(t, k)-Shredders in \boldsymbol{k}-Connected Graphs

Masanori Takatou and Masao Tsugaki

(Received May 17, 2007)

Abstract

Let t, k be integers with $t \geq 3$ and $k \geq 1$. For a graph G, a subset S of $V(G)$ with cardinality k is called a (t, k)-shredder if $G-S$ consists of t or more components. In this paper, we show that if $t \geq 3,2(t-1) \leq k \leq 3 t-5$ and G is a k-connected graph of order at least k^{8}, then the number of (t, k)-shredders of G is less than or equal to $((2 t-1)(|V(G)|-f(|V(G)|))) /\left(2(t-1)^{2}\right)$, where $f(n)$ denotes the unique real number x with $x \geq k-1$ such that $n=2(t-1)^{2}\binom{x}{k}+x$.

AMS 2000 Mathematics Subject Classification. 05C40.
Key words and phrases. (t, k)-Shredder, Upper bound.

§1. Introduction

In this paper, we consider only finite, undirected, simple graphs with no loops and no multiple edges.

Let $G=(V(G), E(G))$ be a graph. Let t, k be integers with $t \geq 3$ and $k \geq 1$. A subset S of $V(G)$ with cardinality k is called a (t, k)-shredder if $G-S$ consists of t or more components. In this paper, we are concerned with the number of (t, k)-shredders in k-connected graphs.

Before stating our result, we make the following definitions. For a real number x, we let

$$
\binom{x}{k}=\left(\prod_{0 \leq i \leq k-1}(x-i)\right) / k!.
$$

For a real number n with $n \geq k-1$, we let $f_{t, k}(n)$ denote the unique real number x with $x \geq k-1$ such that

$$
n=2(t-1)^{2}\binom{x}{k}+x .
$$

We start with known results concerning ($3, k$)-shredders. For $1 \leq k \leq 3$, the following result was proved by T. Jordán in [4].

Theorem 1. Let k be an integer with $1 \leq k \leq 3$, and let G be a k-connected graph. Then unless $k=3$ and $G \cong K_{3,3}$, the number of $(3, k)$-shredders of G is less than or equal to $(|V(G)|-k-1) / 2$.

Subsequently the following two results were proved in [2].
Theorem 2. Let G be a 4-connected graph of order $n \geq 2200$. Then the number of $(3,4)$-shredders of G is less than or equal to $5\left(n-f_{3,4}(n)\right) / 8$.
Theorem 3. Let k be an integer with $k \geq 5$, and let G be a k-connected graph. Then the number of $(3, k)$-shredders of G is less than $2|V(G)| / 3$.

In Theorems 1 and 2 , the upper bound on the number of $(3, k)$-shredders is best possible; as for Theorem 3, the bound itself is not best possible, but the coefficient $2 / 3$ of $|V(G)|$ in the bound is best possible (see [2], [4], [5]).

In [6], Theorem 1 was generalized to (t, k)-shredders as follows.
Theorem 4. Let t, k be integers with $t \geq 3$ and $1 \leq k \leq 2 t-3$, and let G be a k-connected graph of order $n \geq 2 k+1$. Then the number of (t, k)-shredders of G is less than or equal to $(n-k-1) /(t-1)$.

Similarly the following generalization of Theorem 3 was proved by G. Liberman and Z. Nutov in [5].
Theorem 5. Let t, k be integers with $t \geq 3$ and $k \geq 3 t-4$, and let G be a k-connected graph. Then the number of (t, k)-shredders of G is less than $2|V(G)| /(2 t-3)$.

The bound $(n-k-1) /(t-1)$ in Theorem 4 is best possible. Also modifications of examples constructed in [2] show that in Theorem 5, the coefficient $2 /(2 t-3)$ of $|V(G)|$ in the bound is best possible. The purpose of this paper is to generalize Theorem 2 to (t, k)-shredders as follows.
Main Theorem. Let t, k be integers with $t \geq 3$ and $2(t-1) \leq k \leq 3 t-5$, and let G be a k-connected graph of order $n \geq k^{8}$. Then the number of (t, k) shredders of G is less than or equal to

$$
\left((2 t-1)\left(n-f_{t, k}(n)\right)\right) /\left(2(t-1)^{2}\right)
$$

We here include a discussion concerning the condition $2(t-1) \leq k \leq 3 t-5$ on k. In view of Theorem 4 , it is natural to assume $k \geq 2(t-1)$. On the other hand, the fact that the coefficient $2 /(2 t-3)$ in Theorem 5 is sharp shows that the conclusion of the Main Theorem does not hold if $k \geq 3 t-4$. Thus the upper bound $3 t-5$ on k in the assumption of the Main Theorem is best possible.

The organization of the paper is as follows. In Section 2, we discuss the sharpness of the bound $\left((2 t-1)\left(n-f_{t, k}(n)\right)\right) /\left(2(t-1)^{2}\right)$. Section 3 and Section 4 contain preliminary results. We prove the Main Theorem in Section 5.

§2. Examples

In the Main Theorem, the bound $\left((2 t-1)\left(n-f_{t, k}(n)\right)\right) /\left(2(t-1)^{2}\right)$ is best possible in the sense that there are infinitely many graphs which attain the bound. To see this, let $m \geq k+1$ be an integer, and let W be a set of cardinality m. Let \mathscr{R} denote the set of all subsets of cardinality k of W, and write $\mathscr{R}=\left\{R_{1}, \ldots, R_{\binom{m}{k}}\right\}$. For each p with $1 \leq p \leq\binom{ m}{k}$, write $R_{p}=U_{p} \cup V_{p}$ with $\left|U_{p}\right|=\left|V_{p}\right|=k-t+1$. Define a graphs G of order

$$
|W|+2(t-1)^{2}|\mathscr{R}|=m+2(t-1)^{2}\binom{m}{k}
$$

by

$$
\begin{gathered}
V(G)=W \cup\left(\bigcup_{1 \leq p \leq\binom{ m}{k}}\left\{a_{p, i, j} \mid 1 \leq i, j \leq t-1\right\}\right) \\
\cup\left(\bigcup_{1 \leq p \leq\binom{ m}{k}}\left\{b_{p, i, j} \mid 1 \leq i, j \leq t-1\right\}\right) \\
E(G)=\bigcup_{1 \leq p \leq\binom{ m}{k}}\left\{a_{p, h, i} b_{p, h, j}, a_{p, h, i} u, b_{p, h, j} v \mid 1 \leq h, i, j \leq t-1\right. \\
\left.u \in U_{p}, v \in V_{p}\right\} \cup\{x y \mid x, y \in W, x \neq y\}
\end{gathered}
$$

Then G is k-connected and, in addition to the members of \mathscr{R}, G has $2(t-1)|\mathscr{R}|$ (t, k)-shredders

$$
\begin{array}{ll}
\left\{a_{p, i, j} \mid 1 \leq j \leq t-1\right\} \cup V_{p} & \left(1 \leq i \leq t-1,1 \leq p \leq\binom{ m}{k}\right) \\
\left\{b_{p, i, j} \mid 1 \leq j \leq t-1\right\} \cup U_{p} & \left(1 \leq i \leq t-1,1 \leq p \leq\binom{ m}{k}\right)
\end{array}
$$

Hence the total number of (t, k)-shredders of G is

$$
(2(t-1)+1)\binom{m}{k}=\left((2 t-1)\left(|V(G)|-f_{t, k}(|V(G)|)\right)\right) /\left(2(t-1)^{2}\right)
$$

§3. Preliminary results

Throughout this section, let t, k be integers with $t \geq 3$ and $k \geq 2(t-1)$, let G be a k-connected graph, and let \mathscr{S} denote the set of (t, k)-shredders of G.

