacian in three dimensions. We
denote (I.1) simply by the expression:
L;;U;=B; (I,J=1,2,34), (1.2)

where we put U; = v; (i = 1,2,3), Uy = —Rep, B; = Reuju; j— f;, and By = 0.

Remarks. We use two kinds of indices. The indices with upper case letters
run from 1 to 4, the indices with lower case letters run from 1 to 3.

We assume that the solution Uy of (I1.2) is sufficiently smooth. Then the
coefficient matrix [L7;] becomes symmetric. In order to determine four un-
knowns Uy (J = 1,2,3,4) we require corresponding four sets of linearly in-
dependent fundamental solutions associated with L;; in general. Let Uj,
(L =1,2,3,4) be such fundamental solutions, that are assumed to be admis-
sible in the Galerkin form:

/0 t /Q (LisUy — Br) Uy, dV(y)dr = 0, (1.3)

After integration by parts and using the relation:

9 R
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we can obtain the Green formula:

t
| [ @t Uiy = (L3050} avar
t

t
_ / / (0,07 — wi,) dSdr — Re [ / ” ;‘Ldv] ,
0o JI Q

7=0

(L5)

in which X}, = (—UZL(SZ-]- + UL, + ]*Ll) n; and the adjoint operators L7
are given as follows:

ReD; + A + D? DD, D1 D; —Dy
D1D, ReD; 4+ A + D3 DyDs —Dy
[L14] =
D1 D3 Dy D3 ReD; + A+ Dj —Ds
(1.6)

We consider the fundamental solution tensor Uj; satisfying the equation:
L7Uj = —6r10(x)d(t), (L.7)

where 6(-) is the Dirac function. In order to find the explicit form of the
solution, we assume that Uj; can be derived from the expression: Uj; =
Mjro* with a scalar function (often called stress function) ¢* in such a way
that M, satisfies the relation:

L?]MJL = det [L?J] (SIL. (18)

This implies that My, is the formal cofactor of L7 ;. From (I.6) the cofactors
are given by

[M[J] = (ReDt + A)

—(D3 + Dj) DiD» DiD; Di(ReD; + A)
D1D; —(Dj + DY) D:Ds Dy(ReDy + A)

X
D1 D; D2Dj —(D} + D3) Ds(ReD; + A)

Di(ReD; + A)  Da(ReD; +A) Ds(ReD; +A)  —(ReD; + A)(ReD; + 2A)
(L9)
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If we put My as My = (ReDy+ A) Mj;, then Mj; are expressed as fol-
lows:

Mi,j = —A(Sij + DZ'D]‘, (IlOa)
/| — D;(ReD;+A), (L.10b)
My, = —(ReD;+ A)(ReD; +2A). (I.10¢)

The determinant calculated formally is given by
det [L5;] = —A (ReD; + A)?. (1.11)

Therefore, p*(y, 7;x,t) as a function of y and 7 with parameters z and ¢ must
satisfy the equation:

A, (ReD; + A)? o* = 6(x)d(t). (1.12)

We require explicit forms of all Uj;. Since each Mj; contains the factor
(ReD; + A), it is sufficient to determine an unknown ®(y, 7;x,t) satisfying

A, (ReD; + A,) ® = 6(2)5(t) (1.13)

with ® = (ReD; + Ay) ¢*. The solution with the spherical symmetry around
x takes the form:

o — 1/7« E(p,t —7)dpH(t — 7). (1.14)
rJo

We notice that (ReD,+ A,)® = 0. Therefore, the fundamental solution
tensor is given as follows:

0
[UrL] = ’ 0 (L.15)
0 00 0
with
3
H(t—T) Re 2 _ Rer? 0?®
— b A(t—r) . (I.16
7 Re (47r(t - T)> ¢ + 0y, 0y; (1.16)

Remarks. All of the components on the fourth column in [U};] are zero.
This implies that we must find another fundamental solutions, independent
on the first three column vectors in (I.15) to determine the pressure. Such
fundamental solutions are discussed in Oseen [10, p. 48]. We also remark that
U:, =0.

