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Abstract. Let A be a separable algebra over a commutative ring R and
f(z) a monic polynomial over the center of A. We deal with the R-algebra
A = AT/(f(X?®)), where AT is the path algebra of the cyclic quiver I with s
vertices and s arrows, and X is the sum of all arrows. We show that A has
a periodic projective bimodule resolution of period 2. Moreover, by using the
resolution, we describe the structure of the Hochschild cohomology ring of A by
means of the Yoneda product.
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8§1. Introduction

The Hochschild cohomology rings of path algebras of an oriented cyclic quiver
with relations have been studied by some authors. Let A be the algebra
KT'/(h(X)) over a commutative ring K, where KT is the path algebra of
the oriented cyclic quiver I' with s vertices and s arrows, h(z) is a monic
polynomial over K and X is the sum of all arrows in KI'. If K is a field
and h(z) = 2¥ for an integer k > 2, then A = KI'/(X%) is a basic self-
injective Nakayama algebra and the Hochschild cohomology ring of the algebra
is determined by Erdmann and Holm [EH]. Also, if s = 1, then A is equal
to K[z]/(h(z)) and the structure of the Hochschild cohomology ring of A
is described by Holm [H]. Furthermore, if s > 2 and h(z) = f(z*) with
a monic polynomial f(x) over K, then the Hochschild cohomology ring of
A= KT/(f(X?)) is determined by Furuya and Sanada [FS].
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174 M. SUDA

On the other hand, AT'/(X® — «), a path algebra over a noncommutative
ring A with a relation, is isomorphic to a subalgebra B = A[E11, Fag, . .., Fss,
C] of the full matrix ring M(A) (see Lemma 6.1). We are interested in the
Hochschild cohomology for a class of matrix algebras including the above B
and basic hereditary orders which we studied in [SS]. Thus we will consider a
general case that the coefficient rings of path algebras are noncommutative.

In this paper, we deal with the algebra A = AT'/(f(X?®)) over R, where A
is a separable algebra over a commutative ring R, which is finitely generated
projective as an R-module, and f(x) a monic polynomial over the center of
A. Using methods similar to [FS] and [SS], we show that the R-algebra A
has a periodic projective bimodule resolution of period 2 and calculate the
Hochschild cohomology ring HH*(A) of A by means of the Yoneda product.
We note that if A = R then the same results for s = 1 and s > 2 have
been given in [H] by the cup product and in [FS] by the Yoneda product,
respectively.

The content of the paper is as follows. In Section 2, we give the definitions
and the notation. Then we have some A®-projective modules which are direct
summands of A ®r A and are used to give the resolution of A, where A€
denotes the enveloping algebra of A. In Section 3, by using the A¢-projective
modules, we construct a periodic A®-projective resolution of period 2 of A
(Theorem 3.2). In Section 4, we compute the Hochschild cohomology groups
of A. The complex which is obtained by the A°-projective resolution and is
used to give the Hochschild cohomology groups of A has a difference between
the case s > 2 and the case s = 1. Hence, we deal with the case s > 2 in
Section 4.2 (Theorem 4.4) and the case s = 1 in Section 4.3 (Theorem 4.5).
In Section 5, we describe the structure of the Hochschild cohomology ring of
A by means of the Yoneda product. We deal with the case s > 2 in Section
5.1 (Theorems 5.2 and 5.4) and the case s = 1 in Section 5.2 (Theorems 5.11
and 5.13). In Section 6, we give some applications (Propositions 6.2 and 6.3).
We remark that if A = R then the results of Propositions 6.2 and 6.3 coincide
with [KSS, Theorem 1.1] and [H, Theorem 7.1], respectively.

82. Preliminaries

Let A be an algebra over a commutative ring R, s a positive integer and I' the
oriented cyclic quiver with s vertices ej,eo,...,es and s arrows ai,ae, ..., as
such that a; starts at e; and ends at e;11. We consider the path algebra
Al := A ®p RI' over R, where RI' is the path algebra of I' over R. Hence
a; = ejyiaie; holds for each 1 < ¢ < s, where the subscripts ¢ of e; are
considered to be modulo s. We put X = a; + a2 + -+ + as and f(zx) =
2"+ zp 12" 2w+ 29 € Z(A)[z], where f(x) is a monic polynomial
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over the center Z(A) of A. Note that Xe; = €;11X for 1 < i < s. In this
paper, we deal with the R-algebra A := AI'/(f(X?)), where (f(X?)) is the
two-sided ideal of AT generated by f(X?). Note that f(X*®) is an element of
Z(AT), so (f(X*)) = f(X*)AT. Thus we have A = @;_, @}*,' AXFe; and
ranka A = ns?. We identify A with Afz]/(f(z)) in the case s = 1.

Throughout the paper, we denote ®r by ® and the enveloping algebra
A ® A° of A by A°. We assume that A is a separable R-algebra which is
projective as an R-module from now on. Then A is a finitely generated R-
module. If s =1 and n = 1 then A = A has trivial cohomology, so we assume
n > 2 in the case s = 1.

It is well known that A is a separable R-algebra if and only if there exist
(xy)1<v<m and (yu)1<p<m in A such that

m
(2.1) S m =1
v=1

and
(2.2) Z(a:c,,) Q@Y = Zﬂcy ® (ypa)° for all a € A.
v=1 v=1

We set §¢ = " |z, ® yp € A°, which is called a separating idempotent for
A (cf. [P]). Note that §¢0¢ = §¢ and §°A := {d> " zpay, |a € A} = Z(A).
We regard elements in A as elements in A by the natural embedding A — A.
Since there exists the left A®-isomorphism A® 5 A® A; a® b° — a ® b, if we
denote the image of 6¢ by d,i.e., 0 = )" 2, @y, € A® A, then

(2.3) ad = da forall a € A

holds by (2.2). Moreover, since (e;®e3)d is an idempotent for A°, we have that
Ae((ei ® e}’-)ée) is a left A®-projective module for each 1 < 4,5 < s, hence we
can define the following left A°-projective modules which are direct summands
of A® A:

PO = éAeiéeiA, P1 = éAeiHéei[\.
i=1

i=1
Note that Py = P; = AJA in the case s = 1.

83. A periodic A%-projective resolution of A

In this section, we will construct a periodic A®-projective resolution of period
2 of A by using the left A°-projective modules Py and P; defined in Section 2.
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Lemma 3.1. There exist the left A°-homomorphisms ¢ : P — Py and K :
A — Py which satisfy the following:

P(eiy1de;) = €i+1(X0 — 0X)e;,
n js—1
k(e;) =€ sz (Z Xlést_l_1> e;
j=1 1=0

for 1 <1 < s, where we set z, = 1.

