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Abstract. Let ∆ be a separable algebra over a commutative ring R and
f(x) a monic polynomial over the center of ∆. We deal with the R-algebra
Λ = ∆Γ/(f(Xs)), where ∆Γ is the path algebra of the cyclic quiver Γ with s
vertices and s arrows, and X is the sum of all arrows. We show that Λ has
a periodic projective bimodule resolution of period 2. Moreover, by using the
resolution, we describe the structure of the Hochschild cohomology ring of Λ by
means of the Yoneda product.
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§1. Introduction

The Hochschild cohomology rings of path algebras of an oriented cyclic quiver
with relations have been studied by some authors. Let A be the algebra
KΓ/(h(X)) over a commutative ring K, where KΓ is the path algebra of
the oriented cyclic quiver Γ with s vertices and s arrows, h(x) is a monic
polynomial over K and X is the sum of all arrows in KΓ. If K is a field
and h(x) = xk for an integer k ≥ 2, then A = KΓ/(Xk) is a basic self-
injective Nakayama algebra and the Hochschild cohomology ring of the algebra
is determined by Erdmann and Holm [EH]. Also, if s = 1, then A is equal
to K[x]/(h(x)) and the structure of the Hochschild cohomology ring of A
is described by Holm [H]. Furthermore, if s ≥ 2 and h(x) = f(xs) with
a monic polynomial f(x) over K, then the Hochschild cohomology ring of
A = KΓ/(f(Xs)) is determined by Furuya and Sanada [FS].
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On the other hand, ∆Γ/(Xs − α), a path algebra over a noncommutative
ring ∆ with a relation, is isomorphic to a subalgebra B = ∆[E11, E22, . . . , Ess,
C] of the full matrix ring Ms(∆) (see Lemma 6.1). We are interested in the
Hochschild cohomology for a class of matrix algebras including the above B
and basic hereditary orders which we studied in [SS]. Thus we will consider a
general case that the coefficient rings of path algebras are noncommutative.

In this paper, we deal with the algebra Λ = ∆Γ/(f(Xs)) over R, where ∆
is a separable algebra over a commutative ring R, which is finitely generated
projective as an R-module, and f(x) a monic polynomial over the center of
∆. Using methods similar to [FS] and [SS], we show that the R-algebra Λ
has a periodic projective bimodule resolution of period 2 and calculate the
Hochschild cohomology ring HH∗(Λ) of Λ by means of the Yoneda product.
We note that if ∆ = R then the same results for s = 1 and s ≥ 2 have
been given in [H] by the cup product and in [FS] by the Yoneda product,
respectively.

The content of the paper is as follows. In Section 2, we give the definitions
and the notation. Then we have some Λe-projective modules which are direct
summands of Λ ⊗R Λ and are used to give the resolution of Λ, where Λe

denotes the enveloping algebra of Λ. In Section 3, by using the Λe-projective
modules, we construct a periodic Λe-projective resolution of period 2 of Λ
(Theorem 3.2). In Section 4, we compute the Hochschild cohomology groups
of Λ. The complex which is obtained by the Λe-projective resolution and is
used to give the Hochschild cohomology groups of Λ has a difference between
the case s ≥ 2 and the case s = 1. Hence, we deal with the case s ≥ 2 in
Section 4.2 (Theorem 4.4) and the case s = 1 in Section 4.3 (Theorem 4.5).
In Section 5, we describe the structure of the Hochschild cohomology ring of
Λ by means of the Yoneda product. We deal with the case s ≥ 2 in Section
5.1 (Theorems 5.2 and 5.4) and the case s = 1 in Section 5.2 (Theorems 5.11
and 5.13). In Section 6, we give some applications (Propositions 6.2 and 6.3).
We remark that if ∆ = R then the results of Propositions 6.2 and 6.3 coincide
with [KSS, Theorem 1.1] and [H, Theorem 7.1], respectively.

§2. Preliminaries

Let ∆ be an algebra over a commutative ring R, s a positive integer and Γ the
oriented cyclic quiver with s vertices e1, e2, . . . , es and s arrows a1, a2, . . . , as
such that ai starts at ei and ends at ei+1. We consider the path algebra
∆Γ := ∆ ⊗R RΓ over R, where RΓ is the path algebra of Γ over R. Hence
ai = ei+1aiei holds for each 1 ≤ i ≤ s, where the subscripts i of ei are
considered to be modulo s. We put X = a1 + a2 + · · · + as and f(x) =
xn + zn−1x

n−1 + · · ·+ z1x+ z0 ∈ Z(∆)[x], where f(x) is a monic polynomial
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over the center Z(∆) of ∆. Note that Xei = ei+1X for 1 ≤ i ≤ s. In this
paper, we deal with the R-algebra Λ := ∆Γ/(f(Xs)), where (f(Xs)) is the
two-sided ideal of ∆Γ generated by f(Xs). Note that f(Xs) is an element of
Z(∆Γ), so (f(Xs)) = f(Xs)∆Γ. Thus we have Λ =

⊕s
i=1

⊕ns−1
k=0 ∆Xkei and

rank∆Λ = ns2. We identify Λ with ∆[x]/(f(x)) in the case s = 1.
Throughout the paper, we denote ⊗R by ⊗ and the enveloping algebra

Λ ⊗ Λ◦ of Λ by Λe. We assume that ∆ is a separable R-algebra which is
projective as an R-module from now on. Then ∆ is a finitely generated R-
module. If s = 1 and n = 1 then Λ = ∆ has trivial cohomology, so we assume
n ≥ 2 in the case s = 1.

It is well known that ∆ is a separable R-algebra if and only if there exist
(xν)1≤ν≤m and (yν)1≤ν≤m in ∆ such that

m∑

ν=1

xνyν = 1(2.1)

and

m∑

ν=1

(axν)⊗ yν◦ =
m∑

ν=1

xν ⊗ (yνa)◦ for all a ∈ ∆.(2.2)

We set δe =
∑m

ν=1 xν ⊗ y◦ν ∈ ∆e, which is called a separating idempotent for
∆ (cf. [P]). Note that δeδe = δe and δe∆ := {∑m

ν=1 xνayν | a ∈ ∆} = Z(∆).
We regard elements in ∆ as elements in Λ by the natural embedding ∆→ Λ.
Since there exists the left Λe-isomorphism Λe ∼→ Λ⊗ Λ; a⊗ b◦ 7→ a⊗ b, if we
denote the image of δe by δ, i.e., δ =

∑m
ν=1 xν ⊗ yν ∈ Λ⊗ Λ, then

aδ = δa for all a ∈ ∆(2.3)

holds by (2.2). Moreover, since (ei⊗e◦j )δe is an idempotent for Λe, we have that
Λe
(
(ei ⊗ e◦j )δe

)
is a left Λe-projective module for each 1 ≤ i, j ≤ s, hence we

can define the following left Λe-projective modules which are direct summands
of Λ⊗ Λ:

P0 =
s⊕

i=1

ΛeiδeiΛ, P1 =
s⊕

i=1

Λei+1δeiΛ.

Note that P0 = P1 = ΛδΛ in the case s = 1.

§3. A periodic Λe-projective resolution of Λ

In this section, we will construct a periodic Λe-projective resolution of period
2 of Λ by using the left Λe-projective modules P0 and P1 defined in Section 2.
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Lemma 3.1. There exist the left Λe-homomorphisms φ : P1 → P0 and κ :
Λ→ P1 which satisfy the following:

φ(ei+1δei) = ei+1(Xδ − δX)ei,

κ(ei) = ei




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l−1

)
 ei

for 1 ≤ i ≤ s, where we set zn = 1.