17,8



BOUNDARY INTEGRAL EQUATION 35

Let  be an internal point of 2. U} are singular for y = x, 7 = ¢, but they
are regular elsewhere. For the application of U}; to (I.5), we must exclude the
point of singularity. This can be done by replacing the interval [0,¢] of the
integrations by [0,¢ — &] with a small positive number . Then we have

t—e t—e
/ / (L1sUy) U}y dVdr = / / B,U dVdr, (1.17)
0 Q 0 Q

and
t
/ / Up (L3, U%,) dVdr = 0. (L18)
0 JQ

After this replacement, we consider the limiting process when ¢ — 0. Accord-
ing to the discussion in Oseen [10, Section 5], we can see that

;%Re/ ( iU;;)T:t— dV = uj(z,1t) /uZ Z@y] ( > ds, (1.19)

and

t—e t
lim / BUY dVdr — / / BUY dVdr. (1.20)
o Y oJao Y

e—0Jo

The functions involved in the integrations on the surface I' are not singular,
because r = |y — x| > 0 for arbitrary but fixed z.

Derivation of the Green formula (I.5)

Dropping the index L, we see by integration by parts that the following
holds.

t
/ / (LU U dVdr
0 JQ
t
= / / {(—Reﬂi + Ui 55 + uj45 + U47j5ij) Ui* + Uj,jUZ} dVdr
= —Re/ / { (u;U;") uzU } dVdr
ot
+/ {/ umnjUZ.* =+ ujJnjUi* — uinjUij u]an + U4Tl](5wU ) dS} dr
0 T

t
+ /0 | (s + 0,5 — Uiby U ) avr

t
+/ /ujnjUjdede/ /ujUzjdVdT.
0Jr 0 Jo
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ujn; = u;dijng, and u;Uy ; = u;Uj ;6;5. Using (I.4)

we have

t
/ / (LU U dVdr
0 JQ .
Q 7=0
t
+/ / uij + uj; + U4(5ij) nle-* — U (U;:j + U;,i — UZ(SZ‘]‘) nj} dSdr

+ / / wi (ReU; + Ujy; + Upyy — Ui y0) = UaU; } dVr

= —Re [/ wU; dV}

—I—// oiU" —u; 2 deT—i—/ /UI (L7,U7) dVdr.

Derivation of ¢ in (I.14).

We put ¥ = A® in (I.13), then ¥ satisfies
(ReD; + Ay) ¥ = (z)0(t).

The solution with spherical symmetry is given by

3
1 Re 2 _ RerQ
V=—-—|—— -7, [.21
Re (47r(t — 7')) ¢ (1.21)
Hence @ is given as a solution of the equation
10°
AP = ) (rd) = . (1.22)
To find ®, we see that
9 1 Re 5 [ _ Rep’
(b = —_— —_— 4(t—) d
™ = Re <4Tr(t - 7)> . e P
1
1 Re 2 _ Rer?
= -7 = E(r,t — 7).
27Re (47r(t - T)) c (rt =)
Then we see that 1
o = f/ E(p,t —7)dp.
T Jo
Using the relation:
T 1 r | Re
E(p,t —7)dp = Erf | =
/0 (p,t =) dp ArRe (2 t—T)’
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we have (I1.14).

Proof of (I.19).

The proof follows Oseen [10, p. 42]: From (3.5), (I1.21), (1.22) we see for

T < t that
1 Re _ Rer? 82(b
Ut =6;i— | ———— 4(t—7) . 1.23
Y Re (47T(t — 7')) € + 0y,;0y; (1.23)

Using the incompressibility condition (2.2), we have

Re/Q (uiU;})T:tis dV(y)
3
Re\2 _=& 0’
(o (ReNE Lo av
/QUJ (v, = ¢) (47r8> ‘ /Q (U ayjayi)r:t—a

3 Re'r2
Re>2/ e 0P
=\|-— Uj ,t—é‘ dV+Re/ UiNG—— ds .
(3)" [ wtwr-a [ ( ay)T:m v)

Since the convergence of the limit:

NJw

_Re'r2
. € 4e
lim —5— =0
e—0 23

is uniform for any r > ¢ with some small but fixed 6 > 0, we have

2

Rer Rer
e_ 4e

hm/ uj(y,t — dV = lim uj(y,t —e)—5—dV.
€2 =0 Jr<s €2

We write the integral in the form:

— Rer? Rer

e de e 4e
/ uj(y,t —e)—=5—dV = wuj(x,t) / — dV
r<d 2 r<é

_ Rer?