Proof. We define the left A°~-homomorphism 5 :A®A —- AQA by 5(1 ®1) =
X6 —6X. Then, by (2.1), (2.3) and Xe; = €;41X for 1 <i <'s, we have

leir10e;) = (i1 ® €))0)p(1 @ 1) = ((eip1 ® €§)5°) (X0 — 0X)

(ei41 ® €7 Z Xz,0y, — 2,0y, X)
=1

14

(eit1® € <X(5 (Z a:yyy) - (Vil xyyy> 6X)

= €z+1 X(; (SX 61 e b.

Hence, if we set 5| p, = ¢ then ¢ is the desired left A°~homomorphism.
Next, we define the left A-homomorphism  : A = @;_, Ae; — Pi by

n js—1
k(ei) = e; sz (Z Xlést_l_1> €i,

j=1 1=0

since Xke; = ei+ka holds for 1 < ¢ < s and k£ > 0. We will show that & is
a right A-homomorphism. First, note that k(e;ej) = k(e;)e; for 1 < i, j < s.
Second, by (2.3), we have

k(e X) — k(e) X = Xk(eji—1) — k(€)X

n js—1
= Xei_l Z Zj (Z Xl5st_l_1> €;—1

j=1 1=0

js—1
zzj (ZX&XJS = 1) e; X
n js—
z(zxax)

=1
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n js—1 ‘
— €; Z Zj (Z Xl5st_l> €;—1

j=1 1=0

= €; ZZj(XjS(S—(SXjS) €i—1

Jj=1

=ei [ (DX | o-0 D X" | | ein
Jj=1 j=1
= ¢;((—20)0 — 0(—20))ei—1 = €i(—200 + 200)e;—1 = 0.

Hence, rk(e;X) = k(e;)X holds. Finally, we show that k(e;A) = k(e;)A
for all A € A. Note that r(ae;) = ar(e;) = k(e;)a for all a € A, since
21, 22, -+ Zn—1, 2n are elements of Z(A). If we set A = ijl Iy 01 a]kX e;
€ A (aj, € A) then it follows that

s ns—1 s ns—1
k(ei) A = k(e;)e A = k(e;) Z Z aJkX ei—kej = Z Z k(ajre;) X €i—ke;j
=1 k=0 7=1 k=0
s ns—1 s ns—1
k k
=K Z Z ajrei X ei_pe; | =K | € Z Z ajrX"e; = k(eiN).
j=1 k=0 j=1 k=0

This completes the proof of the lemma. [

Theorem 3.2. There exists the following exact sequence of left A°-modules
which is (A, A)-split:

(3.1) 0—ASp 2P " A0,

where m : Py — A is the multiplication map. Hence we have the periodic left
A¢-projective resolution of period 2:

(3.2) i gy Pop Mg TN,
where dy and dy are left A°-homomorphisms given by

d1(6i+1(56i) = ¢(ei+15€i) = ei+1(Xc5 — (5X)6Z',

js—1
do(eide;) = (km)(eide;) = e; Zz] (Z xl§x7is—1- 1) e
7=1

for1<i<s.
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To prove Theorem 3.2, we prepare the following lemmas.
Lemma 3.3. The sequence (3.1) is a complex of left A°-modules.
Proof. Since 7(d) =Y )., 2y = 1, we have

(md)(eir10€;) = m(eir1(Xd —0X)e;) = e41(X — X)e; =0
and

n js—1
@W@:¢ei2k%XPMWM1>Q
=0

j=1

n js—1
=¢ sz (Z Xl@z‘—l5€i—l—1st_l_l>

j=1 =0
n js—1
= Z Zj (Z Xlei_l(Xé - (5X)€Z'_l_1XjSl1>
j=1 =0
n js—1
=¢ }:Q<XXX“%w*“RnWM%40 ei
j=1 =0

= €; ZZj(XjS(S—(SXjS) €;
j=1

n n
= €; E sz]s 6—10 E ZjX]s €;
j=1 J=1

= 62'((—2:0)(5 — (5(—20))&' =0

for 1 <i < s. This completes the proof of the lemma. [

Lemma 3.4. There exist the (A, A)-homomorphisms h_1 : A — Py, hg : Py —
Py and hy : Py — A which satisfy the following:

h_l(l) = Z €j5€j,
j=1

0 if k=0,

holesde; X %) = Aol .
o(eideiX7) —ei | Y XI6XFIT ey if 1<k <ns—1,

§=0
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0 fO0<k<ns—2

hi(eip10e; X*) = 1 ==
eir1 if k=ns—1,

for 1 < i < s, where we denote a left A- and right A-homomorphism by a

(A, A)-homomorphism. Then {h_1,ho, h1} is a contracting homotopy of (3.1).

Proof. 1If we define the left A-homomorphism h_; : A — Py by h_i(1) =
> j=1€j0ej, then it is clear that h_; is a (A, A)-homomorphism by (2.3).
Next, since XFe; = eHQXk holds for 1 <7 < s and k > 0, we define the
(A, A)-homomorphisms hy : A®@ A — P; and hy : A®@ A — A by

0 if k=0,

ho(1® e; XF) = kot A

fo(1® e:X7) - ZXJ&Xk—J—l eip f1<k<ns—1,
=0

0 if 0<k<ns—2,
ei+1 if k=mns—1,

E1(1 ®6iXk) = {

for 1 < ¢ < s. If we set ﬁo\po = hg and E1|p1 = hq, then it easily follows that
ho and h; are the desired (A, A)-homomorphisms by (2.1) and (2.3).

(1) wh—q =idy; For all A € A, we have

S S
(rh)N) =7 [ A D eide; | | =2 (D e | =2
j=1 j=1

Hence we get the desired equation.
(2) hoim + ¢ho =idpy;
(a) Case k=0: For 1 <i <s, we have
s

(h,171' + tho)(eléel) = hfl(ei) + gf)(O) =e; Z 6]'56]' = ¢;0¢;.

j=1
(b) Case 1 <k <mns—1: For 1 <i<s, we have

(hoam + ¢ho) (eide; XF)

k—1
=ho1(eXF) = e | D XIox T e
j=0
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s k—1
= eiXk Zejéej — €5 ZXj(X(s—(SX)Xk_j_I Ci—k
j=1 j=0
= Xkei_k(Sei_k —€; Z(X]+15Xk_]_1 — X](SXk_]) €i—k
j=0

= e; X"6e;_y — ei(Xké — 5Xk)ei_k = e;0e; X",
Hence we get the desired equation.
(3) hoo + khy = idp;
(a) Case k=0: For 1 <i < s, we have
(hoo + kh1)(ei+10€;) = ho (eHl(X(S — 5X)ei) + x(0)
= ho(Xeide; — ejr16e41X) = ejr1de;.