For each $S \in \mathscr{S}$, we define $\mathscr{K}(S), \mathscr{L}(S)$ and $L(S)$ as follows. Let $S \in$ \mathscr{S}. We let $\mathscr{K}(S)$ denote the set of components of $G-S$. Write $\mathscr{K}(S)=$
$\left\{H_{1}, \ldots, H_{s}\right\}(s=|\mathscr{K}(S)|)$. We may assume $\left|V\left(H_{1}\right)\right| \geq\left|V\left(H_{2}\right)\right| \geq \cdots \geq$ $\left|V\left(H_{s}\right)\right|$ (any such labeling will do). Under this notation, we let $\mathscr{L}(S)=$ $\mathscr{K}(S)-\left\{H_{1}\right\}$ and $L(S)=\bigcup_{2 \leq i \leq s} V\left(H_{i}\right)$; thus $L(S)=\bigcup_{C \in \mathscr{L}(S)} V(C)$. Now let $\mathscr{L}=\bigcup_{S \in \mathscr{S}} \mathscr{L}(S)$. A member F of \mathscr{L} is said to be saturated if there exists a subset \mathscr{C} of $\mathscr{L}-\{F\}$ such that $V(F)=\bigcup_{C \in \mathscr{C}} V(C)$.

Let $S, T \in \mathscr{S}$ with $S \neq T$. We say that S meshes with T if S intersects with at least two members of $\mathscr{K}(T)$. It is easy to see that if S meshes with T, then T intersects with all members of $\mathscr{K}(S)$, and hence T meshes with S and S intersects with all members of $\mathscr{K}(T)$ (see [1; Lemma 4.3 (1)]). We define an auxiliary graph \mathscr{G} by

$$
\begin{aligned}
& V(\mathscr{G})=\mathscr{S} \\
& E(\mathscr{G})=\{S T \mid S, T \in \mathscr{S}, S \neq T, S \text { and } T \text { mesh with each other }\} .
\end{aligned}
$$

We start with easy observations.
Lemma 3.1. Let $S \in \mathscr{S}$. Then for each $x \in S$ and each $C \in \mathscr{K}(S)$, there is an edge of G joining x and a vertex of C.

Proof. If $x y \notin E(G)$ for any $y \in C$, then $G-(S-\{x\})$ is disconnected, which contradicts the assumption that G is k-connected.

Lemma 3.2. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $S T \in E(\mathscr{G})$. Then the following hold.
(i) For each $C \in \mathscr{K}(S)$ and each $D \in \mathscr{K}(T)$, there is an edge of G joining a vertex of C and a vertex of D.
(ii) The subgraph of G induced by $L(S) \cup L(T)$ is connected.

Proof. Since $S T \in E(\mathscr{G})$, we have $S \cap V(D) \neq \emptyset$. Hence (i) follows from Lemma 3.1, and (ii) follows from (i).

Lemma 3.3. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $S T \in E(\mathscr{G})$. Then $|S \cap L(T)| \geq t-1$ and $|L(S) \cap T| \geq t-1$.

Proof. Since $S T \in E(\mathscr{G}), S \cap V(D) \neq \emptyset$ for all $D \in \mathscr{K}(T)$. Since $|\mathscr{L}(T)| \geq$ $t-1$, this implies $|S \cap L(T)| \geq|\mathscr{L}(T)| \geq t-1$. Similarly $|L(S) \cap T| \geq t-1$.

Note that a (t, k)-shredder is a $(3, k)$-shredder. Thus the following five lemmas follow from [4; Lemmas 2.1 and 3.1] (see also [2; Lemmas 3.2 through 3.6]).

Lemma 3.4. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $S T \in E(\mathscr{G})$. Then the following hold.
(i) $S \supseteq L(T)$ or $T \supseteq L(S)$.
(ii) $L(S) \cap L(T)=\emptyset$.

Lemma 3.5. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $S T \notin E(\mathscr{G})$. Then one of the following holds:
(i) $L(S) \cap L(T)=\emptyset,(L(S) \cup L(T)) \cap(S \cup T)=\emptyset$, and no edge of G joins a vertex in $L(S)$ and a vertex in $L(T)$;
(ii) there exists $C \in \mathscr{L}(S)$ such that $V(C) \supseteq L(T)$ (so $L(S) \supseteq L(T)$); or
(iii) there exists $D \in \mathscr{L}(T)$ such that $V(D) \supseteq L(S)($ so $L(T) \supseteq L(S))$.

Lemma 3.6. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $S T \notin E(\mathscr{G})$ and $L(S) \nsubseteq L(T)$. Then $S \cap L(T)=\emptyset$.
Lemma 3.7. Let $C, D \in \mathscr{L}$. Then one of the following holds:
(i) $V(C) \cap V(D)=\emptyset$;
(ii) $V(C) \supseteq V(D)$; or
(iii) $V(D) \supseteq V(C)$.

Lemma 3.8. Let $F \in \mathscr{L}$. Suppose that F is saturated, and let \mathscr{C} be a subset of $\mathscr{L}-\{F\}$ with minimum cardinality such that $V(F)=\bigcup_{C \in \mathscr{C}} V(C)$. Then the following hold.
(i) $\mathscr{C}=\bigcup_{S \in \mathscr{T}} \mathscr{L}(S)$ for some subset \mathscr{T} of $\mathscr{S}\left(\right.$ so $\left.V(F)=\bigcup_{S \in \mathscr{T}} L(S)\right)$.
(ii) $|\mathscr{T}| \geq 2$, and the subgraph induced by \mathscr{T} in \mathscr{G} is connected.

We can prove the following lemma by arguing as in the proof of [3; Lemma 2.12].

Lemma 3.9. Let $S, T \in \mathscr{S}$, and suppose that $S T \in E(\mathscr{G})$ and $L(T) \nsubseteq S$. Then $|S \cap L(T)| \geq 2 t-3$.

Proof. Since $L(T) \nsubseteq S$, it follows form Lemma 3.4 (i) that $L(S) \subseteq T$ which, in particular, implies $L(S) \cap L(T)=\emptyset$. Hence $(V(G)-S-L(S)) \cap L(T) \neq$ \emptyset. Write $\mathscr{L}(T)=\left\{F_{1}, \ldots, F_{a}\right\}(a=|\mathscr{L}(T)| \geq t-1)$. We may assume $(V(G)-S-L(S)) \cap V\left(F_{1}\right) \neq \emptyset$. Then $\left(S \cap V\left(F_{1}\right)\right) \cup(T-L(S))$ separates $(V(G)-S-L(S)) \cap V\left(F_{1}\right)$ from the rest. Hence $\left|\left(S \cap V\left(F_{1}\right)\right) \cup(T-L(S))\right| \geq k$,
which implies $\left|S \cap V\left(F_{1}\right)\right| \geq k-|T-L(S)|=|T|-|T-L(S)|=|L(S) \cap T|$. Therefore

$$
\begin{equation*}
\left|S \cap V\left(F_{1}\right)\right| \geq t-1 \tag{3.1}
\end{equation*}
$$

by Lemma 3.3. Since $S \cap V\left(F_{i}\right) \neq \emptyset$ for each i by the definition of meshing, we now obtain $|S \cap L(T)|=\sum_{1 \leq i \leq a}\left|S \cap V\left(F_{i}\right)\right|=\left|S \cap V\left(F_{1}\right)\right|+\sum_{2 \leq i \leq a} \mid S \cap$ $V\left(F_{i}\right) \mid \geq t-1+a-1 \geq 2 t-3$.