—l—/rd{uj(y,t—a)—uj(x,t)} v,

N

[e.9]
From the relation / e % dy = I the limit of the integral involved in

3
£2

0
the first term on the right hand side is calculated as follows:

_ Rer?
. [ 4e
lim [ S av

e=0Jr<s g2

o _ Re'r
= lim / / ———7r?sin @ drdfdy

e—0

327‘(‘ . \/ ( 4 > E
= — lim * doy —
Re2 e—0Jp Re
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The second term is evaluated as follows:

7Re'r2
&
| At —o) = wila} - av
r<d £2
< MEAL
< g, iy =) ()
t—7|<e

Since wj(x,t) is continuous, we can make the last expression arbitrarily small
by taking sufficiently small 6 and . Therefore we have

3
. Re \ 2 7Rer2
glir(l)/QUj(y,t —¢) (W> e 1= dV = wuj(z,t).

Next we consider the limit:

limRe/ umza—q) ds.
e—0 T ayj e

From (3.6a) we see that

o d (1)/ or
— = — (=) | E(pe)dp+E(p,e)—.
<8yj)”_6 a; \r ) Jo (p.e)dp+ E(p )ayj

VT

o0 2
Using the relation/ e * dz = 5
0

, we know that
li ' d S
00 0 Ep,e)dp = 47Re’

and
lim E(p,e) = 0.
e—0
The convergence of these two limits is uniform for r > ¢ with the positive

0= max |y — x|, we can see that
yeT (™) |t—7|<e

lim Re/ umla—q) dsS = 1/ umli (1> ds.
e—0 T 0y i 47 Jr Oyj \r

Proof of (1.20).

The proof follows Oseen [10, p. 45]: We shall show that the integral

t
/ / BU};dVdr
0 JQ
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is absolutely convergent for continuous and bounded B;. From this property,
the relation (1.20) is clear. To this end, we show that the singularity of Up;
with respect to the variable y at y = x and the variable 7 at 7 = ¢ can be

separated, and that the singularity is weak.
In fact, we consider (1.23) with ¢t > 7 in the form:

Re E(r,t — 1) 0?P

Us —§

g Uy i1 8yj8yi'
For r = /(yr — x1)? we know that
or i
8yi - r ’
0%r _ 15" TiTy
dy;0y; rod 3
8 (1) o T
oy \r/) ¥
0? (1> _ _%+3ri7‘j‘
y;0y; \r 73 7o

Using these relations we can see that

oe _ O%ri
oy,  Orr’
ro _ 5100 mry (00 100
oy;0y; — Yror w2 \or2 ror)
From (3.6a) we can see furthermore that
0P 1
2 (D —E(rt-
2 - e Brt-m),
0*® 2 Re E(r,t —7)
92 - 21— Ert-r) - =227 T
or? r2 { (rt=7)} A

Therefore we have

U :5i<Re£—%(q>—E)

v {E @ p gLt k@B

Z%{%’—Tf«gj}%—%{5i1_3rigj}(q)_E)'

(L.24)

(I.25a)
(L.25b)
(I.25¢)

(L.25d)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)
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Tﬂ“j
2

We notice for r > 0 that < 1 and that

1 1
O0<E(rt—1)< 0<d<

Ary/Rer(t— 1)’ dm/Rer(t —7)

From the last two inequalities we have

1

4r\/Ren(t — 1)

Using the inequality se™® < e~! for s > 0, we have

| —E| <

Re F 1 R€T2 _ 412:8T2>
_— = e —T
2t—1 2mr2\/Rer(t — 1) |4(t —7)
1 1

< .
2emr?\/Rer(t — )  4mwr?\/Rern(t — 1)

Therefore we obtain the inequality:

6

4rr2\/Rerm(t — 7)

This implies that |U};| are summable.