(b) Case 1 <k <mns—2: For 1 <i<s, we have

(hoo + Kha)(eis15e: X ")

= hyg (€i+1(X(5 - (5X)61Xk) + K(O) = hg(XeideiXk — €i+15ei+1xk+l)
k—1 k

=—Xe¢; ZXj5Xk_j_l €i—k + €it+1 Z XIigxk=i €i—k
J=0 J=0
k—1 k

= —€i41 ZXjJrl(Skajfl €i—k T €it+1 Z XI5 xk=i €i_k
Jj=0 J=0

= ei110X" e = €106, X",
(c) Case k =mns —1: For 1 <1i <s, we have
(hod + Khy) (e 10, X™1)
= hg (ei+1(X(5 — (5X)eiX”3_1) + k(eiy1)
= ho(XeiéeiX”S_l —ei+10€;41X™) + K(ejy1)

ns—2
=—Xe; [ Y XI5X™T 2 ) ey
Jj=0
n—1
+ ho | eit10€i41 E 2 X7* + k(eir1)
Jj=0
ns—2 n—1

=—eip1 | D XITIOX™ T2 ey + ) ziho(eipadei1 X7®) + kleirn)
=0 J=0
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ns—2 n—1 js—1
_ 2 : +1 ns—j—2 § : § : l js—I1—1
= —€i+1 X] 0X J €i+1 — Z5€i4-1 X 5Xj €i4+1

j=0 j=1 1=0

7s—1
+ei1 ZZ_] <ZX5X]S = 1) €it+1

ns—2 ns—1
= —ei11 Z X]+15an—]—2 eir1 + €it1 Z dean—l—l eit1
j—O 1=0

= e 10X e = €10, XL
Hence we get the desired equation.

(4) hik =1idp; For 1 <i < s, we have

7s—1
(hik)(e;) Zz] (ZXéXJS = 1) e
j=1
js—1
ZZJ <ZX61 101 X757 1)
7j=1

= hl(eiéei_lX”S_l) = €;.

Hence we get the desired equation.

These complete the proof of the lemma. [

Proof of Theorem 3.2. We have the exact sequence (3.1) of left A°-modules
which is (A, A)-split by means of Lemmas 3.3 and 3.4. Then the latter state-
ment is clear. [

84. The Hochschild cohomology groups of A

In this section, we compute the Hochschild cohomology group HH!(A) :=
Exth (A, A) of A for each ¢ > 0 by means of the projective A-resolution (3.2).
We regard HH'(A) as a Z(A)-module. Since the resolution (3.2) is periodic of
period 2, we have a Z(A)-isomorphism HH2(A) ~ HH!(A) for each i > 1.
Therefore, it suffices to compute HH'(A) for ¢t = 0,1, 2.
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4.1. Some lemmas

In this subsection, we give some lemmas in order to calculate the Hochschild
cohomology groups of A.

Lemma 4.1. We have Z(AT') = Z(A)[X?®]. Also we have

Z(A) = (Z(A)XT+ (F(X))) /(F(X) = Z(A)[X*]/(Z(D)[X*] 0 (f(X)))
as rings, where Z(A)[ XN (f(X?®)) is equal to the ideal of Z(A)[X?®] generated
by f(X?). So we have Z(A) ~ Z(A)[z]/(f(z)) as rings.

Proof. First, we will show Z(AT') = Z(A)[X?®]. Let

s N
Yy = Zzbi’ijei S Z(AF), where b,"j € Aand N > 0.
i=1 j=0

Then we have

s q
Yy = ZZ()MSXZS@Z-, where N =sq¢+rand 0 <r <s-—1,
i=1 =0

since ye, = yepep, = epyep for 1 < p < s. Next, we have by ;3 = bojs = -+ =
bs.1s, since y(Xep) = (Xep)y for 1 < p < s. So it follows that

s q q
Yy = Zzbl,llesei = ZbLlSXlS c A[XS]

i=1 =0 =0

Moreover, we have by ;s € Z(A) for 0 < | < g, since ay = ya for all a € A.
Hence Z(AT') € Z(A)[X?®] holds. The converse inclusion follows from the
fact that X° € Z(AT') and Z(A) C Z(AT'). Therefore we have the desired
equation.

Second, we will show Z(A) = (Z(A)[X*] + (f(X*)))/(f(X*)). Let

s ns—1
Y= Z Z b@ijei S Z(A), where bi,j e A.

i=1 j=0

By similar calculation, we have

n—1
y=> biuX" e (AX") + (F(X*)/(F(X*)),
=0
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hence Z(A) C (Z(A)[X*] + (f(X*)))/(f(X*)). The converse inclusion fol-
lows from the fact that X* € Z(A) and (Z(A) + (f(X*)))/(f(X®)) C Z(A).
Therefore we have the desired equation. It is clear that the ring isomorphism

(Z(A)[XT+ (F(X) /(F(X) = Z(A)X]/ (Z(D)[X] N (F(X7))

exists.
Third, let I be the ideal of Z(A)[X?®] generated by f(X*). We will show
I=Z(A)X*IN(f(X?)). Since f(X?*) € Z(AT'), we set

y=f(X%weZ(A)X]]N(f(X?), whereve AT.

Then we have yu = uy for all u € AT, hence it follows that f(X*)(vu—uv) = 0.
Now we will show that f(X?*) is not a zero divisor in AI'. Let

S

N
0+#w= ZZbMXjei € AI',  where b; ; € A and N > 0,
i=1 j=0

ie., bj, Ny # 0 for some 1 < iy < s. If f(X*)w = 0, then b;, v = 0 since
f(X®)we;, = 0. This contradicts the assumption. So f(X?®) is not a zero
divisor. Hence we have vu = uv for all u € AT, i.e., v € Z(AT') = Z(A)[X?].
Therefore y = f(X*)v € I, s0 Z(A)[X®*]N(f(X?®)) C I. The converse inclusion
follows from f(X®) € Z(A)[X?®]. Hence we have I = Z(A)[X®*] N (f(X?®)) as
required.

Finally, we will show Z(A) ~ Z(A)[z]/(f(x)) as rings. It is clear that the
map

ZA)X/T — ZA)al/(f2); X*r— o

is a ring isomorphism. Therefore we have the ring isomorphism as required.
This completes the proof of the lemma. [

By this lemma, we also regard HH'(A) as a Z(A)[x]/(f(z))-module for
t > 0.