Lemma 3.10. Suppose that $2(t-1) \leq k \leq 3 t-5$ and $|V(G)|>\left(k^{2}+6 k+1\right) / 4$. Let $S, T \in \mathscr{S}$, and suppose that $S T \in E(\mathscr{G})$. Then the following hold.
(i) If we write $\mathscr{K}(S)-\mathscr{L}(S)=\{C\}$ and $\mathscr{K}(T)-\mathscr{L}(T)=\{D\}$, then $V(C) \cap V(D) \neq \emptyset$.
(ii) $L(S) \subseteq T, L(T) \subseteq S$.
(iii) $t-1 \leq|L(S)| \leq k-t+1, t-1 \leq|L(T)| \leq k-t+1$.

Proof. In view of Lemma 3.4, we may assume $L(S) \subseteq T$. Then $L(S) \cap V(D)=$ \emptyset. To prove (i), suppose that $V(C) \cap V(D)=\emptyset$. Then $V(D) \subseteq S$, and hence $|V(D)|=|S \cap V(D)| \leq|S|-|S \cap L(T)|$. By the definition of meshing, $|\mathscr{L}(T)| \leq|S \cap L(T)|$. Since D is the largest component in $\mathscr{K}(T)$, we obtain $|L(T)| \leq|\mathscr{L}(T)||V(D)| \leq|S \cap L(T)|(k-|S \cap L(T)|)$, and hence $|V(G)|=$ $|V(D)|+|T|+|L(T)| \leq-|S \cap L(T)|^{2}+(k-1)|S \cap L(T)|+2 k=-(|S \cap L(T)|-$ $(k-1) / 2)^{2}+\left(k^{2}+6 k+1\right) / 4 \leq\left(k^{2}+6 k+1\right) / 4$. This contradicts the assumption that $|V(G)|>\left(k^{2}+6 k+1\right) / 4$. Thus (i) is proved. To prove (ii), suppose that $L(T) \nsubseteq S$. By Lemma 3.9, $|S \cap L(T)| \geq 2 t-3$. Since $V(C) \cap V(D) \neq \emptyset$ by (i), we get

$$
\begin{equation*}
|S \cap V(D)| \geq t-1 \tag{3.2}
\end{equation*}
$$

by arguing as in the proof of (3.1). Consequently $k \geq|S \cap L(T)|+|S \cap V(D)| \geq$ $3 t-4$, which contradicts the assumption that $k \leq 3 t-5$. Thus (ii) is proved. Now by (ii) and (3.2), $t-1 \leq|\mathscr{L}(T)| \leq|L(T)| \leq|S|-|S \cap V(D)| \leq k-(t-1)$. Similarly $t-1 \leq|L(S)| \leq|T|-|V(C) \cap T| \leq k-(t-1)$, which proves (iii).

Lemma 3.11. Suppose that $2(t-1) \leq k \leq 3 t-5$ and $|V(G)|>\left(k^{2}+6 k+1\right) / 4$. Let $T \in \mathscr{S}$, and suppose that $\operatorname{deg}_{\mathscr{G}}(T) \geq 1$, i.e., there exists $T^{\prime} \in \mathscr{S}-\{T\}$ such that $T T^{\prime} \in E(\mathscr{G})$. Then there is no $S \in \mathscr{S}-\{T\}$ such that $L(S) \subseteq L(T)$.

Proof. Suppose that there exists $S \in \mathscr{S}-\{T\}$ such that $L(S) \subseteq L(T)$. Then $S T \notin E(\mathscr{G})$ by Lemma 3.4 , and hence it follows Lemma 3.5 that there exists $M \in \mathscr{L}(T)$ such that $L(S) \subseteq V(M)$. This implies

$$
\begin{aligned}
|L(T)| & =\sum_{F \in \mathscr{L}(T)-\{M\}}|V(F)|+|V(M)| \\
& \geq(|\mathscr{L}(T)|-1)+|L(S)| \\
& \geq(t-1-1)+(t-1)=2 t-3
\end{aligned}
$$

On the other hand, since $\operatorname{deg}_{\mathscr{G}}(T) \geq 1,|L(T)| \leq k-t+1$ by Lemma 3.10 (iii). Consequently $2 t-3 \leq|L(T)| \leq k-t+1$, which contradicts the assumption $k \leq 3 t-5$.

§4. Numerical results

In this section, we state preliminary lemmas, most of which are Numerical results. Throughout this section, we let t, k be as in the Main Theorem. Also for simplicity, we write $f(n)$ for $f_{t, k}(n)$. The following lemma is easily verified, and we omit its proof (see the proof of Lemma 4.2):

Lemma 4.1. Let a, x, x^{\prime} be real numbers such that $a \leq k+2$ and $k+1 \leq$ $x<x^{\prime}$. Then

$$
\binom{x}{k}-a x<\binom{x^{\prime}}{k}-a x^{\prime}
$$

Let α denote the real number with $k+2<\alpha \leq k+3$ such that $\binom{\alpha}{k}=(k+1) \alpha$. The existence of α follows from the fact that we have

$$
\binom{k+2}{k}<(k+1)(k+2) \text { and }\binom{k+3}{k} \geq(k+1)(k+3)
$$

Lemma 4.2. Let x, x^{\prime} be real numbers with $\alpha \leq x<x^{\prime}$. Then

$$
\begin{aligned}
& (t-1)\binom{x}{k}-((k+1)(t-1)(2 t-1)+1) x \\
& <(t-1)\binom{x^{\prime}}{k}-((k+1)(t-1)(2 t-1)+1) x^{\prime}
\end{aligned}
$$

Proof. We define $h(x)$ by $h(x)=(t-1)\binom{x}{k}-((k+1)(t-1)(2 t-1)+1) x$. Then $h^{\prime}(\alpha)=(t-1)(k+1) \alpha \sum_{0 \leq i \leq k-1}(1 /(\alpha-i))-((k+1)(t-1)(2 t-1)+1)$. We show that $h^{\prime}(\alpha)>0$. Since $\alpha /(\alpha-i) \geq(k+3) /(k+3-i)$ for each $0 \leq i \leq k-1$ and since $2(t-1) \leq k, h^{\prime}(\alpha) \geq(t-1)(k+1)(k+3) \sum_{0 \leq i \leq k-1}(1 /(k+3-i))-((k+$
$\left.1)^{2}(t-1)+1\right)>(t-1)\left((k+1)(k+3) \sum_{0 \leq i \leq k-1}(1 /(k+3-i))-\left((k+1)^{2}+1\right)\right)$.
Thus it suffices to show

$$
\begin{equation*}
\sum_{0 \leq i \leq k-1} 1 /(k+3-i)>(k+1) /(k+3)+1 /((k+1)(k+3)) . \tag{4.1}
\end{equation*}
$$

It is easy to verify (4.1) for $4 \leq k \leq 6$. On the other hand, if $k \geq 7$, $\sum_{0 \leq i \leq k-1}(1 /(k+3-i)) \geq \sum_{4 \leq i \leq 10}(1 / i)>1>(k+1) /(k+3)+1 /((k+$ $1)(k+3))$. Hence (4.1) holds, and we therefore obtain $h^{\prime}(\alpha)>0$. Since we clearly have $h^{\prime \prime}(x)>0$ for all $x \geq \alpha$, we now see that $h^{\prime}(x)>0$ for $x \geq \alpha$, and hence the desired inequality holds.

For convenience, we restate Lemma 4.1 in the following form:
Lemma 4.3. Let a, m, b, b^{\prime} be real numbers such that $a \leq k+2, b^{\prime}<b$ and $(t-1) b \leq m-(k+1)$. Then

$$
\binom{m-(t-1) b}{k}+(t-1) a b<\binom{m-(t-1) b^{\prime}}{k}+(t-1) a b^{\prime}
$$

Lemma 4.4. Let $n \geq k^{8}$ be a real number. Then the following hold.
(i) (a) $f(n)>k+6$.
(b) If $k=4, f(n)>11$.
(ii) $f(n)<n /\left(\left(2(t-1)^{2}(k+1)+1\right)(2 t-1)\right)$.