Proof. We define the left Λe-homomorphism φ̃ : Λ⊗Λ→ Λ⊗Λ by φ̃(1⊗1) =
Xδ − δX. Then, by (2.1), (2.3) and Xei = ei+1X for 1 ≤ i ≤ s, we have

φ̃(ei+1δei) =
(
(ei+1 ⊗ e◦i )δe

)
φ̃(1⊗ 1) =

(
(ei+1 ⊗ e◦i )δe

)
(Xδ − δX)

= (ei+1 ⊗ e◦i )
m∑

ν=1

(Xxνδyν − xνδyνX)

= (ei+1 ⊗ e◦i )
(
Xδ

(
m∑

ν=1

xνyν

)
−
(

m∑

ν=1

xνyν

)
δX

)

= ei+1(Xδ − δX)ei ∈ P0.

Hence, if we set φ̃|P1 = φ then φ is the desired left Λe-homomorphism.
Next, we define the left Λ-homomorphism κ : Λ =

⊕s
i=1 Λei → P1 by

κ(ei) = ei




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l−1

)
 ei,

since Xkei = ei+kX
k holds for 1 ≤ i ≤ s and k ≥ 0. We will show that κ is

a right Λ-homomorphism. First, note that κ(eiej) = κ(ei)ej for 1 ≤ i, j ≤ s.
Second, by (2.3), we have

κ(eiX)− κ(ei)X = Xκ(ei−1)− κ(ei)X

= Xei−1




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l−1

)
 ei−1

− ei




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l−1

)
 eiX

= ei




n∑

j=1

zj

(
js−1∑

l=0

X l+1δXjs−l−1

)
 ei−1
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− ei




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l
)
 ei−1

= ei




n∑

j=1

zj(Xjsδ − δXjs)


 ei−1

= ei






n∑

j=1

zjX
js


 δ − δ




n∑

j=1

zjX
js




 ei−1

= ei
(
(−z0)δ − δ(−z0)

)
ei−1 = ei(−z0δ + z0δ)ei−1 = 0.

Hence, κ(eiX) = κ(ei)X holds. Finally, we show that κ(eiλ) = κ(ei)λ
for all λ ∈ Λ. Note that κ(aei) = aκ(ei) = κ(ei)a for all a ∈ ∆, since
z1, z2, . . . , zn−1, zn are elements of Z(∆). If we set λ =

∑s
j=1

∑ns−1
k=0 ajkX

kej
∈ Λ (ajk ∈ ∆) then it follows that

κ(ei)λ = κ(ei)eiλ = κ(ei)
s∑

j=1

ns−1∑

k=0

ajkX
kei−kej =

s∑

j=1

ns−1∑

k=0

κ(ajkei)Xkei−kej

= κ




s∑

j=1

ns−1∑

k=0

ajkeiX
kei−kej


 = κ


ei




s∑

j=1

ns−1∑

k=0

ajkX
kej




 = κ(eiλ).

This completes the proof of the lemma. �

Theorem 3.2. There exists the following exact sequence of left Λe-modules
which is (Λ,∆)-split:

0 −→ Λ κ−→ P1
φ−→ P0

π−→ Λ −→ 0,(3.1)

where π : P0 → Λ is the multiplication map. Hence we have the periodic left
Λe-projective resolution of period 2:

· · · −→ P1
d1−→ P0

d0−→ P1
d1−→ P0

π−→ Λ −→ 0,(3.2)

where d1 and d0 are left Λe-homomorphisms given by

d1(ei+1δei) = φ(ei+1δei) = ei+1(Xδ − δX)ei,

d0(eiδei) = (κπ)(eiδei) = ei




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l−1

)
 ei

for 1 ≤ i ≤ s.
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To prove Theorem 3.2, we prepare the following lemmas.

Lemma 3.3. The sequence (3.1) is a complex of left Λe-modules.

Proof. Since π(δ) =
∑m

ν=1 xνyν = 1, we have

(πφ)(ei+1δei) = π(ei+1(Xδ − δX)ei) = ei+1(X −X)ei = 0

and

(φκ)(ei) = φ


ei




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l−1

)
 ei




= φ




n∑

j=1

zj

(
js−1∑

l=0

X lei−lδei−l−1X
js−l−1

)


=
n∑

j=1

zj

(
js−1∑

l=0

X lei−l(Xδ − δX)ei−l−1X
js−l−1

)

= ei




n∑

j=1

zj

(
js−1∑

l=0

(
X l+1δXjs−l−1 −X lδXjs−l)

)
 ei

= ei




n∑

j=1

zj(Xjsδ − δXjs)


 ei

= ei






n∑

j=1

zjX
js


 δ − δ




n∑

j=1

zjX
js




 ei

= ei
(
(−z0)δ − δ(−z0)

)
ei = 0

for 1 ≤ i ≤ s. This completes the proof of the lemma. �

Lemma 3.4. There exist the (Λ,∆)-homomorphisms h−1 : Λ→ P0, h0 : P0 →
P1 and h1 : P1 → Λ which satisfy the following:

h−1(1) =
s∑

j=1

ejδej ,

h0(eiδeiXk) =





0 if k = 0,

−ei



k−1∑

j=0

XjδXk−j−1


 ei−k if 1 ≤ k ≤ ns− 1,
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h1(ei+1δeiX
k) =

{
0 if 0 ≤ k ≤ ns− 2,
ei+1 if k = ns− 1,

for 1 ≤ i ≤ s, where we denote a left Λ- and right ∆-homomorphism by a
(Λ,∆)-homomorphism. Then {h−1, h0, h1} is a contracting homotopy of (3.1).

Proof. If we define the left Λ-homomorphism h−1 : Λ → P0 by h−1(1) =∑s
j=1 ejδej , then it is clear that h−1 is a (Λ,∆)-homomorphism by (2.3).

Next, since Xkei = ei+kX
k holds for 1 ≤ i ≤ s and k ≥ 0, we define the

(Λ,∆)-homomorphisms h̃0 : Λ⊗ Λ→ P1 and h̃1 : Λ⊗ Λ→ Λ by

h̃0(1⊗ eiXk) =





0 if k = 0,

−


k−1∑

j=0

XjδXk−j−1


 ei−k if 1 ≤ k ≤ ns− 1,

h̃1(1⊗ eiXk) =

{
0 if 0 ≤ k ≤ ns− 2,
ei+1 if k = ns− 1,

for 1 ≤ i ≤ s. If we set h̃0|P0 = h0 and h̃1|P1 = h1, then it easily follows that
h0 and h1 are the desired (Λ,∆)-homomorphisms by (2.1) and (2.3).

(1) πh−1 = idΛ; For all λ ∈ Λ, we have

(πh−1)(λ) = π


λ




s∑

j=1

ejδej




 = λ




s∑

j=1

ej


 = λ.

Hence we get the desired equation.

(2) h−1π + φh0 = idP0 ;

(a) Case k = 0: For 1 ≤ i ≤ s, we have

(h−1π + φh0)(eiδei) = h−1(ei) + φ(0) = ei




s∑

j=1

ejδej


 = eiδei.

(b) Case 1 ≤ k ≤ ns− 1: For 1 ≤ i ≤ s, we have

(h−1π + φh0)(eiδeiXk)

= h−1(eiXk)− φ

ei



k−1∑

j=0

XjδXk−j−1ei−k





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= eiX
k




s∑

j=1

ejδej


− ei



k−1∑

j=0

Xj(Xδ − δX)Xk−j−1


 ei−k

= Xkei−kδei−k − ei



k−1∑

j=0

(Xj+1δXk−j−1 −XjδXk−j)


 ei−k

= eiX
kδei−k − ei(Xkδ − δXk)ei−k = eiδeiX

k.

Hence we get the desired equation.

(3) h0φ+ κh1 = idP1 ;

(a) Case k = 0: For 1 ≤ i ≤ s, we have

(h0φ+ κh1)(ei+1δei) = h0

(
ei+1(Xδ − δX)ei

)
+ κ(0)

= h0(Xeiδei − ei+1δei+1X) = ei+1δei.