Lemma 4.2. We have e;4;Ae; = (A[X®] X e; + (f(X9)))/(f(X?)) for 1 <
i <sand0<k<s—1. Moreover, we have 6°(e;1rAe;) = Z(A)XFe; which
is a free Z(A)-module of rank 1.

Proof. For0<k<s—1land1l<i<s,let

s ns—1

Y= Z Z by X’e, € e;rxAe;, where by, ; € A.
p=1 5=0
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Then we have

ns—1
Y = eitkye; = Z bi X eirn_jei
=0
n—1
= 3 b XEHe, € (ALXT]X e + (F(X7) /(X))
1=0

hence e, Ae; C (A[X®]XFe;+(f(X?)))/(f(X?)). It is clear that the converse
inclusion holds. Moreover we have
0% (ervndes) = 6°(A[X®)X P e; + (f(X))) /(F(X7))
= ((8°A)[X*1XPe; + (F(X*))) /(F(X?))
= (Z(A) X)X Pe; + (£(X*))) /(f(X?))
= Z(A) X" e;
by Lemma 4.1. We will show that Z(A)XP¥e; is a free Z(A)-module of rank 1.

Let z = Zlnz_ol b X' € Z(A) where b € A. If 2XFe; = 0, then we have b = 0
for 0 <1 <n-—1, hence z = 0 follows. [

By this lemma, for 1 <7 < sand 0 < k < s — 1, there exist the following
Z(A)-isomorphisms:
Hompe (AejirdeiA, A) — ((eirk @ €5)6)A = Z(A) X ey
¢ — P(eitrdei),

since (ej®e;)0¢ are idempotents in A®, where we regard Hompe (Ae;yrde; A, A)
as Z(A)-modules by setting

(29)(y) == 2(¢(y))
for z € Z(A), ¢ € Hompe(Ae;yrde;A,A) and y € Ae;j1rde;A. Note that the
inverse maps of the above isomorphisms are
D : ((€ipr @ €)0°) A — Hompe (Ae;yrde;A, A);
((eirr @ €5)0)A — (eirrde; — ((eisk @ €5)0°)N)

respectively. By means of these isomorphisms, we have the following Z(A)-
isomorphisms:

ug : Hompe(Py,A) — @HomAe(AezﬁeiA,A) = @Z(A)ei;
=1 i

=1
) — (#i)i — Z@(ez‘&fi)
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for s > 1, and

uy : Hompe(Pp,A) — Hompe(Ae;10e;A, ) — Z(MN)Xe;:
1 A( 1 ) @ A( 1+1 14Xy ) @ ( ) 79
=1 =1

(0 — (Vi) — Z Yi(eir10e;)

for s > 2, where we set ¢; = ¢|ne;5¢;4 and V5 = V|re, 150

4.2. The Hochschild cohomology groups of A in the case s > 2

In this subsection, we assume that s > 2. By means of the resolution (3.2)
and Lemma 4.2, we have the following commutative diagram:

df ¥ df
0 — Hompe(Py, A) —— Hompe(P;,A) —— Hompe(Py,A) ——

Zluo Zlul Zluo
0— Pze —— Przixe — Pz — ...,
=1 =1

i=1

where we set d# = Hompe(dy, A), d# = Hompe(do, A), df = uldfﬁual and
dy = uOdeE ufl. The inverse maps of ug and u; are given by the following:

@@0()\(%‘) = /\ei ifj = i,
0 if j # i,
@i71()\X€i) = )\Xei ifj = i,
0 if j #i

(A1) e (esdey) = {

(4.2) ul—l()\Xei)(ej+15€j) = {

for \€ Z(A) and 1 <i,j < s.
Lemma 4.3. In the case s > 2, we have

dT(AeZ) = )\X(ei — 61'_1),
dE(AXe;) = AXSf/(X?)

for X € Z(A) and 1 < i < s, where f'(x) denotes the derivative of f(z).
Proof. Let A € Z(A) and 1 <i <s. Then, by (4.1), we have

di(Nei) = (wrd}) (ugt(Nes)) = ur (ugt(Nei)dr)
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— Z (ug ' (Ne;)dr) (ej1de;)

j=1
= Z ual()\e,;) (€j+1(X(5 — 5X)€j)
=1
= Z ual()\ei)(XejcSej — 6j+156j+1X)
j=1

= Xugl()\ei)(eiéei) — ugl(/\ei)(eiéei)X
= X)\e,- - )\eiX = )\X(@i — 6i_1).

We also have
dy(AXe;) = (uod]) (uy (AXei)) = uo (u7 (AXe;)do)

S

(ul_l ()\Xei)d()) (€k56k)

i
I

»

js—1
(AXe)) Zz] (ZX&XJS - 1) er
7j=1

TT
I

»

k=1

j=1 1=0

n 7js—1
u;l(AXei) (Z Zj (Z Xlek.l&ikllXjSll))

s 7s—1
2 <Z Xlu1 (AXe;)(ep_ider_i1—1) X5~ = 1)
j=1

k=1 =0
S n
— zj > X'(AXey) X571
k=1 j=1 0<I<js—1
s.t. i=k—I—1 (mod s)
S n S n
=\ 2; Z X% | = A zi(§X7%ey,)
k=1 j=1 0<I<js—1 k=1 j=1

s.t. i=k—Il—1 (mod s)

= AX? jz; XU Ds <Z ek> = AXSf(X?),

k=1

3

j=1

by means of (4.2). O

The results of Lemmas 4.1, 4.2 and 4.3 are similar to those of [F'S, Lemmas
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2.1, 2.2 and 2.3]. Thus the following theorem is easily shown by a similar proof
to that given in [FS, Theorem 2 and Corollary 2.4], so we omit the details.

Theorem 4.4. In the case s > 2, there exist the following isomorphisms of

Z(A)[z]/(f(x))-modules:

Z(A)[=]/(f(x)) ift =0,
HHt(A) =~ AnnZ(A)[QC]/(f(x))(acf’(:v)) ift 18 Odd,
Z(A)[z]/(xf(x), f(z)) ift is even.

Moreover, if Z(A) is a field then HH'(A) ~ Z(A)[z]/(zf'(z), f(x)) fort > 1.