U351 <

APPENDIX II

In this appendix, we shall prove Lemma 3.1. The idea of the inequality
estimates is due to Pogorzelski [11, p. 353]: From (1.30) each component Up;
can be estimated in the following way:

. E(r,t—7) 4

Using the inequality:
et < a% @ (I1.2)

with any o > 0, we can see from (3.7a) that

3
E(r,t—1) 1 1 1 l Rer? ]2 : Rer? ]

R _ __Rer”
R— 92u 13 Rel— (t — T)H r3=2 | 4(t — 1) exp| At —7)
Gy 1

(t—T)Hr3=2n

IN
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a1l ,—oq
Qi e

3
22u—1r5Rel ~H

to satisfy > 1 and 3 — 2u < 2. This implies 3 < p < 1. In this case we see

that
/t/ ReE(T‘,t—T) JSdr /t Gq / ds &
0 Jsn t—7) o (t—7) Js, 1372

t Gy dS
—- II.
/0 (t—T)m oiglgt /Sm r3=2n (IL.3)
N

me

with a1 = % — p > 0. Here we put G1(p) = . We restrict u as

IN

Since each S, is a closed Lyapunov surface tending to I' as m — oo, the
supremum is bounded by some constant. Owing to Oseen [10, p. 69] we know
the relation:

®—E(rit—1)= %Tz /TOO m ds. (I1.4)

Thus, the second term in (II.1) is evaluated at follows:

4 T E(r,t—
S o — Bt —7) :Re/ Elnt—5) 4
.

o (t—5)? .

T ReV 2 1 1 Rer? 277 Rer?
- /_Oo 92v—355 (t — )V ro—2v [4(75 — 3)] P [_4(15 — s)] ds
- Rev"2  v-1 1
= 923,35 (t—T)rlb2

agz e o2

5
with ay = 3V > 0 for any v > 1. We restrict further as to satisfy v — 1 < 1

3 —1)as2e o2
and 5 —2v < 2. This implies = < v < 2. We put Ga(v) = v )?,f? ¢
2 22v=37132Re? 7V
this case, we see that
t 4 t Go dS(y)
—|® — E(r,t —7)|dS(y)d </7d / —.
/0 /gm 7“2’ (r T dS(y)dr < 0o (t—7)r1 TR, Sy TP
meN
The supremum is bounded by some constant.
Derivation of (1I.4).
We notice that E(p,t — s) satisfies
oF Rep
= I1.5
dp 2(t—s) (IL.5)
and 5 o2
E E
Re—+ -5 =0
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From the last relation we can see for 7 < ¢ that

O’E
T 0
= Re/ E(p,t—T)der/ —E(r,t —s)ds.
0 —o0 OF

Therefore, the integration by parts yields:

/OTE(p,t— / —Ert—s)d

T 1 Re é e 4(t s) d
_T[W2WRG (47r) Q(t_s)% 5

Rer2
r Re e 4t—s) 0 Rer?
_ () / 76 4(t s) ds
2mRe \ 47 Vit—s Vt—s0
§=—00

—rE(rt—7) + % 3 /_OO E((trf 3_)28) ds.

By dividing the first and last expressions by r and from (3.6a), we obtain
(I1.4).
APPENDIX III

In this appendix, we shall derive (3.11): From (1.24), (I.25a) and (IL.5) we
have

Uy _ 5 Be 1 0En. 0 (9@
oy, Y 2t—710r r Oy 0y;0y;

Sy (Re>2 r£_ 0 (o0
r 2 ) (t—7)%  Oyp \0y;0y; |
The last term is calculated by using (1.27) as follows:
o ( 0°0 1\ rj, 09 19?® 1y,
—_— 251']‘ —— 77_‘_5”.,77
Oyr \ 0y;0y; r2) r or ror? r

2\ 7 1 e 109
+ <_’r3) o T + 2 (Oikrj + djx7i) (87“2 - 7“07“)

riv; <a3<1> 1 0% 10%) Tk
.