(b) Case 1 ≤ k ≤ ns− 2: For 1 ≤ i ≤ s, we have

(h0φ+ κh1)(ei+1δeiX
k)

= h0

(
ei+1(Xδ − δX)eiXk

)
+ κ(0) = h0(XeiδeiXk − ei+1δei+1X

k+1)

= −Xei



k−1∑

j=0

XjδXk−j−1


 ei−k + ei+1




k∑

j=0

XjδXk−j


 ei−k

= −ei+1



k−1∑

j=0

Xj+1δXk−j−1


 ei−k + ei+1




k∑

j=0

XjδXk−j


 ei−k

= ei+1δX
kei−k = ei+1δeiX

k.

(c) Case k = ns− 1: For 1 ≤ i ≤ s, we have

(h0φ+ κh1)(ei+1δeiX
ns−1)

= h0

(
ei+1(Xδ − δX)eiXns−1

)
+ κ(ei+1)

= h0(XeiδeiXns−1 − ei+1δei+1X
ns) + κ(ei+1)

= −Xei



ns−2∑

j=0

XjδXns−j−2


 ei+1

+ h0


ei+1δei+1



n−1∑

j=0

zjX
js




+ κ(ei+1)

= −ei+1



ns−2∑

j=0

Xj+1δXns−j−2


 ei+1 +

n−1∑

j=0

zjh0(ei+1δei+1X
js) + κ(ei+1)
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= −ei+1



ns−2∑

j=0

Xj+1δXns−j−2


 ei+1 −

n−1∑

j=1

zjei+1

(
js−1∑

l=0

X lδXjs−l−1

)
ei+1

+ ei+1




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l−1

)
 ei+1

= −ei+1



ns−2∑

j=0

Xj+1δXns−j−2


 ei+1 + ei+1

(
ns−1∑

l=0

X lδXns−l−1

)
ei+1

= ei+1δX
ns−1ei+1 = ei+1δeiX

ns−1.

Hence we get the desired equation.

(4) h1κ = idΛ; For 1 ≤ i ≤ s, we have

(h1κ)(ei) = h1


ei




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l−1

)
 ei




= h1




n∑

j=1

zj

(
js−1∑

l=0

X lei−lδei−l−1X
js−l−1

)


= h1(eiδei−1X
ns−1) = ei.

Hence we get the desired equation.

These complete the proof of the lemma. �

Proof of Theorem 3.2. We have the exact sequence (3.1) of left Λe-modules
which is (Λ,∆)-split by means of Lemmas 3.3 and 3.4. Then the latter state-
ment is clear. �

§4. The Hochschild cohomology groups of Λ

In this section, we compute the Hochschild cohomology group HHt(Λ) :=
ExttΛe(Λ,Λ) of Λ for each t ≥ 0 by means of the projective Λe-resolution (3.2).
We regard HHt(Λ) as a Z(Λ)-module. Since the resolution (3.2) is periodic of
period 2, we have a Z(Λ)-isomorphism HHi+2(Λ) ' HHi(Λ) for each i ≥ 1.
Therefore, it suffices to compute HHt(Λ) for t = 0, 1, 2.
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4.1. Some lemmas

In this subsection, we give some lemmas in order to calculate the Hochschild
cohomology groups of Λ.

Lemma 4.1. We have Z(∆Γ) = Z(∆)[Xs]. Also we have

Z(Λ) =
(
Z(∆)[Xs] + (f(Xs))

)/
(f(Xs)) ' Z(∆)[Xs]

/(
Z(∆)[Xs] ∩ (f(Xs))

)

as rings, where Z(∆)[Xs]∩(f(Xs)) is equal to the ideal of Z(∆)[Xs] generated
by f(Xs). So we have Z(Λ) ' Z(∆)[x]/(f(x)) as rings.

Proof. First, we will show Z(∆Γ) = Z(∆)[Xs]. Let

y =
s∑

i=1

N∑

j=0

bi,jX
jei ∈ Z(∆Γ), where bi,j ∈ ∆ and N ≥ 0.

Then we have

y =
s∑

i=1

q∑

l=0

bi,lsX
lsei, where N = sq + r and 0 ≤ r ≤ s− 1,

since yep = yepep = epyep for 1 ≤ p ≤ s. Next, we have b1,ls = b2,ls = · · · =
bs,ls, since y(Xep) = (Xep)y for 1 ≤ p ≤ s. So it follows that

y =
s∑

i=1

q∑

l=0

b1,lsX
lsei =

q∑

l=0

b1,lsX
ls ∈ ∆[Xs].

Moreover, we have b1,ls ∈ Z(∆) for 0 ≤ l ≤ q, since ay = ya for all a ∈ ∆.
Hence Z(∆Γ) ⊂ Z(∆)[Xs] holds. The converse inclusion follows from the
fact that Xs ∈ Z(∆Γ) and Z(∆) ⊂ Z(∆Γ). Therefore we have the desired
equation.

Second, we will show Z(Λ) =
(
Z(∆)[Xs] + (f(Xs))

)/
(f(Xs)). Let

y =
s∑

i=1

ns−1∑

j=0

bi,jX
jei ∈ Z(Λ), where bi,j ∈ ∆.

By similar calculation, we have

y =
n−1∑

l=0

b1,lsX
ls ∈ (∆[Xs] + (f(Xs))

)/
(f(Xs)),
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hence Z(Λ) ⊂ (Z(∆)[Xs] + (f(Xs))
)/

(f(Xs)). The converse inclusion fol-
lows from the fact that Xs ∈ Z(Λ) and

(
Z(∆) + (f(Xs))

)/
(f(Xs)) ⊂ Z(Λ).

Therefore we have the desired equation. It is clear that the ring isomorphism
(
Z(∆)[Xs] + (f(Xs))

)/
(f(Xs)) ' Z(∆)[Xs]

/(
Z(∆)[Xs] ∩ (f(Xs))

)

exists.
Third, let I be the ideal of Z(∆)[Xs] generated by f(Xs). We will show

I = Z(∆)[Xs] ∩ (f(Xs)). Since f(Xs) ∈ Z(∆Γ), we set

y = f(Xs)v ∈ Z(∆)[Xs] ∩ (f(Xs)), where v ∈ ∆Γ.

Then we have yu = uy for all u ∈ ∆Γ, hence it follows that f(Xs)(vu−uv) = 0.
Now we will show that f(Xs) is not a zero divisor in ∆Γ. Let

0 6= w =
s∑

i=1

N∑

j=0

bi,jX
jei ∈ ∆Γ, where bi,j ∈ ∆ and N ≥ 0,

i.e., bi0,N 6= 0 for some 1 ≤ i0 ≤ s. If f(Xs)w = 0, then bi0,N = 0 since
f(Xs)wei0 = 0. This contradicts the assumption. So f(Xs) is not a zero
divisor. Hence we have vu = uv for all u ∈ ∆Γ, i.e., v ∈ Z(∆Γ) = Z(∆)[Xs].
Therefore y = f(Xs)v ∈ I, so Z(∆)[Xs]∩(f(Xs)) ⊂ I. The converse inclusion
follows from f(Xs) ∈ Z(∆)[Xs]. Hence we have I = Z(∆)[Xs] ∩ (f(Xs)) as
required.

Finally, we will show Z(Λ) ' Z(∆)[x]/(f(x)) as rings. It is clear that the
map

Z(∆)[Xs]/I −→ Z(∆)[x]/(f(x)); Xs 7−→ x

is a ring isomorphism. Therefore we have the ring isomorphism as required.
This completes the proof of the lemma. �

By this lemma, we also regard HHt(Λ) as a Z(∆)[x]/(f(x))-module for
t ≥ 0.

Lemma 4.2. We have ei+kΛei =
(
∆[Xs]Xkei + (f(Xs))

)/
(f(Xs)) for 1 ≤

i ≤ s and 0 ≤ k ≤ s − 1. Moreover, we have δe(ei+kΛei) = Z(Λ)Xkei which
is a free Z(Λ)-module of rank 1.