4.3. The Hochschild cohomology groups of A in the case s =1

In this subsection, we assume that s = 1 (i.e., A = Alz]/(f(x))) and n > 2.
In this case, we recall that Py = P = A0A. By Theorem 3.2, we have the
periodic left A°-projective resolution:

(4.3) o0 AGA L ASA T AGA T ASA TS A —— 0,

where 7 is the multiplication map, and di, dy are the left A°~homomorphisms
given by

n j—1
di(0) =z — dxz, do(d) = Z 2 (Z xléa:jl1> ’
=0

j=1
since X is identified with . So, by Lemma 4.2, we have the following com-

mutative diagram:

# # #
0 —Hompe (AOA, A) —— Hompe(ASA, A) —2— Hompe(ASA,A) s -

zluo zluo Zluo
0—  Z(A) _4 Z(A) %, Z0) A

where we set d¥ = Homye(dy, A), dff = Hompe(do, A), d = upd?ug! and
dy = ugd#ual. Since

uo : Hompe (AGA, A) =5 Z(A); ¢ — 6(6)

and ug'(\)(8) = A for all X € Z(A), we have di = 0 and dj()\) = \f'(z).
Therefore the following theorem follows.
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Theorem 4.5. In the case s = 1, i.e., A = Alz]/(f(x)), there exist the
following isomorphisms of Z(A)-modules:
Z(N) = Z(A)[=]/(f(x)) ift=0,
HH'(A) = ¢ Aoy (f/(x)) = Anngayw)/(r@) (f/()  if t is odd,
Z(N)/(f'(x)) =~ Z(A)[=]/(f'(x), f(x)) if t is even.

Moreover, if Z(A) is a field then HHY(A) ~ Z(A)[z]/(f'(z), f(x)) for t > 1.

85. The Hochschild cohomology ring of A

In this section, we determine the ring structures of the even Hochschild coho-
mology ring HH®(A) := @,~, HH*(A) of A and the Hochschild cohomology
ring HH*(A) := @,~, HH(A) of A, where the multiplication is given by the
Yoneda product x (cf. [F'S, Section 3]). We deal with the case s > 2 in Section
5.1 and the case s =1 in Section 5.2.

5.1. The Hochschild cohomology ring of A in the case s > 2

In this subsection except Remark 5.5, we assume that s > 2. The following
results in this subsection are easily shown by similar proofs to those given in
[FS]. Therefore, we will describe the results only and omit the detailed proof.

Proposition 5.1. There exists the following isomorphism of Z(A)-algebras:
HH®(A) = Z(A)[u, w]/(f (u), uf'(w)w),
where degu = 0 and degw = 2.

Proof. By using Theorem 4.4, we can prove the proposition by similar argu-
ments to [F'S, Proposition 3.2]. O

We consider the case f'(z) = 0. Then we identify HH(A) with
Z(A)[z]/(f(x)) for t > 0, by Theorem 4.4.

Theorem 5.2. Let Z(A) be an integral domain, char Z(A) = p > 0 and
f(x) € Z(A)[z] a monic polynomial with f'(z) = 0, so we set f(x) =
] %0 z]pxjp for some positive integer ng.

(i) If p =2, then we have the following isomorphism of Z(A)-algebras:

HH*(A) ~ Z(A)[u,v,w]/ f(u),v? — Z zoju® | w |,

0<j<ng s.t. j is odd

where deg u =0, deg v =1 and deg w = 2.
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(ii) If p # 2, then we have the following isomorphism of Z(A)-algebras:
HH*(A) =~ Z(A)[u, v,w]/(f(u),v?),
where deg u =0, deg v =1 and deg w = 2.

Proof. We can prove the theorem by similar arguments to [F'S, Theorem 3].
O

Now we consider the case f'(z) # 0. So, from now on, we assume that
f(x) # 0 in this subsection except Remark 5.5. We treat the elementary
case f(x) = ¢gF(x) with a monic irreducible polynomial g(x) € Z(A)[z] and
a positive integer k. Then, since 0 # f'(x) = kg'(x)g" (), it follows that
char Z(A) t k.

First, we consider the case g(x) = z. In this case, we note that if A = R
is a field then the ring structure of HH*(A) is determined in [EH, Proposition
5.6].

Proposition 5.3. Let f(x) = 2* with a positive integer k and f'(x) # 0.
Then we have the following isomorphism of Z(A)-algebras:

HH*(A) ~ Z(A)[u, v, w]/(u¥, v?),
where deg u = 0, deg v =1 and deg w = 2.

Proof. By Theorem 4.4, we identify HH!(A) with Z(A)[x]/(2*) = Z(A) for
t>0. Let u=z+ (2¥) € HH(A), v = 1+ (2*) € HH'(A) and w = 1+ (2F) €
HH?(A). Since we have the results which are similar to [FS, Lemmas 3.1,
3.3 and 3.4], the following follows. For i > 0, HH%*(A) is the Z(A)-module
generated by w' and HH?**1(A) is the Z(A)-module generated by w'v. We
obtain the relation u* = 0 in degree 0. We also obtain the relation v = 0 in
degree 2. Indeed, if £k = 1 then the relation is clear, and if k¥ > 2 then we have

v? = Z?:Q 2; (Z{:—ll l) 2 4 (2F) = ( 5:11 l) zF 4+ (2%) = 0. Therefore we get
the desired isomorphism.

Second, we consider the case g(z) # x and Z(A) is a unique factorization
domain. Then we have

HH'(A) = Anny a0k (o)) (@ (2)g" (@) = (9(2))/(¢" (@),
HH?(A) = Z(A)[2]/ (" (x), xkg (x)g" " (x))

for k > 1. If k = 1 then HH!(A) = 0, and hence the Hochschild cohomology
ring of A has been calculated by Proposition 5.1.
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Theorem 5.4. Let Z(A) be a unique factorization domain, p = char Z(A) >0
and f(z) = ¢*(z) = >0 zizd € Z(A)[x] with f'(x) # 0, where g(z) €
Z(A)[z] is monic irreducible, g(x) # x and k > 2.

(i) If p = 2, then there exists the following isomorphism of Z(A)-algebras:
HH*(A) ~ Z(A)[u,v,w]/I,

where I is the ideal of Z(A)[u,v,w] generated by

" (w), ¢" Hu)v, v — g?(u) Z zjwd | w, kugt ™ (u)g (u)w,
0<j<n
s.t. j=2 or3(mod4)

and deg u =0, deg v =1, deg w = 2.

(ii) If p # 2 (including the case p = 0), then there exists the following
isomorphism of Z(A)-algebras:

HH*(A) = Z(A)[u, v, w]/(g"(w), ¢" " (u)v, v*, kug" " (u)g' (uw)w),
where deg u = 0, deg v =1 and deg w = 2.