Proof. Statement (i) (a) follows from the inequality $2(t-1)^{2}\binom{k+6}{k}+k+6 \leq$ $\left(k^{2}\binom{k+6}{k}\right) / 2+k+6<k^{8}$. Similarly (i) (b) follows from the fact that $8\binom{11}{4}+11<$ 4^{8}. Note that $n /\left(\left(2(t-1)^{2}(k+1)+1\right)(2 t-1)\right)-f(n)=((2(t-1)) /((2(t-$ $\left.\left.\left.1)^{2}(k+1)+1\right)(2 t-1)\right)\right)\left((t-1)\binom{f(n)}{k}-((k+1)(t-1)(2 t-1)+1) f(n)\right)$. Thus (ii) is equivalent to the inequality

$$
\begin{equation*}
(t-1)\binom{f(n)}{k}-((k+1)(t-1)(2 t-1)+1) f(n)>0 \tag{4.2}
\end{equation*}
$$

Assume for the moment that $k \geq 5$. By (i) (a) and Lemma 4.2, (4.2) follows if we prove $(t-1)\binom{k+6}{k}-((k+1)(t-1)(2 t-1)+1)(k+6)>0$. In view of the assumption that $2(t-1) \leq k$, it suffices to show $\binom{k+6}{k}-\left((k+1)^{2}+1\right)(k+6)>0$, which holds because $\binom{k+6}{k}=(k+1)(k+2)(k+6)((k+5)(k+4)(k+3) / 720) \geq$ $(k+1)(k+2)(k+6)$. Similarly if $k=4$, then by (i) (b) and Lemma 4.2, (4.2) follows from the fact that $\binom{11}{4}-\left((4+1)^{2}+1\right) \cdot 11>0$.

Lemma 4.5. Let n, $m, b_{j}(0 \leq j \leq t-1)$ be nonnegative real numbers with $n \geq k^{8}$ such that

$$
\begin{gathered}
0 \leq \sum_{0 \leq j \leq t-2}(t-1-j) b_{j} \leq m-(k+1), \\
\sum_{1 \leq j \leq t-1} b_{j} \leq\binom{ m-\sum_{0 \leq j \leq t-2}(t-1-j) b_{j}}{k}+(k+1) \sum_{0 \leq j \leq t-2}(t-1-j) b_{j}, \\
2(t-1) \sum_{1 \leq j \leq t-1} j b_{j} \leq n-m .
\end{gathered}
$$

Then

$$
(n-m) /(t-1)+\sum_{0 \leq j \leq t-1} b_{j} \leq((2 t-1)(n-f(n))) /\left(2(t-1)^{2}\right)
$$

Proof. If we let $c_{0}=\sum_{0 \leq i \leq t-2}((t-1-i) /(t-1)) b_{i}, c_{j}=0(1 \leq j \leq t-2)$, $c_{t-1}=\sum_{1 \leq i \leq t-1}\left(i b_{i}\right) /(t-1)$, then the $c_{j}(0 \leq j \leq t-1)$ satisfy the assumptions of the lemma, and $\sum_{0 \leq j \leq t-1} b_{j}=\sum_{0 \leq j \leq t-1} c_{j}$. Thus we may assume $b_{j}=0$ for every $1 \leq j \leq t-2$. Then we have

$$
\begin{gather*}
0 \leq(t-1) b_{0} \leq m-(k+1) \tag{4.3}\\
b_{t-1} \leq\binom{ m-(t-1) b_{0}}{k}+(k+1)(t-1) b_{0} \tag{4.4}\\
2(t-1)^{2} b_{t-1} \leq n-m \tag{4.5}
\end{gather*}
$$

Case 1. $m \leq f(n)$.
By (4.4),

$$
b_{0}+b_{t-1} \leq\binom{ m-(t-1) b_{0}}{k}+(t-1)(k+1+1 /(t-1)) b_{0} .
$$

Since $k+1+1 /(t-1)<k+2$ and since $0 \leq(t-1) b_{0} \leq m-(k+1)$ by (4.3), we get

$$
\binom{m-(t-1) b_{0}}{k}+(t-1)(k+1+1 /(t-1)) b_{0} \leq\binom{ m}{k}
$$

by applying Lemma 4.3 with $a=k+1+1 /(t-1), b=b_{0}$ and $b^{\prime}=0$. Hence $b_{0}+b_{t-1} \leq\binom{ m}{k}$. Therefore we obtain

$$
\begin{aligned}
(n-m) /(t-1)+b_{0}+b_{t-1} & \leq n /(t-1)+\binom{m}{k}-m /(t-1) \\
& \leq n /(t-1)+\binom{f(n)}{k}-f(n) /(t-1) \\
& =((2 t-1)(n-f(n))) /\left(2(t-1)^{2}\right)
\end{aligned}
$$

by Lemma 4.1.
Case 2. $m>f(n)$.
Subcase 2.1. $b_{t-1} \leq((k+1) n) /\left(2(t-1)^{2}(k+1)+1\right)$.
By (4.3),

$$
\begin{aligned}
(n-m) /(t-1)+ & b_{0}+b_{t-1} \\
\leq & (n-m) /(t-1)+ \\
& (m-(k+1)) /(t-1) \\
& \quad+((k+1) n) /\left(2(t-1)^{2}(k+1)+1\right) \\
< & n /(t-1)+((k+1) n) /\left(2(t-1)^{2}(k+1)+1\right)
\end{aligned}
$$

Since $((k+1) n) /\left(2(t-1)^{2}(k+1)+1\right)<\left((n-(2 t-1) f(n)) /\left(2(t-1)^{2}\right)\right.$ by Lemma 4.4 (ii), this implies $(n-m) /(t-1)+b_{0}+b_{t-1}<((2 t-1)(n-f(n))) /\left(2(t-1)^{2}\right)$.

Subcase 2.2. $b_{t-1}>((k+1) n) /\left(2(t-1)^{2}(k+1)+1\right)$.
Let α be as in the paragraph preceding Lemma 4.2. By (4.5) and the assumption of this subcase, $m<n /\left(2(t-1)^{2}(k+1)+1\right)$, and hence $b_{t-1}>$ $(k+1) m$, which implies

$$
\begin{aligned}
\binom{m-(m-\alpha)}{k}+(k+1)(m-\alpha) & =(k+1) m \\
& <b_{t-1} \\
& \leq\binom{ m-(t-1) b_{0}}{k}+(k+1)(t-1) b_{0}
\end{aligned}
$$

We here consider the function $g(x)=\binom{m-(t-1) x}{k}+(t-1)(k+1) x$. Then the above inequality is written in the form

$$
\begin{equation*}
g((m-\alpha) /(t-1))<b_{t-1} \leq g\left(b_{0}\right) \tag{4.6}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
g((m-\alpha) /(t-1))<g\left(b_{0}\right) \tag{4.7}
\end{equation*}
$$

Since $\alpha>k+2$ by the definiton of α, we have

$$
\begin{equation*}
m-\alpha<m-(k+1) \tag{4.8}
\end{equation*}
$$

Since the function $g(x)$ is monotonely decreasing in the interval $x \leq(m-$ $(k+1)) /(t-1)$ by Lemma 4.3, it follows from (4.7), (4.8) and (4.3) that $b_{0}<(m-\alpha) /(t-1)$. Hence it follows from (4.6) that there exists b_{0}^{\prime} with $b_{0} \leq b_{0}^{\prime}<(m-\alpha) /(t-1)$ such that $g\left(b_{0}^{\prime}\right)=b_{t-1}$, i.e.,

$$
b_{t-1}=\binom{m-(t-1) b_{0}^{\prime}}{k}+(k+1)(t-1) b_{0}^{\prime}
$$

Thus by replacing the number b_{0} in the statement of the lemma by b_{0}^{\prime}, we may assume that equality holds in (4.4); that is to say, we have

$$
\begin{equation*}
b_{t-1}=\binom{m-(t-1) b_{0}}{k}+(k+1)(t-1) b_{0} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
m-(t-1) b_{0}>\alpha \tag{4.10}
\end{equation*}
$$