Proof. For 0 ≤ k ≤ s− 1 and 1 ≤ i ≤ s, let

y =
s∑

p=1

ns−1∑

j=0

bp,jX
jep ∈ ei+kΛei, where bp,j ∈ ∆.



184 M. SUDA

Then we have

y = ei+kyei =
ns−1∑

j=0

bi,jX
jei+k−jei

=
n−1∑

l=0

bi,k+lsX
k+lsei ∈

(
∆[Xs]Xkei + (f(Xs))

)/
(f(Xs)),

hence ei+kΛei ⊂
(
∆[Xs]Xkei+(f(Xs))

)/
(f(Xs)). It is clear that the converse

inclusion holds. Moreover we have

δe(ei+kΛei) = δe
(
∆[Xs]Xkei + (f(Xs))

)/
(f(Xs))

=
(
(δe∆)[Xs]Xkei + (f(Xs))

)/
(f(Xs))

=
(
Z(∆)[Xs]Xkei + (f(Xs))

)/
(f(Xs))

= Z(Λ)Xkei

by Lemma 4.1. We will show that Z(Λ)Xkei is a free Z(Λ)-module of rank 1.
Let z =

∑n−1
l=0 blX

ls ∈ Z(Λ) where bl ∈ ∆. If zXkei = 0, then we have bl = 0
for 0 ≤ l ≤ n− 1, hence z = 0 follows. �

By this lemma, for 1 ≤ i ≤ s and 0 ≤ k ≤ s − 1, there exist the following
Z(Λ)-isomorphisms:

HomΛe(Λei+kδeiΛ,Λ) ∼−→ (
(ei+k ⊗ e◦i )δe

)
Λ = Z(Λ)Xkei;

φ 7−→ φ(ei+kδei),

since (ei+k⊗e◦i )δe are idempotents in Λe, where we regard HomΛe(Λei+kδeiΛ,Λ)
as Z(Λ)-modules by setting

(zφ)(y) := z(φ(y))

for z ∈ Z(Λ), φ ∈ HomΛe(Λei+kδeiΛ,Λ) and y ∈ Λei+kδeiΛ. Note that the
inverse maps of the above isomorphisms are

Φi,k :
(
(ei+k ⊗ e◦i )δe

)
Λ −→ HomΛe(Λei+kδeiΛ,Λ);(

(ei+k ⊗ e◦i )δe
)
λ 7−→ (

ei+kδei 7→
(
(ei+k ⊗ e◦i )δe

)
λ
)

respectively. By means of these isomorphisms, we have the following Z(Λ)-
isomorphisms:

u0 : HomΛe(P0,Λ) ∼−→
s⊕

i=1

HomΛe(ΛeiδeiΛ,Λ) ∼−→
s⊕

i=1

Z(Λ)ei;

φ 7−→ (φi)i 7−→
∑

i

φi(eiδei)
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for s ≥ 1, and

u1 : HomΛe(P1,Λ) ∼−→
s⊕

i=1

HomΛe(Λei+1δeiΛ,Λ) ∼−→
s⊕

i=1

Z(Λ)Xei;

ψ 7−→ (ψi)i 7−→
∑

i

ψi(ei+1δei)

for s ≥ 2, where we set φi = φ|ΛeiδeiΛ and ψi = ψ|Λei+1δeiΛ.

4.2. The Hochschild cohomology groups of Λ in the case s ≥ 2

In this subsection, we assume that s ≥ 2. By means of the resolution (3.2)
and Lemma 4.2, we have the following commutative diagram:

0 −→HomΛe(P0,Λ)
d#

1−−−−→ HomΛe(P1,Λ)
d#

0−−−−→ HomΛe(P0,Λ)
d#

1−−−−→ · · ·

∼

yu0 ∼

yu1 ∼
yu0

0 −→
s⊕

i=1

Z(Λ)ei
d∗1−−−−→

s⊕

i=1

Z(Λ)Xei
d∗0−−−−→

s⊕

i=1

Z(Λ)ei
d∗1−−−−→ · · · ,

where we set d#
1 = HomΛe(d1,Λ), d#

0 = HomΛe(d0,Λ), d∗1 = u1d
#
1 u
−1
0 and

d∗0 = u0d
#
0 u
−1
1 . The inverse maps of u0 and u1 are given by the following:

u−1
0 (λei)(ejδej) =

{
Φi,0(λei) = λei if j = i,
0 if j 6= i,

(4.1)

u−1
1 (λXei)(ej+1δej) =

{
Φi,1(λXei) = λXei if j = i,
0 if j 6= i

(4.2)

for λ ∈ Z(Λ) and 1 ≤ i, j ≤ s.

Lemma 4.3. In the case s ≥ 2, we have

d∗1(λei) = λX(ei − ei−1),
d∗0(λXei) = λXsf ′(Xs)

for λ ∈ Z(Λ) and 1 ≤ i ≤ s, where f ′(x) denotes the derivative of f(x).

Proof. Let λ ∈ Z(∆) and 1 ≤ i ≤ s. Then, by (4.1), we have

d∗1(λei) = (u1d
#
1 )
(
u−1

0 (λei)
)

= u1

(
u−1

0 (λei)d1

)
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=
s∑

j=1

(
u−1

0 (λei)d1

)
(ej+1δej)

=
s∑

j=1

u−1
0 (λei)

(
ej+1(Xδ − δX)ej

)

=
s∑

j=1

u−1
0 (λei)(Xejδej − ej+1δej+1X)

= Xu−1
0 (λei)(eiδei)− u−1

0 (λei)(eiδei)X
= Xλei − λeiX = λX(ei − ei−1).

We also have

d∗0(λXei) = (u0d
#
0 )
(
u−1

1 (λXei)
)

= u0

(
u−1

1 (λXei)d0

)

=
s∑

k=1

(
u−1

1 (λXei)d0

)
(ekδek)

=
s∑

k=1

u−1
1 (λXei)


ek




n∑

j=1

zj

(
js−1∑

l=0

X lδXjs−l−1

)
 ek




=
s∑

k=1

u−1
1 (λXei)




n∑

j=1

zj

(
js−1∑

l=0

X lek−lδek−l−1X
js−l−1

)


=
s∑

k=1




n∑

j=1

zj

(
js−1∑

l=0

X lu−1
1 (λXei)(ek−lδek−l−1)Xjs−l−1

)


=
s∑

k=1

n∑

j=1

zj




∑

0≤l≤js−1
s.t. i≡k−l−1 (mod s)

X l(λXei)Xjs−l−1




= λ
s∑

k=1

n∑

j=1

zj




∑

0≤l≤js−1
s.t. i≡k−l−1 (mod s)

Xjsek


 = λ

s∑

k=1

n∑

j=1

zj(jXjsek)

= λXs




n∑

j=1

jzjX
(j−1)s



(

s∑

k=1

ek

)
= λXsf ′(Xs),

by means of (4.2). �

The results of Lemmas 4.1, 4.2 and 4.3 are similar to those of [FS, Lemmas
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2.1, 2.2 and 2.3]. Thus the following theorem is easily shown by a similar proof
to that given in [FS, Theorem 2 and Corollary 2.4], so we omit the details.

Theorem 4.4. In the case s ≥ 2, there exist the following isomorphisms of
Z(∆)[x]/(f(x))-modules:

HHt(Λ) '





Z(∆)[x]/(f(x)) if t = 0,
AnnZ(∆)[x]/(f(x))(xf ′(x)) if t is odd,
Z(∆)[x]/(xf ′(x), f(x)) if t is even.

Moreover, if Z(∆) is a field then HHt(Λ) ' Z(∆)[x]/(xf ′(x), f(x)) for t ≥ 1.