Proof. We can prove the theorem by similar arguments to [F'S, Theorem 4].
O

Remark 5.5. Suppose that Z(A) is a field and s > 1. Let f(z) = glfl ()---
gfl (z) be a factorization of f(z) into irreducible factors in Z(A)[z]. Since
the result of [F'S, Lemma 3.6] holds in the case s > 1, we have the following
decomposition of Z(A)-algebras:

A=AT/(f(X?) =A@z (Z(A)T/(f(X?)))
~ A @y ) (ZOT/ (91" (X*) @ - @ Z(A)T/(g," (X))
~ AT/(gy (X*) @ - @ AT/ (g (X*)).

Then there exists the following isomorphism of Z(A)-algebras:
HH*(AT/(f(X*))) ~ HH* (AF/(glfl (X)) ®-- & HH (AF/(gf’ (X*))).

Hence, it suffices to consider the case f(x) = ¢g*(x) for an irreducible polyno-
mial g(z) € Z(A)[x] and a positive integer k in order to determine the ring
structure of HH*(A).
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5.2. The Hochschild cohomology ring of A in the case s =1

In this subsection, we assume that s = 1 (i.e., A = A[z]/(f(x))) and n > 2.
Note that the isomorphisms of Theorem 4.5 are given explicitly as follows:

Z(A)[a]/(f(x)) == HHO(A);  q(z) + (f(2)) — o,
Annzay /(e (F (@) — HHY (A); - q(z) + (f(2)) — ¢,
Z(A)[a)/(f' (@), f(2)) =5 HH2(A);  g(2) + (f'(2), f(z)) — ¢+ Imd],

where ¢ : AOA — A is the A°~homomorphism given by ¢(8) = ¢(x) + (f(z)).
Thus we will identify

HHO(A) = Z(A)[2]/(f(z)), HHY(A) = Anngayw/r@) (f' (@)
and HH*(A) = Z(A)[2]/(f'(x), f(x))

by these isomorphisms.
We denote the resolution (4.3) by
A py Bp o g T,
where P; = Py = AJA, do; = dop and dg;+1 = dy for i > 1. Let w be the coset
in HH2(A) with 1 € Z(A)[z]: w = 1+ (f'(x), f(x)) € HH?(A). Then w is
represented by the multiplication map 7 : Po(= Fy) — A. In this subsection,
we will use w in the meaning above.

Lemma 5.6. If Q = q(x) + (f(z)) € HH(A), where q(x) € Z(A)[z], then
we have Q x w = q(x) + (f'(z), f(x)) € HH%(A). Also, we have w x w =
1+ (f'(x), f(z)) € HHY(A). Hence HH*(A) is the Z(A)-module generated by
w' € HH%(A) fori > 1.

Proof. The element Q = g(z) + (f(z)) € HH(A) where q(z) € Z(A)[x] is
represented by the A®-homomorphism ¢ : Py — A given by ¢(§) = q(x) +
(f(2)).

First, we compute the product @ x w € HH2(A). It is clear that idjgy :
P, — Py is a lifting of 7 : P, — A. Hence Q x w is the element in HH?(A)
represented by ¢ : P, — A. Therefore we have Q x w = q(z) + (f'(z), f(z)) €
HH?(A).

Second, we compute the product w x w € HH*(A). It is clear that idygy
P2 — P(], P3 — Pl, P4 — P2 are liftings of 7w : P2 — A. Hence w x w
is the element in HH*(A) represented by 7 : Py — A. Therefore we have
wxw=1+(f'(z), f(x)) € HHY(A). O

By this Lemma, we have the structure of the even Hochschild cohomology
ring of A.
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Proposition 5.7. There exists the following isomorphism of Z(A)-algebras:
HH®(A) = Z(A)[u, w]/(f(u), f'(w)w),
where degu = 0 and degw = 2.

Proof. Let u = = + (f(z)) € Z(A)[z]/(f(xz)) = HH°(A). Then we have
the relation f(u) = 0 in degree 0. Moreover, by Lemma 5.6, HH*(A) is the
HH(A)-module generated by w’ and there is the relation f'(u)w® = 0 in degree
2i for i > 1. Therefore we have the desired isomorphisms of Z(A)-algebras.
O

Now we calculate the Yoneda product in odd degree.

Lemma 5.8. If Qo = qo(z) + (f(z)) € HH°(A) where qo(z) € Z(A)[z] and
Q1 = q1(z)+ (f(x)) € HHY(A) where qi(x) is an element in Z(A)[z] such that

[
f'(x)qi(z) € (f(x)), then we have Qy x Q1 = qo(x)q1(x) + (f(x)) € HHL(A).
Also, we have Q1 x w = q1(x) + (f(x)) € HH*(A).

Proof. The elements Qg and ()1 are represented by the A®~-homomorphisms
¢o : Py — A and ¢y : Pr — A given by ¢o(0) = qo(z) + (f(z)) and ¢1(5) =
q1(z) + (f(x)), respectively. Then the A®~-homomorphism o : P| — Py given
by o(d) = dqi(x) is a lifting of ¢1 and ¢go : Pi — A satisfies (¢p0)(0) =
qo(z)q1(z) + (f(z)). Therefore we have Qo x Q1 = qo(z)q1(2) + (f()).

Next we compute Q1 X w. It is clear that idagp : P» — Py, P3 — P; are
liftings of of m: Py — A. Hence @ x w is the element in HH?(A) represented
by ¢1 : P3 — A. Therefore we have Q1 x w = ¢1(z) + (f(z)) € HH}(A). O

Lemma 5.9. If @ = o(x) + (f()), @ = d(x) + (f(x)) € HA'(A) where
q}(;c), (j(x})l are elements in Z(A)[x] such that f'(x)q(z), f'(x)q(z) € (f(x)),
then we have

QxQ=q(2)q % (Zl> o772+ (f(2), f(2)).