(I11.1)

oe, 0% 10® 111.2
r2 \or3  r20r rOr? ( )
B 51'ka + 5jk7'i + 5;%"1“]' 182(1) B i@g
r ror2 r20r
Tk Pod 3020 30
+ -2 =220
ord  rorz2  r3or

r
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0P 2
The last result is symmetric for indices i, j, k. o is given by (I1.28). rel is
r r

given by (1.29). Therefore we know that

1% 10w
ror: r2or
1 (2 Re F 1 1
S e ) —l C@e-E
r{rz( ) 275—7'} 7“2{ r( )}
3 Re FE
— 2 (d_E) - =
r2( ) o2rt —T
_?)Re/T E(r,t—s) s—& E
 dr o (t—s)? ort—r1

The last equality follows from (I1.4). We notice the following equality:

T E(rit—s), 2FE({t—-7) Re T E(r,t—s)
/_Oo TRy ds = i fﬂ /_OO N ds. (I11.3)

Hence we have

2 2 T —
1% 100 1 (Re) / Blrt—s) . (IIL.4)

ror2 r2or 2\ 2 " —o (t—s8)3

[oAL T
Moreover, — is given as follows:
or3

0 4 2 (0® OF Re OF
93 _ﬁ(é_E)JFTQ(@T_Br)_M—T)ar
= —g(é—E)Jr{i+4(tRfT)r}RetiET.
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The last equality follows from (II.5). Therefore we know that

Foadi) 3 0%*d 300
o3 rorz ' r2or
1 FE

= 6((1) E)+{ + Re )T}Re

4(t — t—r1
3 (2 Re F 3 1
2lle-p-X 2 2] 2e-FE
7’{7’2( ) 2t—7}+r2{ T( )}
15 5Re F Rer
- _2@-E
7“3( )+ 27"15—7'jL 4 7')2

__15Re /T E ds + 5Re E (Re)
C 4r oo (t—8)2 2r t—71 2 (t—71)2

() [ (5)

The last equality follows from (III1.3). We notice the following equality:
T kB - 2F - T F -
/ (T7 t 8) § = — (T7 t 8) R’e,,,_2/ (T7 t 8) d (1115)
oo (t—8)3 5 (t—s)? 10 Jooo (t—9)*
Hence we have
Po 3y 3001ty 0 Bt
ors  ror2  r2or 2\ 2 N
By substituting (III.4) and (IIL.6) into (II.2), we have
PO G+ Ojpri + O 1 (Re> T/T E(r,t—s)
OyrOy;0y; - r 2\ 2 oo (t—5)3
_TirTe L (Re)grfs/T E(rt—s)
r3 2\ 2 oo (t—s)*
Hence, (3.11) follows immediately from (IIL.1).

ds. (111.6)

ds

Proof of (II1.3).

From (3.7a) we can see that

Rer?

T E(r,t—s 1 T e 4t=9)
/ ( 5 ) ds = T / 5 ds

—oo (t—5) 2273 Re 22 oo (t — 5)2

Rer2 Rer2

1 2e 1(t—s) /T 2¢ (-9 Rer? p
= — — s
2273 Re? 3(t — S)% —o0 3(t — s)% At — s)?

S=—00
_ Rer? _ Rer?

1 2¢ 4t-7) Re 2/T e At—9)
—r -

= +
27r3Ret |3(t—7)2 6 Jooo (t—s)2

ds
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Proof of (IIL.5).

Rer2
T F t— 1 T T 4(t—s)
/ N 35) ds = 3 1 / ‘ 7 ds
—oo (t—5) 2272Re2 J-oo (t — 5)2
Rer? T o Rer?
1 Qe (t—s) T e A(t—9)
= 31 5 - / 5
22712 Re? 5(t—s)2 —oo 5(t —s)2
S=—00
Rer2 Rer2
1 2¢ =) Re , (T e %9
= 3 1 5 + T / — 9 dS
272Re2 | 5(t—71)2 10 Jooo (t—5)2
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