4.3. The Hochschild cohomology groups of Λ in the case s = 1

In this subsection, we assume that s = 1 (i.e., Λ = ∆[x]/(f(x))) and n ≥ 2.
In this case, we recall that P0 = P1 = ΛδΛ. By Theorem 3.2, we have the
periodic left Λe-projective resolution:

· · · d0−→ ΛδΛ d1−→ ΛδΛ d0−→ ΛδΛ d1−→ ΛδΛ π−→ Λ −→ 0,(4.3)

where π is the multiplication map, and d1, d0 are the left Λe-homomorphisms
given by

d1(δ) = xδ − δx, d0(δ) =
n∑

j=1

zj

(
j−1∑

l=0

xlδxj−l−1

)
,

since X is identified with x. So, by Lemma 4.2, we have the following com-
mutative diagram:

0→HomΛe(ΛδΛ,Λ)
d#

1−−−−→ HomΛe(ΛδΛ,Λ)
d#

0−−−−→ HomΛe(ΛδΛ,Λ)
d#

1−→ · · ·

∼

yu0 ∼

yu0 ∼

yu0

0→ Z(Λ)
d∗1−−−−→ Z(Λ)

d∗0−−−−→ Z(Λ)
d∗1−→ · · · ,

where we set d#
1 = HomΛe(d1,Λ), d#

0 = HomΛe(d0,Λ), d∗1 = u0d
#
1 u
−1
0 and

d∗0 = u0d
#
0 u
−1
0 . Since

u0 : HomΛe(ΛδΛ,Λ) ∼−→ Z(Λ); φ 7−→ φ(δ)

and u−1
0 (λ)(δ) = λ for all λ ∈ Z(Λ), we have d∗1 = 0 and d∗0(λ) = λf ′(x).

Therefore the following theorem follows.
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Theorem 4.5. In the case s = 1, i.e., Λ = ∆[x]/(f(x)), there exist the
following isomorphisms of Z(Λ)-modules:

HHt(Λ) '





Z(Λ) = Z(∆)[x]/(f(x)) if t = 0,
AnnZ(Λ)(f ′(x)) = AnnZ(∆)[x]/(f(x))(f ′(x)) if t is odd,
Z(Λ)/(f ′(x)) ' Z(∆)[x]/(f ′(x), f(x)) if t is even.

Moreover, if Z(∆) is a field then HHt(Λ) ' Z(∆)[x]/(f ′(x), f(x)) for t ≥ 1.

§5. The Hochschild cohomology ring of Λ

In this section, we determine the ring structures of the even Hochschild coho-
mology ring HHev(Λ) :=

⊕
i≥0 HH2i(Λ) of Λ and the Hochschild cohomology

ring HH∗(Λ) :=
⊕

t≥0 HHt(Λ) of Λ, where the multiplication is given by the
Yoneda product × (cf. [FS, Section 3]). We deal with the case s ≥ 2 in Section
5.1 and the case s = 1 in Section 5.2.

5.1. The Hochschild cohomology ring of Λ in the case s ≥ 2

In this subsection except Remark 5.5, we assume that s ≥ 2. The following
results in this subsection are easily shown by similar proofs to those given in
[FS]. Therefore, we will describe the results only and omit the detailed proof.

Proposition 5.1. There exists the following isomorphism of Z(∆)-algebras:

HHev(Λ) ' Z(∆)[u,w]/(f(u), uf ′(u)w),

where deg u = 0 and degw = 2.

Proof. By using Theorem 4.4, we can prove the proposition by similar argu-
ments to [FS, Proposition 3.2]. �

We consider the case f ′(x) = 0. Then we identify HHt(Λ) with
Z(∆)[x]/(f(x)) for t ≥ 0, by Theorem 4.4.

Theorem 5.2. Let Z(∆) be an integral domain, charZ(∆) = p > 0 and
f(x) ∈ Z(∆)[x] a monic polynomial with f ′(x) = 0, so we set f(x) =∑n0

j=0 zjpx
jp for some positive integer n0.

(i) If p = 2, then we have the following isomorphism of Z(∆)-algebras:

HH∗(Λ) ' Z(∆)[u, v, w]
/
f(u), v2 −


 ∑

0≤j≤n0 s.t. j is odd

z2ju
2j


w


 ,

where deg u = 0, deg v = 1 and deg w = 2.
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(ii) If p 6= 2, then we have the following isomorphism of Z(∆)-algebras:

HH∗(Λ) ' Z(∆)[u, v, w]/(f(u), v2),

where deg u = 0, deg v = 1 and deg w = 2.

Proof. We can prove the theorem by similar arguments to [FS, Theorem 3].
�

Now we consider the case f ′(x) 6= 0. So, from now on, we assume that
f ′(x) 6= 0 in this subsection except Remark 5.5. We treat the elementary
case f(x) = gk(x) with a monic irreducible polynomial g(x) ∈ Z(∆)[x] and
a positive integer k. Then, since 0 6= f ′(x) = kg′(x)gk−1(x), it follows that
charZ(∆) - k.

First, we consider the case g(x) = x. In this case, we note that if ∆ = R
is a field then the ring structure of HH∗(Λ) is determined in [EH, Proposition
5.6].

Proposition 5.3. Let f(x) = xk with a positive integer k and f ′(x) 6= 0.
Then we have the following isomorphism of Z(∆)-algebras:

HH∗(Λ) ' Z(∆)[u, v, w]/(uk, v2),

where deg u = 0, deg v = 1 and deg w = 2.

Proof. By Theorem 4.4, we identify HHt(Λ) with Z(∆)[x]/(xk) = Z(Λ) for
t ≥ 0. Let u = x+ (xk) ∈ HH0(Λ), v = 1 + (xk) ∈ HH1(Λ) and w = 1 + (xk) ∈
HH2(Λ). Since we have the results which are similar to [FS, Lemmas 3.1,
3.3 and 3.4], the following follows. For i ≥ 0, HH2i(Λ) is the Z(Λ)-module
generated by wi and HH2i+1(Λ) is the Z(Λ)-module generated by wiv. We
obtain the relation uk = 0 in degree 0. We also obtain the relation v2 = 0 in
degree 2. Indeed, if k = 1 then the relation is clear, and if k ≥ 2 then we have
v2 =

∑k
j=2 zj

(∑j−1
l=1 l

)
xj + (xk) =

(∑k−1
l=1 l

)
xk + (xk) = 0. Therefore we get

the desired isomorphism. �

Second, we consider the case g(x) 6= x and Z(∆) is a unique factorization
domain. Then we have

HH1(Λ) = AnnZ(∆)[x]/(gk(x))(xkg
′(x)gk−1(x)) = (g(x))/(gk(x)),

HH2(Λ) = Z(∆)[x]/(gk(x), xkg′(x)gk−1(x))

for k ≥ 1. If k = 1 then HH1(Λ) = 0, and hence the Hochschild cohomology
ring of Λ has been calculated by Proposition 5.1.
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Theorem 5.4. Let Z(∆) be a unique factorization domain, p = charZ(∆) ≥ 0
and f(x) = gk(x) =

∑n
j=0 zjx

j ∈ Z(∆)[x] with f ′(x) 6= 0, where g(x) ∈
Z(∆)[x] is monic irreducible, g(x) 6= x and k ≥ 2.

(i) If p = 2, then there exists the following isomorphism of Z(∆)-algebras:

HH∗(Λ) ' Z(∆)[u, v, w]/I,

where I is the ideal of Z(∆)[u, v, w] generated by

gk(u), gk−1(u)v, v2 − g2(u)




∑

0≤j≤n
s.t. j≡2 or 3 (mod 4)

zju
j


w, kugk−1(u)g′(u)w,

and deg u = 0, deg v = 1, deg w = 2.

(ii) If p 6= 2 (including the case p = 0), then there exists the following
isomorphism of Z(∆)-algebras:

HH∗(Λ) ' Z(∆)[u, v, w]/(gk(u), gk−1(u)v, v2, kugk−1(u)g′(u)w),

where deg u = 0, deg v = 1 and deg w = 2.