J=2

Proof. The elements @ and Q are represented by the Af- homomorphisms
¢: P — Aand ¢ : P, — A given by ¢(8) = ¢q(z) + (f(z)) and ¢(5) =
q(z) 4 (f(x)) respectively. It is clear that the A°~homomorphism o¢ : P; — Py
given by o¢(9) = §q(z) is a lifting of é: P, — A. Define the A®-homomorphism
o1: P, — P; by

j—11-1
Zz] (ZZl’k(s.%J k= 2) q(x).
I=1 k=0

7j=2
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Then we have that o; is a lifting of qg, i.e., oodg = opde = dyoy. Indeed, by
means of the equation f/(x)¢(x) = 0 in A, we can calculate as follows. First,
note that

n Jj—1 n Jj—1
(00do)(6) = 00 [ Y 2 (Z xl&cj_l_1> => % (Z xlé‘rj_l_l> q(@).
=0 =0

J=1 J=1

We also have

(d101)(0) = ka5wj_k_2> q(x)

Il
—
B
Il

0

.

|
Q
e
[~]=
&
R
o~ <
L
T
—

Il
.
I 3
[\&)
: Q &
I '

(]

<
|

_

—
|

1

[
(]
X

(xk+15$j—k—2 _ $k5$j_k_l)> (j(éﬂ)

<.
Il
o}
[
I
-
Eod
Il
o

Dj.
HN
g

3

I
N

aaE 59:”)) i)

<.
Il
[N}
[
(|
—_ =

2load = — (5 — 1)5:17j1> G(x)

Il
M=
Ql\l
O, o~
g

zlopi =1 —jéa:j1> q(x)

<.
[|
[N}
~
Il
— ()

3
<.
|

(]

I
N

azl5asj_l_1> G(x)—06 ijj:cj_l q(x)
j=2

<.
Il
[N}
~
|
—= O

3
<.
|

I
&

a:lélel> 4(z) + dz1q4(x)

5=t ) g(x).
=0

Hence o¢dy = dio1 holds, so o7 is a lifting of ¢~> : P — A. Then, we have

<.
Il
[N}
|
[ )

o <
|
(o9
8
<
-

I
bj:
!

<.
Il
-

n j—11-1
W ® =6 (35 (zzxkaxa‘-k—2) i

j=2 I=1 k=0
n j—11-1
=D % ( > aFq(r)er " ) ()
7j=2 =1 k=0
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:F2 (Zz) 21 2q(2)q(2).

This completes the proof of the lemma. [

From now on, let Z(A) be an integral domain in this subsection.

We consider the case f'(x) = 0, that is, char Z(A) = p > 0 and f(z) =
Z;‘Lio szmjp for some positive integer ng. Then, by Theorem 4.5, we identify
HH(A) with Z(A)[z]/(f(x)) for t > 0.

Lemma 5.10. Let Z(A) be an integral domain, char Z(A) = p > 0 and
f(z) € Z(A)[z] a monic polynomial with f'(x) =0, i.e., f(z) = 372, zjpxIP
for some positive integer ng. If i and k are odd, then we have

- a@)ix) > 252772 | 4 (f(z) ifp=2,

QxQ= 1<j<ng st jisodd

0 if p # 2,

for Q@ = q(z) + (f(z)) € HHY(A) and Q = §(z) + (f(z)) € HH*(A) where
q(x), q(x) € Z(A)lx].

Proof. For Q = g¢(z) + (f(x)) € HH'(A) and Q = g(x) + (f(z)) € HH*(A)
where ¢(z) and g(x) are in Z(A)[z], by Lemma 5.9, we have

no Jjp—1
Qx Q=q(@)q(x) ) zp <Z l) 272 4 (f(x)).
1

j=

If p = 2, then we have Q x Q = q(x)q(x) (Z 1<j<no 22jx2j_2> + (f(z)),
) s.t. j is odd
since

2]231[ )]0 (mod 2) if 7 is even,
1 (mod 2) if j is odd.

If p # 2, then we have Q x Q = 0, since 777" 1 = 0 (mod p) for all j > 1.
O

Theorem 5.11. Let Z(A) be an integral domain, char Z(A) = p
f(z) € Z(A)[z] a monic polynomial with f'(x) =0, i.e., f(z) =372, 2jpIP
for some positive integer ny.
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(i) If p =2, then there exists the following isomorphism of Z(A)-algebras:

HH*(A) ~ Z(A)[u,v,w]/ f(u),v* — Z zoju® ™ L |
1<j<no
s.t. j is odd
where deg u =0, deg v =1 and deg w = 2.
(ii) If p # 2, then there exists the following isomorphism of Z(A)-algebras:
HH(A) = Z(8)[u, v,w]/(f(u),v?),
where deg u =0, deg v =1 and deg w = 2.

Proof. Let u = x + (f(z)) € HH(A), v = 1 + (f(2)) € HHY(A) and w =
1+ (f(z)) € HH*(A). By Lemmas 5.6 and 5.8, HH?"1(A) is the Z(A)-module
generated by wiv for i > 0. If p # 2, then we obtain the relation v?> = 0
in degree 2 by Lemma 5.10. If p = 2, then v x v is the coset in HH?(A)

represented by Y 1<j<n, 22j2%72 € Z(A)[z] by Lemma 5.10, so we have
s.t. 7 is odd

the relation v2? — > 1<j<no zgquj_2w = 0 in degree 2. Therefore we have
s.t. j is odd
the desired isomorphisms. [

Next we consider the case f'(z) # 0. So, from now on, we assume that
f'(xz) # 0 and Z(A) is a unique factorization domain in this subsection. We
treat the elementary case f(z) = ¢g¥(x) with a monic irreducible polynomial
g(x) € Z(A)[z] and k > 1. Then, since 0 # f'(x) = kg'(x)g"~*(z), it follows
that char Z(A) 1 k. By Theorem 4.5, we also have

HH'(A) = Anny a6 o) (9 (2)g" 7 () = (9(2))/(¢" (2)),
HH?(A) = Z(A)[2]/(g"(z), kg (x)g"* " (2)).

If £ = 1 then HH'(A) = 0, and hence the Hochschild cohomology ring of A
has been calculated by Proposition 5.7. So we assume k > 2.

Lemma 5.12. Let Z(A) be a unique factorization domain, p = char Z(A) >0
and f(z) = ¢*(z) = >0 zizd € Z(A)x] with f'(z) # 0, where g(x) €
Z(A)[z] is monic irreducible and k > 2. If i and t are odd, then we have

S e P VR R

s.t. 7=2 or3 (mod4)

0 if p# 2,
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for Q@ = q(x)g(x) + (f(x)) € HH(A) and Q = §(z)g(x) + (f(x)) € HH'(A)
where q(z),q(x) € Z(A)[z].

Proof. By Lemma 5.9, we have

n 7j—1
Q% Q = q()q(2)g*(x) Y % (Z l) 272+ (f(a), f(2).

2<j<n
s.t. j=2or3 (mod4)

since .
J‘ll_ 0 (mod2) ifj=0orl (mod4),
~ |1 (mod2) ifj=2o0r3 (mod4).
If p # 2, then
2o, d0=1) a1y 2
sz (Zl) zI sz 5 e 5 2 GG —1)zz?™
j=2 =2 j=2
1

= 27() = 5ke" ) (k= D6 @) + g(w)g" (@)

sowehave Q x Q =0. O

Theorem 5.13. Let Z(A) be a unique factorization domain, p = char Z(A) >
0 and f(z) = gk(x) = > i=0 zizd € Z(A)[z] with f'(x) # 0, where g(x) €
Z(A)[z] is monic irreducible and k > 2.