Since $m>f(n), b_{t-1}<(n-f(n)) /\left(2(t-1)^{2}\right)=\binom{f(n)}{k}$ by (4.5), and hence

$$
\binom{m-(t-1) b_{0}}{k}<\binom{f(n)}{k}
$$

by (4.9), which implies

$$
\begin{equation*}
m-(t-1) b_{0}<f(n) \tag{4.11}
\end{equation*}
$$

Now by (4.9) and (4.5),

$$
\begin{aligned}
b_{t-1} & +2(t-1)^{2}(k+1) b_{t-1} \\
& \leq\binom{ m-(t-1) b_{0}}{k}+(k+1)(t-1) b_{0}+(k+1)(n-m) \\
& =\binom{m-(t-1) b_{0}}{k}-(k+1)\left(m-(t-1) b_{0}\right)+(k+1) n
\end{aligned}
$$

and hence

$$
\begin{aligned}
b_{t-1} \leq\left(\binom{m-(t-1) b_{0}}{k}-\right. & (k+1)\left(m-(t-1) b_{0}\right) \\
& +(k+1) n) /\left(2(t-1)^{2}(k+1)+1\right)
\end{aligned}
$$

which implies

$$
\begin{aligned}
& (n-m) /(t-1)+b_{0}+b_{t-1} \\
& \leq(n-m) /(t-1)+b_{0}\left(\binom{m-(t-1) b_{0}}{k}\right. \\
& \left.\quad-(k+1)\left(m-(t-1) b_{0}\right)+(k+1) n\right) /\left(2(t-1)^{2}(k+1)+1\right) \\
& =\left(((k+1)(t-1)(2 t-1)+1) n+(t-1)\binom{m-(t-1) b_{0}}{k}\right. \\
& \left.-((k+1)(t-1)(2 t-1)+1)\left(m-(t-1) b_{0}\right)\right) /\left(\left(2(t-1)^{2}(k+1)+1\right)(t-1)\right)
\end{aligned}
$$

Consequently it follows from Lemma 4.2 and (4.10) and (4.11) that

$$
\begin{aligned}
& (n-m) /(t-1)+b_{0}+b_{t-1} \\
& <\left(((k+1)(t-1)(2 t-1)+1) n+(t-1)\binom{f(n)}{k}\right. \\
& -((k+1)(t-1)(2 t-1)+1) f(n)) /\left(\left(2(t-1)^{2}(k+1)+1\right)(t-1)\right) \\
& =((2 t-1)(n-f(n))) /\left(2(t-1)^{2}\right) .
\end{aligned}
$$

Lemma 4.6. Let $x, y, x^{\prime}, y^{\prime}$ be real numbers such that $k \leq x^{\prime}<x \leq y<y^{\prime}$ and $x+y=x^{\prime}+y^{\prime}$. Then

$$
\binom{x}{k}+\binom{y}{k}<\binom{x^{\prime}}{k}+\binom{y^{\prime}}{k} .
$$

Proof. The function $\varphi(x)=\binom{x}{k}$ is strictly convex in the interval $x \geq k$. Hence $\left(\binom{x}{k}-\binom{x^{\prime}}{k}\right) /\left(x-x^{\prime}\right)<\left(\binom{y^{\prime}}{k}-\binom{y}{k}\right) /\left(y^{\prime}-y\right)$. Since $x-x^{\prime}=y^{\prime}-y$, this implies $\binom{x}{k}+\binom{y}{k}<\binom{x^{\prime}}{k}+\binom{y^{\prime}}{k}$.

Repeated applications of Lemma 4.6 yield:
Lemma 4.7. Let x_{1}, \ldots, x_{b+1} be real numbers such that $x_{i} \geq k+1$ for all $1 \leq i \leq b+1$, and let $x=\sum_{1 \leq i \leq b+1} x_{i}$. Then

$$
\sum_{1 \leq i \leq b+1}\binom{x_{i}}{k} \leq b\binom{k+1}{k}+\binom{x-(k+1) b}{k}=\binom{x-(k+1) b}{k}+(k+1) b .
$$

Proof. We proceed by induction on b. If $b=0$, the lemma clearly holds. We may assume $b \geq 1$. Then by the induction hypothesis,

$$
\begin{aligned}
\sum_{1 \leq i \leq b}\binom{x_{i}}{k}+\binom{x_{b+1}}{k} & \leq(b-1)\binom{k+1}{k} \\
& +\binom{\sum_{1 \leq i \leq b} x_{i}-(k+1)(b-1)}{k}+\binom{x_{b+1}}{k}
\end{aligned}
$$

Note that $k+1 \leq \sum_{1 \leq i \leq b} x_{i}-(k+1)(b-1) \leq x-(k+1) b$ and $k+1 \leq$ $x_{b+1} \leq x-(k+1) b$. Hence, whether $\sum_{1 \leq i \leq b} x_{i}-(k+1)(b-1) \leq x_{b+1}$ or $x_{b+1} \leq \sum_{1 \leq i \leq b} x_{i}-(k+1)(b-1)$, we obtain

$$
\binom{\sum_{1 \leq i \leq b} x_{i}-(k+1)(b-1)}{k}+\binom{x_{b+1}}{k} \leq\binom{ k+1}{k}+\binom{x-(k+1) b}{k}
$$

by Lemma 4.6. Therefore

$$
\begin{aligned}
\sum_{1 \leq i \leq b}\binom{x_{i}}{k}+\binom{x_{b+1}}{k} & \leq(b-1)\binom{k+1}{k}+\binom{k+1}{k}+\binom{x-(k+1) b}{k} \\
& =b\binom{k+1}{k}+\binom{x-(k+1) b}{k} .
\end{aligned}
$$

Lemma 4.8. Let $b \geq 0$ be an integer (we allow the possibility that $b=0$). Let W be a finite set. Let $Z_{1}, \ldots, Z_{b} ; Q_{1}, \ldots, Q_{b}$ be subsets of W such that $Z_{i} \cap Z_{j}=\emptyset$ for all i, j with $1 \leq i<j \leq b$ and such that $\left|Q_{i}\right| \leq k$ for all $1 \leq i \leq b$. Let \mathscr{R} be a family of subsets of cardinality k of W such that for each $R \in \mathscr{R}$ and for each $1 \leq i \leq b$, we have either $R \cap Z_{i}=\emptyset$ or $R \cap\left(W-\left(\bigcup_{1 \leq j \leq i} Z_{j}\right)-Q_{i}\right)=\emptyset$. Then the following hold.
(i) $|\mathscr{R}| \leq\left(\sum_{1 \leq i \leq b}\binom{\left|Z_{i}\right|+k}{k}\right)+\left(|W|-\left|\bigcup_{k \leq i \leq b} Z_{i}\right|\right)$.
(ii) If $Z_{i} \neq \emptyset$ for all $1 \leq i \leq b$ and $|W|-\left|\bigcup_{1 \leq i \leq b} Z_{i}\right| \geq k+1$, then

$$
|\mathscr{R}| \leq\binom{|W|-b}{k}+(k+1) b .
$$

Proof. We first prove (i). If $b=0$, (i) clearly holds. Thus we may assume $b \geq 1$. We proceed by induction on b. Set

$$
\begin{aligned}
\mathscr{R}^{\prime} & =\left\{R \in \mathscr{R} \mid R \cap Z_{1}=\emptyset\right\}, \\
\mathscr{T} & =\left\{R \in \mathscr{R} \mid R \cap\left(W-Z_{1}-Q_{1}\right)=\emptyset\right\} .
\end{aligned}
$$