Proof. We can prove the theorem by similar arguments to [FS, Theorem 4].
�

Remark 5.5. Suppose that Z(∆) is a field and s ≥ 1. Let f(x) = gk1
1 (x) · · ·

gkll (x) be a factorization of f(x) into irreducible factors in Z(∆)[x]. Since
the result of [FS, Lemma 3.6] holds in the case s ≥ 1, we have the following
decomposition of Z(∆)-algebras:

Λ = ∆Γ/(f(Xs)) ' ∆⊗Z(∆)

(
Z(∆)Γ/(f(Xs))

)

' ∆⊗Z(∆)

(
Z(∆)Γ/(gk1

1 (Xs))⊕ · · · ⊕ Z(∆)Γ/(gkll (Xs))
)

' ∆Γ/(gk1
1 (Xs))⊕ · · · ⊕∆Γ/(gkll (Xs)).

Then there exists the following isomorphism of Z(∆)-algebras:

HH∗
(
∆Γ/(f(Xs))

) ' HH∗
(
∆Γ/(gk1

1 (Xs))
)⊕ · · · ⊕HH∗

(
∆Γ/(gkll (Xs))

)
.

Hence, it suffices to consider the case f(x) = gk(x) for an irreducible polyno-
mial g(x) ∈ Z(∆)[x] and a positive integer k in order to determine the ring
structure of HH∗(Λ).
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5.2. The Hochschild cohomology ring of Λ in the case s = 1

In this subsection, we assume that s = 1 (i.e., Λ = ∆[x]/(f(x))) and n ≥ 2.
Note that the isomorphisms of Theorem 4.5 are given explicitly as follows:

Z(∆)[x]/(f(x)) ∼−→ HH0(Λ); q(x) + (f(x)) 7−→ φ,

AnnZ(∆)[x]/(f(x))(f
′(x)) ∼−→ HH1(Λ); q(x) + (f(x)) 7−→ φ,

Z(∆)[x]/(f ′(x), f(x)) ∼−→ HH2(Λ); q(x) + (f ′(x), f(x)) 7−→ φ+ Im d#
0 ,

where φ : ΛδΛ → Λ is the Λe-homomorphism given by φ(δ) = q(x) + (f(x)).
Thus we will identify

HH0(Λ) = Z(∆)[x]/(f(x)), HH1(Λ) = AnnZ(∆)[x]/(f(x))(f
′(x))

and HH2(Λ) = Z(∆)[x]/(f ′(x), f(x))

by these isomorphisms.
We denote the resolution (4.3) by

· · · d4−→ P3
d3−→ P2

d2−→ P1
d1−→ P0

π−→ Λ −→ 0,

where Pi = P0 = ΛδΛ, d2i = d0 and d2i+1 = d1 for i ≥ 1. Let w be the coset
in HH2(Λ) with 1 ∈ Z(∆)[x]: w = 1 + (f ′(x), f(x)) ∈ HH2(Λ). Then w is
represented by the multiplication map π : P2(= P0) → Λ. In this subsection,
we will use w in the meaning above.

Lemma 5.6. If Q = q(x) + (f(x)) ∈ HH0(Λ), where q(x) ∈ Z(∆)[x], then
we have Q × w = q(x) + (f ′(x), f(x)) ∈ HH2(Λ). Also, we have w × w =
1 + (f ′(x), f(x)) ∈ HH4(Λ). Hence HH2i(Λ) is the Z(Λ)-module generated by
wi ∈ HH2i(Λ) for i ≥ 1.

Proof. The element Q = q(x) + (f(x)) ∈ HH0(Λ) where q(x) ∈ Z(∆)[x] is
represented by the Λe-homomorphism φ : P0 → Λ given by φ(δ) = q(x) +
(f(x)).

First, we compute the product Q × w ∈ HH2(Λ). It is clear that idΛδΛ :
P2 → P0 is a lifting of π : P2 → Λ. Hence Q × w is the element in HH2(Λ)
represented by φ : P2 → Λ. Therefore we have Q×w = q(x) + (f ′(x), f(x)) ∈
HH2(Λ).

Second, we compute the product w × w ∈ HH4(Λ). It is clear that idΛδΛ :
P2 → P0, P3 → P1, P4 → P2 are liftings of π : P2 → Λ. Hence w × w
is the element in HH4(Λ) represented by π : P4 → Λ. Therefore we have
w × w = 1 + (f ′(x), f(x)) ∈ HH4(Λ). �

By this Lemma, we have the structure of the even Hochschild cohomology
ring of Λ.
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Proposition 5.7. There exists the following isomorphism of Z(∆)-algebras:

HHev(Λ) ' Z(∆)[u,w]/(f(u), f ′(u)w),

where deg u = 0 and degw = 2.

Proof. Let u = x + (f(x)) ∈ Z(∆)[x]/(f(x)) = HH0(Λ). Then we have
the relation f(u) = 0 in degree 0. Moreover, by Lemma 5.6, HH2i(Λ) is the
HH0(Λ)-module generated by wi and there is the relation f ′(u)wi = 0 in degree
2i for i ≥ 1. Therefore we have the desired isomorphisms of Z(∆)-algebras.
�

Now we calculate the Yoneda product in odd degree.

Lemma 5.8. If Q0 = q0(x) + (f(x)) ∈ HH0(Λ) where q0(x) ∈ Z(∆)[x] and
Q1 = q1(x)+(f(x)) ∈ HH1(Λ) where q1(x) is an element in Z(∆)[x] such that
f ′(x)q1(x) ∈ (f(x)), then we have Q0 ×Q1 = q0(x)q1(x) + (f(x)) ∈ HH1(Λ).
Also, we have Q1 × w = q1(x) + (f(x)) ∈ HH3(Λ).

Proof. The elements Q0 and Q1 are represented by the Λe-homomorphisms
φ0 : P0 → Λ and φ1 : P1 → Λ given by φ0(δ) = q0(x) + (f(x)) and φ1(δ) =
q1(x) + (f(x)), respectively. Then the Λe-homomorphism σ : P1 → P0 given
by σ(δ) = δq1(x) is a lifting of φ1 and φ0σ : P1 → Λ satisfies (φ0σ)(δ) =
q0(x)q1(x) + (f(x)). Therefore we have Q0 ×Q1 = q0(x)q1(x) + (f(x)).

Next we compute Q1 × w. It is clear that idΛδΛ : P2 → P0, P3 → P1 are
liftings of of π : P2 → Λ. Hence Q1 ×w is the element in HH3(Λ) represented
by φ1 : P3 → Λ. Therefore we have Q1 × w = q1(x) + (f(x)) ∈ HH3(Λ). �

Lemma 5.9. If Q = q(x) + (f(x)), Q̃ = q̃(x) + (f(x)) ∈ HH1(Λ) where
q(x), q̃(x) are elements in Z(∆)[x] such that f ′(x)q(x), f ′(x)q̃(x) ∈ (f(x)),
then we have

Q× Q̃ = q(x)q̃(x)
n∑

j=2

zj

(
j−1∑

l=1

l

)
xj−2 + (f ′(x), f(x)).

Proof. The elements Q and Q̃ are represented by the Λe-homomorphisms
φ : P1 → Λ and φ̃ : P1 → Λ given by φ(δ) = q(x) + (f(x)) and φ̃(δ) =
q̃(x)+(f(x)) respectively. It is clear that the Λe-homomorphism σ0 : P1 → P0

given by σ0(δ) = δq̃(x) is a lifting of φ̃ : P1 → Λ. Define the Λe-homomorphism
σ1 : P2 → P1 by

σ1(δ) =
n∑

j=2

zj

(
j−1∑

l=1

l−1∑

k=0

xkδxj−k−2

)
q̃(x).
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Then we have that σ1 is a lifting of φ̃, i.e., σ0d0 = σ0d2 = d1σ1. Indeed, by
means of the equation f ′(x)q̃(x) = 0 in Λ, we can calculate as follows. First,
note that

(σ0d0)(δ) = σ0




n∑

j=1

zj

(
j−1∑

l=0

xlδxj−l−1

)
 =

n∑

j=1

zj

(
j−1∑

l=0

xlδxj−l−1

)
q̃(x).