(i) If p =2, then there exists the following isomorphism of Z(A)-algebras:
HH*(A) ~ Z(A)[u,v,w]/I,

where I is the ideal of Z(A)[u,v,w] generated by

9" (u), ¢* (u)v, v* — g*(u) > zju! 7 | w, kg (u)g (u)w,
2<j<n
s.t. j=2 or3 (mod 4)

and deg u =0, deg v =1, deg w = 2.
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(ii) If p # 2 (including the case p = 0), then there exists the following
isomorphism of Z(A)-algebras:

HH*(A) = Z(A)[u, v, w] /(" (), 6" (w)v, v kg (u)g (u)w),
where deg u = 0, deg v =1 and deg w = 2.

Proof. Let u = z + (¢%(x)) € HHY(A), v = g(z) + (¢*(x)) € HHY(A) and
w = 14+ (g*(x), kg"*~(x)g'(z)) € HH?(A). Then we have the relation g*(u) = 0
in degree 0. By Lemma 5.6, for i > 1, HH*(A) is the Z(A)-module generated
by w’, and we have the relation kg*~!(u)¢'(u)w = 0 in degree 2. Moreover,
by Lemmas 5.6 and 5.8, for i > 0, HH*T1(A) is the Z(A)-module generated
by vw’, and we have the relation ¢g*~'(u)v = 0 in degree 1.

If p # 2, then by Lemma 5.12 we have the relation v?> = 0 in degree 2.
If p = 2, then by Lemma 5.12 v x v is the coset in HH?(A) represented by

*(z) Z zjx'™? |. So we have the relation

2<j<n
s.t. j7=2or3 (mod4)

v? — g% (u) g ziud 72 [ w =0
2<j<n
s.t. j=2or3 (mod4)

in degree 2. Therefore we get the desired isomorphisms. [

We remark that the argument of Remark 5.5 holds in the case s = 1.

86. Applications

In this section, we will give some applications of the results of Section 5. Let
A be a separable R-algebra as usual.

Let s be an integer with s > 2 and «y, a9, -+ ,as be nonzero elements of
Z(A) such that «; is not a zero divisor in A for each 1 < i < s. Let E;; be
the matrix unit in the s x s matrix ring M(A) for 1 <i,5 < s and

0 0 g
a1 0 0
C:: 0 a9 :
: 0
0 0 ase1 0|
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Define the R-subalgebra B of My(A) as follows:

B = AlE11, Es,...,Es, C).

Note that, in particular, if &1 = ag = -+ = as_1 = 1 then the algebra has the
form
A asA - oA
. A .
: oagA
A .. .. A
SX S

which is similar to a basic hereditary order (cf. [SS]). We calculate the
Hochschild cohomology ring of B. The following lemma shows that B is
isomorphic to AT'/(f(X?®)) for some f(z) € Z(A)[z], where we note that A
needs not to be R-separable.

Lemma 6.1. Let B be the R-algebra as above. Then B is isomorphic to
AT'/(X?® — «) as R-algebras, where we set o = ajug - - - (i

Proof. We have
aC =Ca foralla e A and C° = aF,
where E denotes the identity matrix. We also have
C'E; = i+j,i+jCj forl<i<sand 0<j<s-—1,

where we regard the subscripts of matrix units modulo s. Since «a; is not a
zero divisor in A for each 1 <4 < s, the set {C'E; |1 <i<s,0<j<s—1}
gives a A-basis of B. Therefore there exists the following isomorphism of
A-modules:

AT/(X®* —a) = B; X’e; — CE.

Moreover, it is clear that the isomorphism is an isomorphism of R-algebras.
This completes the proof of the lemma. [

Proposition 6.2. Let A be a separable R-algebra and B the R-algebra as
above. Then there exists the following isomorphism of Z(A)-algebras:

HH*(B) ~ Z(A)[w]/(aw),

where deg w =2 and o = a1 - - - Q.
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Proof. By Lemma 6.1 and Theorem 4.4, we have
HHt(B) ~ AnnZ(A)[m]/(x—a) (m) =~ ADHZ(A) (a) =0

for ¢t odd, since « is not a zero divisor in A. Hence HH*(B) ~ HH®Y(B) holds.
Moreover, by Proposition 5.1, we have

HH®(B) ~ Z(A)[u, w]/(u — a,uw) ~ Z(A)[w]/(aw),
where deg u =0 and deg w =2. O

We remark that if A = R then the result of Proposition 6.2 coincides with
[KSS, Theorem 1.1].

Next, we calculate the Hochschild cohomology ring of the truncated poly-
nomial R-algebra A, := A[z]/(z") with n > 2.

Proposition 6.3. Let A be a separable R-algebra, Z(A) a unique factorization
domain with char Z(A) = p > 0, and A,, the truncated polynomial R-algebra
as above. Then there exists the following isomorphism of Z(A)-algebras:

Z(A)[u, v, w]/(w™, v v, v nutw)  if pin,

HH*(A,) ~ Z(A)[u, v, w]/(u™,v?) if2#p|n or
" if2=p|n and4|n,
Z(A)[u,v,w]/(u™,v? — u""2w) if2=p|n and4tn,

where deg u = 0, deg v =1 and deg w = 2.

Proof. Let s =1 and f(x) = 2™ for n > 2, then A = Afz]/(2") = Ap, 2, =1
and z; = 0 for 0 < j <n —1 in our previous notation.

First, we consider the case p f n. Then, since f'(z) # 0, we can apply
Theorem 5.13 to A,. If p = 2, then we have

HH*(A,) ~ Z(A)[u, v, w]/(u™, u™ v, v, nu™tw)

where deg u = 0, deg v = 1 and deg w = 2, since > 2<j<n zjuj_Q is
s.t. j=2or 3 (mod 4)
equal to u"2 or 0. If p # 2, then we also have the same isomorphism.
Second, we consider the case p | n. Then, since f/'(x) = 0, we can apply
Theorem 5.11 to A,. If p # 2, then HH*(A,) ~ Z(A)[u, v, w]/(u™,v?). If p =
2, then we have the desired isomorphisms, since the sum ) 3; < j < /2 Zqu2j —2
s.t. 7 is odd
is equal to "2 if n/2 is odd and 0 if n/2 is even. [ ’

We remark that if A = R then the result of Proposition 6.3 coincides with
[H, Theorem 7.1].
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