By assumption, $\mathscr{R}=\mathscr{R}^{\prime} \cup \mathscr{T}$. Hence

$$
|\mathscr{R}| \leq|\mathscr{T}|+\left|\mathscr{R}^{\prime}\right| \leq\binom{\left|Z_{1}\right|+k}{k}+\binom{|W|-\left|Z_{1}\right|}{k},
$$

which shows that (i) holds for $b=1$. Thus we may assume $b \geq 2$. Set $W^{\prime}=W-Z_{1}$, and set $Z_{i}^{\prime}=Z_{i+1}$ and $Q_{i}^{\prime}=Q_{i+1}-Z_{1}$ for each $1 \leq i \leq b-1$. Then $\mathscr{R}^{\prime}, W^{\prime}$, the Z_{i}^{\prime} and the Q_{i}^{\prime} satisfy the assumptions of the lemma with b replaced by $b-1$. Hence by the induction hypothesis,

$$
\left.\begin{array}{rl}
\left|\mathscr{R}^{\prime}\right| & \leq\left(\sum_{1 \leq i \leq b-1}\binom{\left|Z_{i}^{\prime}\right|+k}{k}\right)+\left(\left|W^{\prime}\right|-\left|\bigcup_{1 \leq i \leq b-1}^{\bigcup} Z_{i}^{\prime}\right|\right.
\end{array}\right) .
$$

Therefore

$$
\begin{aligned}
|\mathscr{R}| & \leq|\mathscr{T}|+\left|\mathscr{R}^{\prime}\right| \\
& \leq\binom{\left|Z_{1}\right|+k}{k}+\left(\sum_{2 \leq i \leq b}\binom{\left|Z_{i}\right|+k}{k}\right)+\binom{\left|W-Z_{1}\right|-\left|\bigcup_{2 \leq i \leq b} Z_{i}\right|}{k} .
\end{aligned}
$$

This proves (i). Since $\left(\sum_{1 \leq i \leq b}\left(\left|Z_{i}\right|+k\right)\right)+\left(|W|-\left|\bigcup_{1 \leq i \leq b} Z_{i}\right|\right)=|W|+k b$, (ii) follows from (i) and Lemma 4.7.

§5. Proof of the main theorem

In this section, we let t, k, G, n be as in the Main Theorem, and follow the notation introduced in Section 3. Also as in Section 4, we write $f(n)$ for $f_{t, k}(n)$. Since $((2 t-1)(n-f(n))) /\left(2(t-1)^{2}\right)>n /(t-1)$ by Lemma 4.4 (ii), we may assume $|\mathscr{S}|>n /(t-1)$.

Let $\mathscr{H}_{1}, \ldots, \mathscr{H}_{a}$ be the nontrivial components of \mathscr{G}. For each $1 \leq p \leq a$, write $V\left(\mathscr{H}_{p}\right)=\left\{T_{p, 1}, \ldots, T_{\left.p,\left|V\left(\mathscr{H}_{p}\right)\right|\right\}}\right.$ (here $V\left(\mathscr{H}_{p}\right)$ denotes the vertex set of \mathscr{H}_{p}, so $V\left(\mathscr{H}_{p}\right) \subseteq \mathscr{S}$ by the definition of $\left.\mathscr{G}\right)$, and let F_{p} denote the subgraph of G induced by $\bigcup_{1 \leq i \leq\left|V\left(\mathscr{H}_{p}\right)\right|} L\left(T_{p, i}\right)$. Let $W=V(G)-\bigcup_{1 \leq p \leq a} V\left(F_{p}\right)$.

The following claim follows immediately from Lemma 3.2.
Claim 5.1. F_{p} is connected for all p with $1 \leq p \leq a$.

Claim 5.2. $V\left(F_{p}\right) \cap V\left(F_{q}\right)=\emptyset$ and $E\left(V\left(F_{p}\right), V\left(F_{q}\right)\right)=\emptyset$ for all p, q with $1 \leq p<q \leq a$.

Proof. Take $T_{p, i} \in \mathscr{H}_{p}$ and $T_{q, j} \in \mathscr{H}_{q}$. Then $T_{p, i} T_{q, j} \notin E(\mathscr{G})$, and hence $L\left(T_{p, i}\right) \cap L\left(T_{q, j}\right)=\emptyset$ and $E\left(L\left(T_{p, i}\right), L\left(T_{q, j}\right)\right)=\emptyset$ by Lemmas 3.5 and 3.11. Since $T_{p, i}$ and $T_{q, j}$ are arbitrary, this means

$$
V\left(F_{p}\right) \cap V\left(F_{q}\right)=\emptyset \text { and } E\left(V\left(F_{p}\right), V\left(F_{q}\right)\right)=\emptyset .
$$

For each $1 \leq p \leq a,\left|V\left(F_{p}\right)\right|=\sum_{1 \leq i \leq\left|V\left(\mathscr{H}_{p}\right)\right|}\left|L\left(T_{p, i}\right)\right|$ by Lemmas 3.4, 3.5 and 3.11, and hence $(t-1)\left|V\left(\mathscr{H}_{p}\right)\right| \leq\left|\bar{V}\left(F_{p}\right)\right|$ by Lemma 3.10 (iii).
Consequently

$$
\begin{equation*}
(t-1) \sum_{1 \leq p \leq a}\left|V\left(\mathscr{H}_{p}\right)\right| \leq \sum_{1 \leq p \leq a}\left|V\left(F_{p}\right)\right| . \tag{5.1}
\end{equation*}
$$

By Claim 5.2,

$$
\begin{equation*}
|W|=n-\sum_{1 \leq p \leq a}\left|V\left(F_{p}\right)\right| \tag{5.2}
\end{equation*}
$$

By (5.1) and (5.2),

$$
\begin{equation*}
\sum_{1 \leq p \leq a}\left|V\left(\mathscr{H}_{p}\right)\right| \leq(n-|W|) /(t-1) \tag{5.3}
\end{equation*}
$$

Since $\left|V\left(\mathscr{H}_{p}\right)\right| \geq 2$ for each p, it follows from (5.3) that

$$
\begin{equation*}
a \leq(n-|W|) /(2(t-1)) \tag{5.4}
\end{equation*}
$$

Set $\mathscr{R}=\mathscr{S}-\bigcup_{1 \leq p \leq a} V\left(\mathscr{H}_{p}\right)$.
Claim 5.3. Let $S \in \mathscr{S}-V\left(\mathscr{H}_{p}\right)$. Then $S \cap V\left(F_{p}\right)=\emptyset$.
Proof. Let $T \in V\left(\mathscr{H}_{p}\right)$. Then $S T \notin E(\mathscr{G})$. Hence $S \cap L(T)=\emptyset$ by Lemmas 3.6 and 3.11. Thus $S \cap V\left(F_{p}\right)=S \cap\left(\bigcup_{T \in V\left(\mathscr{H}_{p}\right)} L(T)\right)=\emptyset$.

Claim 5.4. Let $S \in \mathscr{R}$. Then $S \subseteq W$.
Proof. This is because $S \cap V\left(F_{p}\right)=\emptyset$ for each $1 \leq p \leq a$ by Claim 5.3.

Claim 5.5. Let $S \in \mathscr{R}$, and let $C \in \mathscr{K}(S)-\left\{F_{1}, \ldots, F_{a}\right\}$. Then the following holds.
(i) If $C \in \mathscr{L}(S)$, then C is not saturated.
(ii) If we let $A=\left\{p \mid V\left(F_{p}\right) \cap V(C) \neq \emptyset\right\}$, then $V(C)-W=\bigcup_{p \in A} V\left(F_{p}\right)$.