We also have

(d1σ1)(δ) = d1




n∑

j=2

zj

(
j−1∑

l=1

l−1∑

k=0

xkδxj−k−2

)
q̃(x)




=
n∑

j=2

zj

(
j−1∑

l=1

l−1∑

k=0

(xk+1δxj−k−2 − xkδxj−k−1)

)
q̃(x)

=
n∑

j=2

zj

(
j−1∑

l=1

(xlδxj−l−1 − δxj−1)

)
q̃(x)

=
n∑

j=2

zj

(
j−1∑

l=1

xlδxj−l−1 − (j − 1)δxj−1

)
q̃(x)

=
n∑

j=2

zj

(
j−1∑

l=0

xlδxj−l−1 − jδxj−1

)
q̃(x)

=
n∑

j=2

zj

(
j−1∑

l=0

xlδxj−l−1

)
q̃(x)− δ




n∑

j=2

jzjx
j−1


 q̃(x)

=
n∑

j=2

zj

(
j−1∑

l=0

xlδxj−l−1

)
q̃(x) + δz1q̃(x)

=
n∑

j=1

zj

(
j−1∑

l=0

xlδxj−l−1

)
q̃(x).

Hence σ0d0 = d1σ1 holds, so σ1 is a lifting of φ̃ : P1 → Λ. Then, we have

(φσ1)(δ) = φ




n∑

j=2

zj

(
j−1∑

l=1

l−1∑

k=0

xkδxj−k−2

)
q̃(x)




=
n∑

j=2

zj

(
j−1∑

l=1

l−1∑

k=0

xkq(x)xj−k−2

)
q̃(x)
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=
n∑

j=2

zj

(
j−1∑

l=1

l

)
xj−2q(x)q̃(x).

This completes the proof of the lemma. �

From now on, let Z(∆) be an integral domain in this subsection.
We consider the case f ′(x) = 0, that is, charZ(∆) = p > 0 and f(x) =∑n0
j=0 zjpx

jp for some positive integer n0. Then, by Theorem 4.5, we identify
HHt(Λ) with Z(∆)[x]/(f(x)) for t ≥ 0.

Lemma 5.10. Let Z(∆) be an integral domain, charZ(∆) = p > 0 and
f(x) ∈ Z(∆)[x] a monic polynomial with f ′(x) = 0, i.e., f(x) =

∑n0
j=0 zjpx

jp

for some positive integer n0. If i and k are odd, then we have

Q× Q̃ =




q(x)q̃(x)


 ∑

1 ≤ j ≤ n0 s.t. j is odd

z2jx
2j−2


+ (f(x)) if p = 2,

0 if p 6= 2,

for Q = q(x) + (f(x)) ∈ HHi(Λ) and Q̃ = q̃(x) + (f(x)) ∈ HHk(Λ) where
q(x), q̃(x) ∈ Z(∆)[x].

Proof. For Q = q(x) + (f(x)) ∈ HHi(Λ) and Q̃ = q̃(x) + (f(x)) ∈ HHk(Λ)
where q(x) and q̃(x) are in Z(∆)[x], by Lemma 5.9, we have

Q× Q̃ = q(x)q̃(x)
n0∑

j=1

zjp

(
jp−1∑

l=1

l

)
xjp−2 + (f(x)).

If p = 2, then we have Q × Q̃ = q(x)q̃(x)
(∑

1≤j≤n0
s.t. j is odd

z2jx
2j−2

)
+ (f(x)),

since
2j−1∑

l=1

l ≡
{

0 (mod 2) if j is even,
1 (mod 2) if j is odd.

If p 6= 2, then we have Q × Q̃ = 0, since
∑jp−1

l=1 l ≡ 0 (mod p) for all j ≥ 1.
�

Theorem 5.11. Let Z(∆) be an integral domain, charZ(∆) = p > 0 and
f(x) ∈ Z(∆)[x] a monic polynomial with f ′(x) = 0, i.e., f(x) =

∑n0
j=0 zjpx

jp

for some positive integer n0.
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(i) If p = 2, then there exists the following isomorphism of Z(∆)-algebras:

HH∗(Λ) ' Z(∆)[u, v, w]
/

f(u), v2 −




∑

1≤j≤n0
s.t. j is odd

z2ju
2j−2


w


 ,

where deg u = 0, deg v = 1 and deg w = 2.

(ii) If p 6= 2, then there exists the following isomorphism of Z(∆)-algebras:

HH∗(Λ) ' Z(∆)[u, v, w]/(f(u), v2),

where deg u = 0, deg v = 1 and deg w = 2.

Proof. Let u = x + (f(x)) ∈ HH0(Λ), v = 1 + (f(x)) ∈ HH1(Λ) and w =
1 + (f(x)) ∈ HH2(Λ). By Lemmas 5.6 and 5.8, HH2i+1(Λ) is the Z(Λ)-module
generated by wiv for i ≥ 0. If p 6= 2, then we obtain the relation v2 = 0
in degree 2 by Lemma 5.10. If p = 2, then v × v is the coset in HH2(Λ)
represented by

∑
1≤j≤n0

s.t. j is odd
z2jx

2j−2 ∈ Z(∆)[x] by Lemma 5.10, so we have

the relation v2 −∑ 1≤j≤n0
s.t. j is odd

z2ju
2j−2w = 0 in degree 2. Therefore we have

the desired isomorphisms. �

Next we consider the case f ′(x) 6= 0. So, from now on, we assume that
f ′(x) 6= 0 and Z(∆) is a unique factorization domain in this subsection. We
treat the elementary case f(x) = gk(x) with a monic irreducible polynomial
g(x) ∈ Z(∆)[x] and k ≥ 1. Then, since 0 6= f ′(x) = kg′(x)gk−1(x), it follows
that charZ(∆) - k. By Theorem 4.5, we also have

HH1(Λ) = AnnZ(∆)[x]/(gk(x))(kg
′(x)gk−1(x)) = (g(x))/(gk(x)),

HH2(Λ) = Z(∆)[x]/(gk(x), kg′(x)gk−1(x)).

If k = 1 then HH1(Λ) = 0, and hence the Hochschild cohomology ring of Λ
has been calculated by Proposition 5.7. So we assume k ≥ 2.

Lemma 5.12. Let Z(∆) be a unique factorization domain, p = charZ(∆) ≥ 0
and f(x) = gk(x) =

∑n
j=0 zjx

j ∈ Z(∆)[x] with f ′(x) 6= 0, where g(x) ∈
Z(∆)[x] is monic irreducible and k ≥ 2. If i and t are odd, then we have

Q×Q̃ =





q(x)q̃(x)g2(x)




∑

2≤j≤n
s.t. j≡2 or 3 (mod 4)

zjx
j−2


+ (f(x), f ′(x)) if p = 2,

0 if p 6= 2,



196 M. SUDA

for Q = q(x)g(x) + (f(x)) ∈ HHi(Λ) and Q̃ = q̃(x)g(x) + (f(x)) ∈ HHt(Λ)
where q(x), q̃(x) ∈ Z(∆)[x].

Proof. By Lemma 5.9, we have

Q× Q̃ = q(x)q̃(x)g2(x)
n∑

j=2

zj

(
j−1∑

l=1

l

)
xj−2 + (f(x), f ′(x)).

If p = 2, then we have

Q× Q̃ = q(x)q̃(x)g2(x)




∑

2≤j≤n
s.t. j≡2 or 3 (mod 4)

zjx
j−2


+ (f(x), f ′(x)),

since
j−1∑

l=1

l ≡
{

0 (mod 2) if j ≡ 0 or 1 (mod 4),
1 (mod 2) if j ≡ 2 or 3 (mod 4).

If p 6= 2, then

n∑

j=2

zj

(
j−1∑

l=1

l

)
xj−2 =

n∑

j=2

zj
j(j − 1)

2
xj−2 =

1
2

n∑

j=2

j(j − 1)zjxj−2

=
1
2
f ′′(x) =

1
2
kgk−2(x)

(
(k − 1)(g′(x))2 + g(x)g′′(x)

)
,

so we have Q× Q̃ = 0. �

Theorem 5.13. Let Z(∆) be a unique factorization domain, p = charZ(∆) ≥
0 and f(x) = gk(x) =

∑n
j=0 zjx

j ∈ Z(∆)[x] with f ′(x) 6= 0, where g(x) ∈
Z(∆)[x] is monic irreducible and k ≥ 2.

(i) If p = 2, then there exists the following isomorphism of Z(∆)-algebras:

HH∗(Λ) ' Z(∆)[u, v, w]/I,

where I is the ideal of Z(∆)[u, v, w] generated by

gk(u), gk−1(u)v, v2−g2(u)




∑

2≤j≤n
s.t. j≡2 or 3 (mod 4)

zju
j−2


w, kgk−1(u)g′(u)w,

and deg u = 0, deg v = 1, deg w = 2.
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(ii) If p 6= 2 (including the case p = 0), then there exists the following
isomorphism of Z(∆)-algebras:

HH∗(Λ) ' Z(∆)[u, v, w]/(gk(u), gk−1(u)v, v2, kgk−1(u)g′(u)w),

where deg u = 0, deg v = 1 and deg w = 2.

Proof. Let u = x + (gk(x)) ∈ HH0(Λ), v = g(x) + (gk(x)) ∈ HH1(Λ) and
w = 1+(gk(x), kgk−1(x)g′(x)) ∈ HH2(Λ). Then we have the relation gk(u) = 0
in degree 0. By Lemma 5.6, for i ≥ 1, HH2i(Λ) is the Z(Λ)-module generated
by wi, and we have the relation kgk−1(u)g′(u)w = 0 in degree 2. Moreover,
by Lemmas 5.6 and 5.8, for i ≥ 0, HH2i+1(Λ) is the Z(Λ)-module generated
by vwi, and we have the relation gk−1(u)v = 0 in degree 1.

If p 6= 2, then by Lemma 5.12 we have the relation v2 = 0 in degree 2.
If p = 2, then by Lemma 5.12 v × v is the coset in HH2(Λ) represented by

g2(x)




∑

2≤j≤n
s.t. j≡2 or 3 (mod 4)

zjx
j−2


. So we have the relation

v2 − g2(u)




∑

2≤j≤n
s.t. j≡2 or 3 (mod 4)

zju
j−2


w = 0

in degree 2. Therefore we get the desired isomorphisms. �

We remark that the argument of Remark 5.5 holds in the case s = 1.

§6. Applications

In this section, we will give some applications of the results of Section 5. Let
∆ be a separable R-algebra as usual.

Let s be an integer with s ≥ 2 and α1, α2, · · · , αs be nonzero elements of
Z(∆) such that αi is not a zero divisor in ∆ for each 1 ≤ i ≤ s. Let Eij be
the matrix unit in the s× s matrix ring Ms(∆) for 1 ≤ i, j ≤ s and

C :=




0 · · · · · · 0 αs
α1 0 0

0 α2
. . .

...
...

. . . . . . 0
...

0 · · · 0 αs−1 0



.
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Define the R-subalgebra B of Ms(∆) as follows:

B = ∆[E11, E22, . . . , Ess, C].

Note that, in particular, if α1 = α2 = · · · = αs−1 = 1 then the algebra has the
form




∆ αs∆ · · · αs∆
... ∆

. . .
...

...
. . . αs∆

∆ · · · · · · ∆



s×s

which is similar to a basic hereditary order (cf. [SS]). We calculate the
Hochschild cohomology ring of B. The following lemma shows that B is
isomorphic to ∆Γ/(f(Xs)) for some f(x) ∈ Z(∆)[x], where we note that ∆
needs not to be R-separable.

Lemma 6.1. Let B be the R-algebra as above. Then B is isomorphic to
∆Γ/(Xs − α) as R-algebras, where we set α = α1α2 · · ·αs.

Proof. We have

aC = Ca for all a ∈ ∆ and Cs = αE,

where E denotes the identity matrix. We also have

CjEii = Ei+j,i+jC
j for 1 ≤ i ≤ s and 0 ≤ j ≤ s− 1,

where we regard the subscripts of matrix units modulo s. Since αi is not a
zero divisor in ∆ for each 1 ≤ i ≤ s, the set {CjEii | 1 ≤ i ≤ s, 0 ≤ j ≤ s− 1}
gives a ∆-basis of B. Therefore there exists the following isomorphism of
∆-modules:

∆Γ/(Xs − α) ∼−→ B; Xjei 7−→ CjEii.

Moreover, it is clear that the isomorphism is an isomorphism of R-algebras.
This completes the proof of the lemma. �

Proposition 6.2. Let ∆ be a separable R-algebra and B the R-algebra as
above. Then there exists the following isomorphism of Z(∆)-algebras:

HH∗(B) ' Z(∆)[w]/(αw),

where deg w = 2 and α = α1α2 · · ·αs.
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Proof. By Lemma 6.1 and Theorem 4.4, we have

HHt(B) ' AnnZ(∆)[x]/(x−α)(x) ' AnnZ(∆)(α) = 0

for t odd, since α is not a zero divisor in ∆. Hence HH∗(B) ' HHev(B) holds.
Moreover, by Proposition 5.1, we have

HHev(B) ' Z(∆)[u,w]/(u− α, uw) ' Z(∆)[w]/(αw),

where deg u = 0 and deg w = 2. �

We remark that if ∆ = R then the result of Proposition 6.2 coincides with
[KSS, Theorem 1.1].

Next, we calculate the Hochschild cohomology ring of the truncated poly-
nomial R-algebra An := ∆[x]/(xn) with n ≥ 2.

Proposition 6.3. Let ∆ be a separable R-algebra, Z(∆) a unique factorization
domain with charZ(∆) = p ≥ 0, and An the truncated polynomial R-algebra
as above. Then there exists the following isomorphism of Z(∆)-algebras:

HH∗(An) '





Z(∆)[u, v, w]/(un, un−1v, v2, nun−1w) if p - n,
Z(∆)[u, v, w]/(un, v2) if 2 6= p | n or

if 2 = p | n and 4 | n,
Z(∆)[u, v, w]/(un, v2 − un−2w) if 2 = p | n and 4 - n,

where deg u = 0, deg v = 1 and deg w = 2.

Proof. Let s = 1 and f(x) = xn for n ≥ 2, then Λ = ∆[x]/(xn) = An, zn = 1
and zj = 0 for 0 ≤ j ≤ n− 1 in our previous notation.

First, we consider the case p - n. Then, since f ′(x) 6= 0, we can apply
Theorem 5.13 to An. If p = 2, then we have

HH∗(An) ' Z(∆)[u, v, w]/(un, un−1v, v2, nun−1w)

where deg u = 0, deg v = 1 and deg w = 2, since
∑

2≤j≤n
s.t. j≡2 or 3 (mod 4)

zju
j−2 is

equal to un−2 or 0. If p 6= 2, then we also have the same isomorphism.
Second, we consider the case p | n. Then, since f ′(x) = 0, we can apply

Theorem 5.11 to An. If p 6= 2, then HH∗(An) ' Z(∆)[u, v, w]/(un, v2). If p =
2, then we have the desired isomorphisms, since the sum

∑
1 ≤ j ≤ n/2
s.t. j is odd

z2ju
2j−2

is equal to un−2 if n/2 is odd and 0 if n/2 is even. �

We remark that if ∆ = R then the result of Proposition 6.3 coincides with
[H, Theorem 7.1].
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