Proof. Let A be as in (ii). Then by Claims 5.1 and 5.3, $V\left(F_{p}\right) \subseteq V(C)$ for each $p \in A$, and hence $\bigcup_{p \in A} V\left(F_{p}\right) \subseteq V(C)-W$. Thus (ii) is proved. Now let $C \in \mathscr{L}(S)$, and suppose that C is saturated. By Lemma 3.8, there exists $\mathscr{T} \subseteq \mathscr{S}$ with $|\mathscr{T}| \geq 2$ such that $V(C)=\bigcup_{M \in \mathscr{T}} L(M)$ and such that the subgraph induced by \mathscr{T} in \mathscr{G} is connected. Then there exists p such that $\mathscr{T} \subseteq V\left(\mathscr{H}_{p}\right)$, and hence $V(C) \subseteq V\left(F_{p}\right)$. By (ii), this implies $V(C)=V\left(F_{p}\right)$, which contradicts the assumption that $C \notin\left\{F_{1}, \ldots, F_{a}\right\}$.

Set

$$
\begin{aligned}
\mathscr{Q}_{i} & =\left\{S \in \mathscr{R}| | \mathscr{K}(S) \cap\left\{F_{1}, \ldots, F_{a}\right\} \mid=i\right\} \quad(0 \leq i \leq t-2), \\
\mathscr{Q}_{t-1} & =\left\{S \in \mathscr{R}| | \mathscr{K}(S) \cap\left\{F_{1}, \ldots, F_{a}\right\} \mid \geq t-1\right\}
\end{aligned}
$$

and let $b_{i}=\left|\mathscr{Q}_{i}\right|$ for each i. Since $\mathscr{K}(S) \cap \mathscr{K}(T)=\emptyset$ for any $S, T \in \mathscr{S}$ with $S \neq T$, we have

$$
\begin{equation*}
\sum_{1 \leq i \leq t-1} i b_{i} \leq a \tag{5.5}
\end{equation*}
$$

By (5.4) and (5.5)

$$
\begin{equation*}
2(t-1) \sum_{1 \leq i \leq t-1} i b_{i} \leq n-|W| . \tag{5.6}
\end{equation*}
$$

If $|W| \leq k$, then $\binom{|W|}{k} \leq|W| / k \leq|W| /(t-1)$, and hence it follows from (5.3) and Claim 5.4 that $|\mathscr{S}| \leq(n-|W|) /(t-1)+\binom{|W|}{k} \leq n /(t-1)$, which contradicts the assumption that $|\mathscr{S}|>n /(t-1)$. Thus

$$
\begin{equation*}
|W| \geq k+1 \tag{5.7}
\end{equation*}
$$

Now label the members of $\bigcup_{0 \leq i \leq t-2} \mathscr{Q}_{i}$ as $Q_{1}, \ldots, Q_{h}\left(h=\sum_{0 \leq i \leq t-2} b_{i}\right)$ so that

$$
\begin{equation*}
L\left(Q_{j}\right) \nsubseteq L\left(Q_{i}\right) \text { for any } i, j \text { with } 1 \leq i<j \leq h \tag{5.8}
\end{equation*}
$$

(it is possible that $h=0$). In the case where $h \geq 2$, if possible, we choose our labeling so that $L\left(Q_{h-1}\right) \nsubseteq L\left(Q_{h}\right)$. For each $1 \leq i \leq h$, let $j_{i}\left(0 \leq j_{i} \leq t-2\right)$ be the index such that $Q_{i} \in \mathscr{Q}_{j_{i}}$, and take $C_{i, 1}, \ldots, C_{i, t-1-j_{i}} \in \mathscr{L}\left(Q_{i}\right)-$ $\left\{F_{1}, \ldots, F_{a}\right\}$ (the existence of such components follows from the definition of $\left.\mathscr{2}_{j_{i}}\right)$. Let $W_{0}=\emptyset$. For i with $1 \leq i \leq h$, we define $X_{i, l}\left(1 \leq l \leq t-1-j_{i}\right)$ and W_{i} inductively as follows: $X_{i, l}=\left(V\left(C_{i, l}\right) \cap W\right)-W_{i-1}, W_{i}=W_{i-1} \cup$ $\left(\bigcup_{1 \leq l \leq t-1-j_{i}} X_{i, l}\right)$. Then

$$
\begin{equation*}
W \supseteq W_{h}=\bigcup_{1 \leq i \leq h}\left(\bigcup_{1 \leq l \leq t-1-j_{i}} X_{i, l}\right) \quad \text { (disjoint union). } \tag{5.9}
\end{equation*}
$$

Arguing as in [2; Claims 6.3 and 6.4 and 6.5], we obtain the following three claims. We include sketches of their proofs for the convenience of the reader.

Claim 5.6. $X_{i, l} \neq \emptyset$ for every i, l with $1 \leq i \leq h$ and $1 \leq l \leq t-1-j_{i}$.
Proof. Set $A=\left\{p \mid V\left(F_{p}\right) \cap V\left(C_{i, l}\right) \neq \emptyset\right\}$. By Claim 5.5 (ii), $V\left(C_{i, l}\right)-W=$ $\bigcup_{p \in A} V\left(F_{p}\right)$. Set $J=\left\{j \mid 1 \leq j \leq i-1, L\left(Q_{j}\right) \subseteq V\left(C_{i, l}\right)\right\}$. Suppose that $X_{i, l}=\emptyset$. Then $\left(V\left(C_{i, l}\right) \cap W\right)-W_{i-1}=\emptyset$, and hence $V\left(C_{i, l}\right) \cap W \subseteq W_{i-1} \subseteq$ $\bigcup_{1 \leq j \leq i-1} L\left(Q_{j}\right)$. On the other hand, for each $1 \leq j \leq i-1$ with $j \notin J$, $L\left(\bar{Q}_{j}\right) \cap V\left(C_{i, l}\right)=\emptyset$ by (5.8) and Lemma 3.5 (note that $\left\{Q_{\alpha} \mid 1 \leq \alpha \leq h\right\} \subseteq \mathscr{R}$, and thus $Q_{i} Q_{j} \notin E(\mathscr{G})$ by the definition of $\left.\mathscr{R}\right)$. Consequently $V\left(C_{i, l}\right) \cap W \subseteq$ $\bigcup_{j \in J} L\left(Q_{j}\right) \subseteq V\left(C_{i, l}\right)$, and hence $V\left(C_{i, l}\right)=\left(\bigcup_{p \in A} V\left(F_{p}\right)\right) \cup\left(\bigcup_{j \in J} L\left(Q_{j}\right)\right)$. Since $V\left(F_{p}\right)=\bigcup_{T \in V\left(\mathscr{H}_{p}\right)} L(T)$ for each $p \in A$, this means that $V\left(C_{i, l}\right)$ is saturated, which contradicts Claim 5.5 (i).

Claim 5.7. Suppose that either $h \geq 2$ and $L\left(Q_{h-1}\right) \subseteq L\left(Q_{h}\right)$, or $h=1$, and let $C \in \mathscr{K}\left(Q_{h}\right)-\left\{C_{h, 1}, \ldots, C_{h, t-1-j_{h}}, F_{1}, \ldots, F_{a}\right\}$. Then $(V(C) \cap W)-W_{h} \neq \emptyset$.

Proof. Since C and the $C_{h, l}\left(1 \leq l \leq t-1-j_{h}\right)$ are distinct members of $\mathscr{K}\left(Q_{h}\right),(V(C) \cap W) \cap\left(W_{h}-W_{h-1}\right)=\emptyset$. Thus it suffices to show that $(V(C) \cap W)-W_{h-1} \neq \emptyset$. Suppose that

$$
\begin{equation*}
(V(C) \cap W)-W_{h-1}=\emptyset \tag{5.10}
\end{equation*}
$$

If $C \in \mathscr{L}\left(Q_{h}\right)$, we can get a contradiction by arguing as in the proof of Claim 5.6. Thus we may assume $C \notin \mathscr{L}\left(Q_{h}\right)$. Then

$$
\begin{equation*}
V(C) \cap L\left(Q_{h}\right)=\emptyset \tag{5.11}
\end{equation*}
$$

Assume for the moment that $h \geq 2$ and $L\left(Q_{h-1}\right) \subseteq L\left(Q_{h}\right)$. Then by the choice of our labeling mentioned immediately after (5.8), we have $L\left(Q_{h-1}^{\prime}\right) \subseteq L\left(Q_{h}^{\prime}\right)$ for any labeling $Q_{1}^{\prime}, \ldots, Q_{h}^{\prime}$ of $\bigcup_{0 \leq i \leq t-2} \mathscr{Q}_{i}$ which satisfies (5.8). This implies $L\left(Q_{i}\right) \subseteq L\left(Q_{h}\right)$ for all $1 \leq i \leq h-\overline{1}$. Hence by (5.11), $V(C) \cap L\left(Q_{i}\right)=\emptyset$ for all $1 \leq i \leq h-1$ which, in view of (5.10), implies that

$$
\begin{equation*}
V(C) \cap W=(V(C) \cap W)-W_{h-1}=\emptyset \tag{5.12}
\end{equation*}
$$

Note that if $h=1$, then (5.10) immediately implies (5.12). Thus (5.12) holds. But in view of Claim 5.5 (ii) and Claim 5.2, (5.12) implies that $C=F_{p}$ for some p with $1 \leq p \leq a$, which contradicts the assumption that $C \notin\left\{F_{1}, \ldots, F_{a}\right\}$.

Claim 5.8. $\left|W_{h}\right| \leq|W|-(k+1)$.
Proof. If $h=0$, the claim immediately follows from (5.7). Thus we may assume $h \geq 1$. By (5.8) and Lemma 3.6, $Q_{h} \cap L\left(Q_{i}\right)=\emptyset$ for all i, and hence

$$
\begin{equation*}
Q_{h} \cap W_{h}=\emptyset \tag{5.13}
\end{equation*}
$$

Assume first that $h \geq 2$ and $L\left(Q_{h-1}\right) \nsubseteq L\left(Q_{h}\right)$. Then by (5.8) and Lemma 3.6, we obtain $Q_{h-1} \cap W_{h}=\emptyset$. Since $Q_{h-1}, Q_{h} \subseteq W$ by Claim 5.4, this together with (5.13) implies that $\left|W_{h}\right| \leq|W|-\left|Q_{h} \cup Q_{h-1}\right| \leq|W|-(k+1)$. Assume now that $h \geq 2$ and $L\left(Q_{h-1}\right) \subseteq L\left(Q_{h}\right)$ or $h=1$. Let C be as in Claim 5.7. Then since $Q_{h} \subseteq W$ by Claim 5.4, Claim 5.7 and (5.13) imply that $\left|W_{h}\right| \leq|W|-\left|Q_{h}\right|-\left|(V(C) \cap W)-W_{h}\right| \leq|W|-(k+1)$.

Claim 5.9. $\sum_{0 \leq j \leq t-2}(t-1-j) b_{j} \leq|W|-(k+1)$.

Proof. Recall that for each $1 \leq i \leq h, j_{i}$ denotes the index such that $Q_{i} \in \mathscr{Q}_{j_{i}}$, and thus $b_{j}=\left|\left\{i \mid 1 \leq i \leq h, j_{i}=j\right\}\right|$ for each $0 \leq j \leq t-2$. Therefore by (5.9) and Claims 5.6 and 5.8,

$$
\begin{aligned}
\sum_{0 \leq j \leq t-2}(t-1-j) b_{j} & =\sum_{1 \leq i \leq h}\left(t-1-j_{i}\right) \\
& \leq \sum_{1 \leq i \leq h}\left(\sum_{1 \leq l \leq t-1-j_{i}}\left|X_{i, l}\right|\right) \\
& =\left|\bigcup_{1 \leq i \leq h}\left(\bigcup_{1 \leq l \leq t-1-j_{i}} X_{i, l}\right)\right| \\
& =\left|W_{h}\right| \leq|W|-(k+1) .
\end{aligned}
$$

Claim 5.10. For any i, l with $1 \leq i \leq h$ and $1 \leq l \leq t-1-j_{i}$, no member of $\bigcup_{0 \leq j \leq t-1} \mathscr{Q}_{j}$ intersects with both $X_{i, l}$ and $W-W_{i-1}-X_{i, l}-Q_{i}$.

Proof. Recall that $\left\{Q_{\alpha} \mid 1 \leq \alpha \leq h\right\}=\bigcup_{0 \leq j \leq t-2} \mathscr{Q}_{j} \subseteq \bigcup_{0 \leq j \leq t-1} \mathscr{Q}_{j}=\mathscr{R}$. Also note that a vertex in $X_{i, l}$ and a vertex in $W-W_{i-1}-\bar{X}_{i, l}-Q_{i}$ belong to distinct components of $G-Q_{i}$. Since no two members of \mathscr{R} mesh with each other by the definition of \mathscr{R}, this means that no member of $\bigcup_{0<j<t-1} \mathscr{Q}_{j}$ intersects with both $X_{i, l}$ and $W-W_{i-1}-X_{i, l}-Q_{i}$.

In view of Lemma 4.8 (ii), Claim 5.10 together with Claims 5.6 and 5.8 implies

$$
\begin{equation*}
\sum_{0 \leq j \leq t-1} b_{j} \leq\binom{|W|-\sum_{0 \leq j \leq t-2}(t-1-j) b_{j}}{k}+(k+1) \sum_{0 \leq j \leq t-2}(t-1-j) b_{j} . \tag{5.14}
\end{equation*}
$$

We now obtain

$$
\begin{aligned}
|\mathscr{S}| & =\sum_{1 \leq p \leq a}\left|V\left(\mathscr{H}_{p}\right)\right|+\sum_{0 \leq i \leq t-1} b_{i} \\
& \leq(n-|W|) /(t-1)+\sum_{0 \leq i \leq t-1} b_{i} \quad(\text { by }(5.3)) \\
& \leq((2 t-1)(n-f(n))) /\left(2(t-1)^{2}\right)
\end{aligned}
$$

(by (5.6), (5.14), Claim 5.9 and Lemma 4.5).
This completes the proof of the Main Theorem.

References

[1] J. Cheriyan and R. Thurimella, Fast algorithms for k-shredders and k-node connectivity augmentation, Proc. 28th ACM STOC, 1996, pp. 37-46.
[2] Y. Egawa, k-Shredders in k-connected graphs, J. Graph Theory, to appear.
[3] Y. Egawa, Y. Okadome and M. Takatou, 5-Shredders in 5-connected graphs, Discrete Math., to appear.
[4] T. Jordán, On the number of shredders, J. Graph Theory 31 (1999), 195-200.
[5] G. Liberman and Z. Nutov, On shredders and vertex connectivity augmentation, J. Discrete Algorithms 5 (2007), 91-101.
[6] Z. Nutov and M. Tsugaki, On (t, k)-shredders in k-connected graphs, Ars Combin. 83 (2007), 213-219.

Masanori Takatou
Department of Mathematical Information Science, Tokyo University of Science
Shinjuku-ku, Tokyo 162-8601, Japan
Email: j1105704@ed.kagu.tus.ac.jp
Masao Tsugaki
Department of Mathematical Information Science, Tokyo University of Science
Shinjuku-ku, Tokyo 162-8601, Japan
Email: tsugaki@hotmail.com

